
© MCS Electronics , 1995-2008

BASCOM-AVR user manual
Introduction

by MCS Electronics

Dear reader.

Thank you for your interest in BASCOM.

BASCOM was "invented" in 1995. It was intended for personal usage only. I
decided to make it public as I found no other tool that was so simple to use.
Since that time, a lot of options and extensions were added. Without the help
and patience of the many users, BASCOM would not be what it is today :
"the best and most affordable tool for fast proto typing".

We hope that BASCOM will contribute in making your work with
microprocessors Easy and enjoyable.

Please notice that the samples in the manual are intended as simple
samples. You should have a look at the sample code provided in the
SAMPLES directory.

The MCS Electronics Team

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: 31-10-2008

BASCOM-AVR

© 2008 MCS Electronics

Publisher
Special thanks to:

All the people who contributed to this document, all the
forum members that contributed in a positive way, all beta
testers , and all customers.

While there is not enough space to mention all
contributors, there are a few that I feel must be mentioned
:
Josef Franz Vögel. He wrote the Trig libraries, the
AVR-DOS file system and the DOUBLE library.

Luciano Ian and Adrian, they are very active on the user
forum. They take the time to give other forum members
free help and advise. They do this for free just to help
other BASOM users.

Managing Editor

Technical Editors

Cover Designer

MCS Electronics

M.C.Alberts

M.C.Alberts

B.F.de Graaff

BASCOM-AVR4

© 2008 MCS Electronics

Table of Contents

Foreword 0

Part I Index 20

... 211 Keyword Reference

... 242 About MCS Electronics

... 25Custom Designs

... 26Application Notes

Part II Installation 28

... 281 Installation of BASCOM

... 342 Updates

... 433 Move to new PC

Part III BASCOM IDE 45

... 451 Running BASCOM-AVR

... 472 File New

... 483 File Open

... 484 File Close

... 485 File Save

... 486 File Save As

... 497 File Print Preview

... 498 File Print

... 499 File Exit

... 4910 Edit Undo

... 4911 Edit Redo

... 4912 Edit Cut

... 4913 Edit Copy

... 5014 Edit Paste

... 5015 Edit Find

... 5016 Edit Find Next

... 5017 Edit Replace

... 5018 Edit Goto

... 5019 Edit Toggle Bookmark

... 5020 Edit Goto Bookmark

... 5021 Edit Indent Block

... 5122 Edit Unindent Block

... 5123 Edit Remark Block

... 5124 View PinOut

... 5525 View PDF viewer

... 5726 View Error Panel

... 5727 View Tip

5Contents

© 2008 MCS Electronics

... 5828 Program Compile

... 5829 Program Syntax Check

... 6030 Program Show Result

... 6131 Program Simulate

... 7232 Program Send to Chip

... 7533 Tools Terminal Emulator

... 7634 Tools LCD Designer

... 7835 Tools LIB Manager

... 7936 Tools Graphic Converter

... 8037 Tools Stack Analyzer

... 8038 Tools Plugin Manager

... 8139 Tools Batch Compile

... 8440 Tools PDF Update

... 8541 Tools Resource Editor

... 8642 Options Compiler

... 87Options Compiler Chip

... 88Options Compiler Output

... 89Options Compiler Communication

... 90Options Compiler I2C, SPI, 1WIRE

... 91Options Compiler LCD

... 9243 Options Communication

... 9344 Options Environment

... 9745 Options Simulator

... 9846 Options Programmer

... 99Supported Programmers

.. 100ISP programmer

.. 101PG302 programmer

.. 101Sample Electronics cable programmer

.. 102KITSRUS Programmer

.. 103MCS Universal Interface Programmer

.. 105STK500 Programmer

.. 108Lawicel BootLoader

.. 109AVR ISP Programmer

.. 109USB-ISP Programmer

.. 113MCS Bootloader

.. 115PROGGY

.. 115FLIP

.. 117Elektor / AVR ISP mkII

... 11747 Options Monitor

... 11848 Options Printer

... 11849 Window Cascade

... 11950 Window Tile

... 11951 Window Arrange Icons

... 11952 Windows Maximize All

... 11953 Window Minimize All

... 11954 Help About

... 12055 Help Index

BASCOM-AVR6

© 2008 MCS Electronics

... 12156 Help MCS Forum

... 12257 Help MCS Shop

... 12258 Help Support

... 12359 Help Knowledge Base

... 12360 Help Credits

... 12461 BASCOM Editor Keys

... 12562 Program Development Order

... 12563 PlugIns

... 125Font Editor

Part IV BASCOM HARDWARE 129

... 1291 Additional Hardware

... 1292 AVR Internal Hardware

... 1303 AVR Internal Registers

... 1324 AVR Internal Hardware TIMER0

... 1335 AVR Internal Hardware TIMER1

... 1356 AVR Internal Hardware Watchdog timer

... 1357 AVR Internal Hardware Port B

... 1378 AVR Internal Hardware Port D

... 1389 Adding XRAM

... 13910 Attaching an LCD Display

... 14011 Memory usage

... 14212 Using the UART

... 14813 USING RS485

... 15014 Using the I2C protocol

... 15715 Using the 1 WIRE protocol

... 16016 Using the SPI protocol

... 16817 Power Up

... 16918 Chips

... 169AT86RF401

... 169AT90S1200

... 169AT90S2313

... 170AT90S2323

... 171AT90S2333

... 171AT90S2343

... 173AT90S4414

... 173AT90S4433

... 175AT90S4434

... 176AT90S8515

... 176AT90S8535

... 177AT90PWM2-3

... 178AT90CAN128

... 180AT90USB162

... 180ATtiny12

... 181ATtiny13

... 181ATtiny15

... 181ATtiny22

... 182ATtiny24

7Contents

© 2008 MCS Electronics

... 182ATtiny25

... 182ATtiny26

... 183ATtiny44

... 183ATtiny45

... 184ATtiny84

... 184ATtiny85

... 185ATtiny261

... 185ATtiny461

... 186ATtiny861

... 186ATtiny2313

... 187ATMEGA8

... 187ATMEGA16

... 188ATMEGA32

... 189ATMEGA48

... 189ATMEGA88

... 190ATMEGA64

... 190ATMEGA103

... 192ATMEGA128

... 193ATMEGA161

... 193ATMEGA162

... 194ATMEGA163

... 195ATMEGA164P

... 196ATMEGA165

... 197ATMEGA168

... 197ATMEGA169

... 198ATMEGA323

... 199ATMEGA324P

... 200ATMEGA325

... 201ATMEGA328P

... 202ATMEGA329

... 202ATMEGA406

... 203ATMEGA603

... 205ATMEGA640

... 206ATMEGA644P

... 207ATMEGA645

... 208ATMEGA649

... 209ATMEGA2560

... 210ATMEGA2561

... 211ATMEGA8515

... 211ATMEGA8535

... 21219 Reference Designs

... 212EM4095 RFID Reader

... 220USB162 module

Part V BASCOM Language Fundamentals 223

... 2231 Changes compared to BASCOM-8051

... 2242 Language Fundamentals

... 2363 Mixing ASM and BASIC

... 2414 Assembler mnemonics

... 2465 Reserved Words

... 2476 Error Codes

... 2517 Newbie problems

... 2528 Tips and tricks

... 2539 ASCII chart

BASCOM-AVR8

© 2008 MCS Electronics

Part VI BASCOM Language Reference 257

... 2571 $ASM

... 2572 $BAUD

... 2583 $BAUD1

... 2594 $BGF

... 2615 $BOOT

... 2626 $CRYSTAL

... 2627 $DATA

... 2648 $DBG

... 2669 $DEFAULT

... 26710 $EEPLEAVE

... 26711 $EEPROM

... 26812 $EEPROMHEX

... 26913 $EXTERNAL

... 27014 $FRAMESIZE

... 27115 $HWSTACK

... 27216 $INC

... 27317 $INCLUDE

... 27418 $INITMICRO

... 27519 $LCD

... 27720 $LCDPUTCTRL

... 27921 $LCDPUTDATA

... 28022 $LCDRS

... 28223 $LCDVFO

... 28324 $LIB

... 28525 $LOADER

... 29126 $LOADERSIZE

... 29227 $MAP

... 29228 $NOCOMPILE

... 29329 $NOINIT

... 29430 $NORAMCLEAR

... 29431 $PROG

... 29532 $PROGRAMMER

... 29633 $REGFILE

... 29734 $RESOURCE

... 30035 $ROMSTART

... 30036 $SERIALINPUT

... 30237 $SERIALINPUT1

... 30338 $SERIALINPUT2LCD

... 30439 $SERIALOUTPUT

... 30440 $SERIALOUTPUT1

9Contents

© 2008 MCS Electronics

... 30541 $SIM

... 30642 $SWSTACK

... 30743 $TIMEOUT

... 30844 $TINY

... 30945 $WAITSTATE

... 31046 $XA

... 31047 $XRAMSIZE

... 31148 $XRAMSTART

... 31249 1WIRECOUNT

... 31450 1WRESET

... 31751 1WREAD

... 31952 1WSEARCHFIRST

... 32153 1WSEARCHNEXT

... 32454 1WVERIFY

... 32655 1WWRITE

... 32856 ABS

... 32957 ACOS

... 33058 ADR , ADR2

... 33459 ALIAS

... 33560 ASC

... 33861 ASIN

... 33962 ATN

... 34063 ATN2

... 34164 BASE64DEC

... 34265 BASE64ENC

... 34366 BAUD

... 34467 BAUD1

... 34568 BCD

... 34769 BIN

... 34870 BINVAL

... 34971 BIN2GRAY

... 35072 BITWAIT

... 35173 BITS

... 35274 BLOAD

... 35375 BOX

... 35576 BOXFILL

... 35677 BSAVE

... 35778 BUFSPACE

... 35779 BYVAL

... 35880 CALL

... 36081 CHECKSUM

... 36182 CHR

BASCOM-AVR10

© 2008 MCS Electronics

... 36283 CIRCLE

... 36584 CLEAR

... 36685 CLS

... 36986 CLOCKDIVISION

... 37087 CLOSE

... 37288 CLOSESOCKET

... 37589 CONFIG

... 37790 CONFIG 1WIRE

... 37991 CONFIG ACI

... 38092 CONFIG ADC

... 38293 CONFIG ATEMU

... 38494 CONFIG BCCARD

... 38795 CONFIG CLOCK

... 39096 CONFIG CLOCKDIV

... 39097 CONFIG COM1

... 39298 CONFIG COM2

... 39499 CONFIG COMx

... 395100 CONFIG DATE

... 398101 CONFIG DCF77

... 403102 CONFIG DEBOUNCE

... 405103 CONFIG HITAG

... 408104 CONFIG I2CDELAY

... 411105 CONFIG I2CSLAVE

... 413106 CONFIG INPUT

... 414107 CONFIG INTx

... 416108 CONFIG GRAPHLCD

... 421109 CONFIG KBD

... 423110 CONFIG KEYBOARD

... 426111 CONFIG LCD

... 430112 CONFIG LCDBUS

... 433113 CONFIG LCDMODE

... 433114 CONFIG LCDPIN

... 436115 CONFIG PORT

... 438116 CONFIG PRINT

... 439117 CONFIG PRINTBIN

... 440118 CONFIG PS2EMU

... 443119 CONFIG RC5

... 443120 CONFIG SDA

... 444121 CONFIG SCL

... 444122 CONFIG SERIALIN

... 449123 CONFIG SERIALOUT

... 451124 CONFIG SINGLE

11Contents

© 2008 MCS Electronics

... 452125 CONFIG SHIFTIN

... 453126 CONFIG SPI

... 454127 CONFIG SERVOS

... 456128 CONFIG TCPIP

... 459129 CONFIG TIMER0

... 461130 CONFIG TIMER1

... 464131 CONFIG TIMER2

... 466132 CONFIG TWI

... 467133 CONFIG TWISLAVE

... 471134 CONFIG USB

... 478135 CONFIG WAITSUART

... 478136 CONFIG WATCHDOG

... 480137 CONFIG X10

... 482138 CONFIG XRAM

... 483139 CONST

... 485140 COS

... 486141 COSH

... 486142 COUNTER0 and COUNTER1

... 487143 CPEEK

... 488144 CPEEKH

... 490145 CRC8

... 491146 CRC16

... 494147 CRC16UNI

... 496148 CRC32

... 497149 CRYSTAL

... 498150 CURSOR

... 501151 DATA

... 504152 DAYOFWEEK

... 513153 DAYOFYEAR

... 514154 DATE$

... 516155 DATE

... 525156 DBG

... 526157 DCF77TIMEZONE

... 526158 DEBUG

... 527159 DEBOUNCE

... 529160 DECR

... 530161 DECLARE FUNCTION

... 532162 DECLARE SUB

... 535163 DEFxxx

... 536164 DEFLCDCHAR

... 537165 DEG2RAD

... 538166 DELAY

BASCOM-AVR12

© 2008 MCS Electronics

... 539167 DIM

... 542168 DIR

... 543169 DISABLE

... 545170 DISKFREE

... 546171 DISKSIZE

... 547172 DISPLAY

... 550173 DO-LOOP

... 551174 DriveCheck

... 552175 DriveGetIdentity

... 553176 DriveInit

... 553177 DriveReset

... 554178 DriveReadSector

... 555179 DriveWriteSector

... 556180 DTMFOUT

... 558181 ECHO

... 560182 ELSE

... 562183 ENABLE

... 563184 ENCODER

... 565185 END

... 566186 EOF

... 567187 EXIT

... 568188 EXP

... 569189 FILEATTR

... 570190 FILEDATE

... 571191 FILEDATETIME

... 571192 FILELEN

... 572193 FILETIME

... 573194 FIX

... 574195 FLUSH

... 575196 FORMAT

... 576197 FOR-NEXT

... 578198 FOURTHLINE

... 579199 FRAC

... 580200 FREEFILE

... 581201 FUSING

... 582202 GET

... 585203 GETADC

... 587204 GETATKBD

... 591205 GETATKBDRAW

... 591206 GETDSTIP

... 592207 GETDSTPORT

... 593208 GETKBD

13Contents

© 2008 MCS Electronics

... 595209 GETRC

... 596210 GETRC5

... 599211 GETTCPREGS

... 600212 GETSOCKET

... 601213 GLCDCMD

... 601214 GLCDDATA

... 602215 GOSUB

... 603216 GOTO

... 603217 GRAY2BIN

... 604218 HEX

... 605219 HEXVAL

... 606220 HIGH

... 607221 HIGHW

... 607222 HOME

... 608223 I2CINIT

... 608224 I2CRECEIVE

... 609225 I2CSEND

... 610226 I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

... 613227 IDLE

... 613228 IF-THEN-ELSE-END IF

... 615229 INCR

... 615230 INITFILESYSTEM

... 616231 INITLCD

... 617232 INKEY

... 618233 INP

... 620234 INPUTBIN

... 620235 INPUTHEX

... 622236 INPUT

... 624237 INSTR

... 625238 INT

... 626239 IP2STR

... 626240 ISCHARWAITING

... 627241 KILL

... 628242 LCASE

... 629243 LCD

... 632244 LCDAT

... 634245 LCDCONTRAST

... 634246 LEFT

... 635247 LEN

... 635248 LINE

... 638249 LINE INPUT

... 639250 LTRIM

BASCOM-AVR14

© 2008 MCS Electronics

... 640251 LOAD

... 640252 LOADADR

... 641253 LOADLABEL

... 641254 LOADWORDADR

... 642255 LOC

... 643256 LOF

... 644257 LOCAL

... 647258 LOCATE

... 647259 LOG

... 648260 LOG10

... 648261 LOOKDOWN

... 650262 LOOKUP

... 651263 LOOKUPSTR

... 651264 LOW

... 652265 LOWERLINE

... 653266 MACRO

... 654267 MAKEBCD

... 654268 MAKEINT

... 655269 MAKEDEC

... 655270 MAKEMODBUS

... 658271 MAKETCP

... 658272 MAX

... 660273 MEMCOPY

... 661274 MIN

... 662275 MID

... 663276 NBITS

... 664277 ON INTERRUPT

... 667278 ON VALUE

... 669279 OPEN

... 673280 OUT

... 674281 PEEK

... 675282 POKE

... 675283 POPALL

... 676284 POWER

... 678285 POWERDOWN

... 679286 POWERSAVE

... 679287 PRINT

... 681288 PRINTBIN

... 682289 PSET

... 685290 PS2MOUSEXY

... 685291 PULSEIN

... 686292 PULSEOUT

15Contents

© 2008 MCS Electronics

... 687293 PUSHALL

... 688294 PUT

... 690295 QUOTE

... 690296 RAD2DEG

... 691297 RC5SEND

... 693298 RC5SENDEXT

... 695299 RC6SEND

... 697300 READ

... 699301 READEEPROM

... 701302 READHITAG

... 704303 READMAGCARD

... 706304 REM

... 707305 RESET

... 709306 RESTORE

... 710307 RETURN

... 711308 RIGHT

... 712309 RND

... 713310 ROTATE

... 714311 ROUND

... 715312 RTRIM

... 716313 SECELAPSED

... 717314 SECOFDAY

... 718315 SEEK

... 719316 SELECT-CASE-END SELECT

... 721317 SET

... 723318 SETFONT

... 725319 SETTCP

... 726320 SETTCPREGS

... 728321 SENDSCAN

... 730322 SENDSCANKBD

... 734323 SERIN

... 736324 SEROUT

... 738325 SETIPPROTOCOL

... 740326 SGN

... 741327 SHIFT

... 743328 SHIFTCURSOR

... 743329 SHIFTIN

... 747330 SHIFTOUT

... 748331 SHIFTLCD

... 749332 SHOWPIC

... 750333 SHOWPICE

... 751334 SIN

BASCOM-AVR16

© 2008 MCS Electronics

... 752335 SINH

... 752336 SOCKETCONNECT

... 755337 SOCKETLISTEN

... 756338 SOCKETSTAT

... 757339 SONYSEND

... 760340 SOUND

... 762341 SPACE

... 763342 SPC

... 764343 SPIIN

... 765344 SPIINIT

... 765345 SPIMOVE

... 766346 SPIOUT

... 766347 SPLIT

... 768348 SQR

... 769349 START

... 770350 STCHECK

... 775351 STOP

... 775352 STR

... 776353 STRING

... 777354 SUB

... 777355 SYSSEC

... 779356 SYSSECELAPSED

... 780357 SYSDAY

... 781358 SWAP

... 782359 TAN

... 783360 TCPCHECKSUM

... 786361 TCPREAD

... 787362 TCPWRITE

... 788363 TCPWRITESTR

... 792364 TANH

... 793365 THIRDLINE

... 793366 TIME$

... 794367 TIME

... 796368 TOGGLE

... 796369 TRIM

... 797370 UCASE

... 798371 UDPREAD

... 801372 UDPWRITE

... 802373 UDPWRITESTR

... 806374 UPPERLINE

... 806375 VAL

... 807376 VARPTR

17Contents

© 2008 MCS Electronics

... 808377 VER

... 809378 VERSION

... 809379 WAIT

... 810380 WAITKEY

... 811381 WAITMS

... 812382 WAITUS

... 813383 WHILE-WEND

... 814384 WRITE

... 815385 WRITEEEPROM

... 817386 X10DETECT

... 819387 X10SEND

... 820388 #IF ELSE ENDIF

Part VII International Resellers 824

... 8241 International Resellers

Part VIII ASM Libraries and Add-Ons 826

... 8261 I2C_TWI

... 8262 EXTENDED I2C

... 8283 MCSBYTE

... 8284 MCSBYTEINT

... 8295 TCPIP

... 8306 LCD

... 830LCD4BUSY

... 831LCD4.LIB

... 831LCD4E2

... 832GLCD

... 832GLCDSED

... 832PCF8533

... 834LCD-EPSON

... 8357 AVR-DOS

... 835AVR-DOS File System

... 8398 CF Card

... 839Compact FlashCard Driver

... 840Elektor CF-Interface

... 841XRAM CF-Interface for simulation

... 842New CF-Card Drivers

... 8429 Floating Point

... 842FP_TRIG

... 845DOUBLE

... 84510 I2C SLAVE

... 845I2CSLAVE

... 847I2C TWI Slave

... 84911 SPI

... 849SPISLAVE

... 85212 DATE TIME

... 852EUROTIMEDATE

... 852DATETIME

BASCOM-AVR18

© 2008 MCS Electronics

... 85313 PS2-AT Mouse and Keyboard Emulation

... 853AT_EMULATOR

... 853PS2MOUSE_EMULATOR

... 85314 BCCARD

... 853BCCARD

... 855BCDEF

... 855BCCALL

... 861BCRESET

... 86215 USB

... 862USB Add On

... 87516 MODBUS Slave/Server

Part IX Tools 879

... 8791 LCD RGB-8 Converter

Index 881

Part

I

20 BASCOM-AVR

© 2008 MCS Electronics

1 Index

Version 1.11.9.3 document build 22

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.
MCS Electronics will not be liable for any miss-information or errors found in this
document.

All software provided with this product package is provided 'AS IS' without any
warranty expressed or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits arising
from the usage of this product package.

No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any
purpose, without written permission of MCS Electronics.

Copyright MCS Electronics. All rights reserved.

21Index

© 2008 MCS Electronics

1.1 Keyword Reference

1WIRE
1Wire routines allow you to communicate with Dallas 1wire chips.
1WRESET , 1WREAD , 1WWRITE , 1WSEARCHFIRST , 1WSEARCHNEXT
,1WVERIFY , 1WIRECOUNT

Conditions
Conditions execute a part of the program depending on a condition being True or
False
IF-THEN-ELSE-END IF , WHILE-WEND , ELSE , DO-LOOP , SELECT CASE
- END SELECT , FOR-NEXT

Configuration
Configuration commands initialize the hardware to the desired state.
CONFIG , CONFIG ACI , CONFIG ADC , CONFIG BCCARD , CONFIG CLOCK

 , CONFIG COM1 , CONFIG COM2 , CONFIG DATE , CONFIG PS2EMU ,
CONFIG ATEMU , CONFIG I2CSLAVE , CONFIG INPUT , CONFIG GRAPHLCD

 , CONFIG KEYBOARD , CONFIG TIMER0 , CONFIG TIMER1 , CONFIG
LCDBUS , CONFIG LCDMODE , CONFIG 1WIRE , CONFIG LCD , CONFIG
SERIALOUT , CONFIG SERIALIN , CONFIG SPI , CONFIG LCDPIN , CONFIG
SDA , CONFIG SCL , CONFIG DEBOUNCE , CONFIG WATCHDOG , CONFIG
PORT , COUNTER0 AND COUNTER1 , CONFIG TCPIP , CONFIG TWISLAVE ,
CONFIG SINGLE , CONFIG X10 , CONFIG XRAM , CONFIG USB

Conversion
A conversion routine is a function that converts a number or string from one form to
another.
BCD , GRAY2BIN , BIN2GRAY , BIN , MAKEBCD , MAKEDEC ,
MAKEINT , FORMAT , FUSING , BINVAL , CRC8 , CRC16 , CRC16UNI

 , CRC32 , HIGH , HIGHW , LOW

DateTime
Date Time routines can be used to calculate with date and/or times.
DATE , TIME , DATE$, TIME$, DAYOFWEEK , DAYOFYEAR ,
SECOFDAY , SECELAPSED , SYSDAY , SYSSEC , SYSSECELAPSED

Delay
Delay routines delay the program for the specified time.
WAIT , WAITMS , WAITUS , DELAY

Directives
Directives are special instructions for the compiler. They can override a setting from
the IDE.
$ASM , $BAUD , $BAUD1 , $BGF , $BOOT , $CRYSTAL , $DATA ,
$DBG , $DEFAULT , $EEPLEAVE , $EEPROM , $EEPROMHEX ,
$EXTERNAL , $HWSTACK , $INC , $INCLUDE , $INITMICRO , $LCD ,
$LCDRS , $LCDPUTCTRL , $LCDPUTDATA , $LCDVFO , $LIB , $LOADER

 , $LOADERSIZE , $MAP , $NOCOMPILE , $NOINIT , $NORAMCLEAR

314 317 326 319 321

324 312

613 813 560 550

719 576

375 379 380 384

387 390 392 395 440

382 411 413

416 423 459 461

430 433 377 426

449 444 453 433

443 444 403 478

436 486 456 467

451 480 482 471

345 603 349 347 654 655

654 575 581 348 490 491

494 496 606 607 651

516 794 514 793 504 513

717 716 780 777 779

809 811 812 538

257 257 258 259 261 262 262

264 266 267 267 268

269 271 272 273 274 275

280 277 279 282 283

285 291 292 292 293 294

22 BASCOM-AVR

© 2008 MCS Electronics

, $PROG , $PROGRAMMER , $REGFILE , $RESOURCE , $ROMSTART
$SERIALINPUT , $SERIALINPUT1 , $SERIALINPUT2LCD , $SERIALOUTPUT ,
$SERIALOUTPUT1 , $SIM , $SWSTACK , $TIMEOUT , $TINY ,
$WAITSTATE , $XRAMSIZE , $XRAMSTART , $XA

File
File commands can be used with AVR-DOS, the Disk Operating System for AVR.
BSAVE , BLOAD , GET , VER , DISKFREE , DIR , DriveReset ,
DriveInit , LINE INPUT , INITFILESYSTEM , EOF , WRITE , FLUSH ,
FREEFILE , FILEATTR , FILEDATE , FILETIME , FILEDATETIME , FILELEN

 , SEEK , KILL , DriveGetIdentity , DriveWriteSector , DriveReadSector
 , LOC , LOF , PUT , OPEN , CLOSE

Graphical LCD
Graphical LCD commands extend the normal text LCD commands.
GLCDCMD , GLCDDATA , SETFONT , LINE , PSET , SHOWPIC ,
SHOWPICE , CIRCLE , BOX

I2C
I2C commands allow you to communicate with I2C chips with the TWI hardware or
with emulated I2C hardware.
I2CINIT , I2CRECEIVE , I2CSEND , I2CSTART,I2CSTOP,I2CRBYTE,I2CWBYTE

IO
I/O commands are related to the I/O pins and ports of the processor chip.
ALIAS , BITWAIT , TOGGLE , RESET , SET , SHIFTIN , SHIFTOUT

 , DEBOUNCE , PULSEIN , PULSEOUT

Micro
Micro statements are specific to the micro processor chip.
IDLE , POWERDOWN , POWERSAVE , ON INTERRUPT , ENABLE ,
DISABLE , START , END , VERSION , CLOCKDIVISION , CRYSTAL ,
STOP

Memory
Memory functions set or read RAM , EEPROM or flash memory.
ADR , ADR2 , WRITEEEPROM , CPEEK , CPEEKH , PEEK , POKE ,
OUT , READEEPROM , DATA , INP , READ , RESTORE ,
LOOKDOWN , LOOKUP , LOOKUPSTR , CPEEKH , LOAD , LOADADR ,
LOADLABEL , LOADWORDADR , MEMCOPY

Remote Control
Remote control statements send or receive IR commands for remote control.
RC5SEND , RC6SEND , GETRC5 , SONYSEND

RS-232
RS-232 are serial routines that use the UART or emulate a UART.

294 295 296 297 300

300 302 303 304

304 305 306 307 308

309 310 311 310

356 352 582 808 545 542 553

553 638 615 566 814 574

580 569 570 572 571

571 718 627 552 555

554 642 643 688 669 370

601 601 723 635 682 749

750 362 353

608 608 609

610

334 350 796 707 721 743

747 527 685 686

613 678 679 664 562

543 769 565 809 369 497

775

330 330 815 487 488 674 675

673 699 501 618 697 709

648 650 651 488 640 640

641 641 660

691 695 596 757

23Index

© 2008 MCS Electronics

BAUD , BAUD1 , BUFSPACE , CLEAR , ECHO , WAITKEY ,
ISCHARWAITING , INKEY , INPUTBIN , INPUTHEX , INPUT , PRINT ,
PRINTBIN , SERIN , SEROUT , SPC , MAKEMODBUS

SPI
SPI routines communicate according to the SPI protocol with either hardware SPI or
software emulated SPI.
SPIIN , SPIINIT , SPIMOVE , SPIOUT

String
String routines are used to manipulate strings.
ASC , UCASE , LCASE , TRIM , SPLIT , LTRIM , INSTR , SPACE
, STRING , RTRIM , LEFT , LEN , MID , RIGHT , VAL , STR ,
CHR , CHECKSUM , HEX , HEXVAL , QUOTE

TCP/IP
TCP/IP routines can be used with the W3100/IIM7000/IIM7010 modules.
BASE64DEC , BASE64ENC , IP2STR , UDPREAD , UDPWRITE ,
UDPWRITESTR , TCPWRITE , TCPWRITESTR , TCPREAD , GETDSTIP ,
GETDSTPORT , SOCKETSTAT , SOCKETCONNECT , SOCKETLISTEN ,
GETSOCKET , CLOSESOCKET , SETTCP , GETTCPREGS , SETTCPREGS ,
SETIPPROTOCOL , TCPCHECKSUM

Text LCD
Text LCD routines work with normal text based LCD displays.
HOME , CURSOR , UPPERLINE , THIRDLINE , INITLCD , LOWERLINE
, LCD , LCDAT , FOURTHLINE , DISPLAY , LCDCONTRAST , LOCATE ,
 SHIFTCURSOR , DEFLCDCHAR , SHIFTLCD , CLS

Trig & Math
Trig and Math routines work with numeric variables.
ACOS , ASIN , ATN , ATN2 , EXP , RAD2DEG , FRAC , TAN ,
TANH , COS , COSH , LOG , LOG10 , ROUND , ABS , INT ,
MAX , MIN , SQR , SGN , POWER , SIN , SINH , FIX , INCR
, DECR , DEG2RAD

Various
This section contains all statements that were hard to put into another group
CONST , DBG , DECLARE FUNCTION , DEBUG , DECLARE SUB , DEFXXX

 , DIM , DTMFOUT , EXIT , ENCODER , GETADC , GETKBD ,
GETATKBD , GETRC , GOSUB , GOTO , LOCAL ,ON VALUE , POPALL

 , PS2MOUSEXY , PUSHALL , RETURN , RND , ROTATE , SENDSCAN
 , SENDSCANKBD , SHIFT , SOUND , STCHECK , SUB , SWAP ,

VARPTR , X10DETECT , X10SEND , READMAGCARD , REM , BITS ,
BYVAL , CALL , #IF , #ELSE , #ENDIF , READHITAG

343 344 357 365 558 810

626 617 620 620 622 679

681 734 736 763 655

764 765 765 766

335 797 628 796 766 639 624 762

776 715 634 635 662 711 806 775

361 360 604 605 690

341 342 626 798 801

802 787 788 786 591

592 756 752 755

600 372 725 599 726

738 783

607 498 806 793 616 652

629 632 578 547 634 647

743 536 748 366

329 338 339 340 568 690 579 782

792 485 486 647 648 714 328 625

658 661 768 740 676 751 752 573 615

529 537

483 525 530 526 532

535 539 556 567 563 585 593

587 595 602 603 644 667

675 685 687 710 712 713

728 730 741 760 770 777 781

807 817 819 704 706 351

357 358 820 820 820 701

24 BASCOM-AVR

© 2008 MCS Electronics

1.2 About MCS Electronics

About the founder
Since i was young i was intrigued by remote control, robots, transmitters and in short
all electronics. I created countless electronic devices. I designed a lot of PCB's by
hand(using ink) and when ATARI came with the ST1040 and an affordable PCB design
tool, I bought my first real computer.
It turned out that the printers at that time(matrix printers) were not able to produce
a good print. And the design of the PCB was still time consuming. But i found that a
nice BASIC interpreter which was similar to GW-BASIC was included in the OS(TOS).
For some reason i liked this language which was easy to master. And very intuitive.

When I found out that Atmel made the 89c2051 which was a 20 pin chip with flash
memory, i was excited that there was a small micro processor that could be erased/
reprogrammed without the need of UV-erasing of the EPROM. Before the Atmel chip i
used the 8052AH, a BASIC interpreter. It worked nice but code ran too slow. And the
EPROM's had to be erased by UV light which took a long time.
At those days, electronic circuits consisted of numerous CMOS and TTL chips. And i
saw the 89C2051 as an ideal replacement for a lot of CMOS/TTL chips. It would make
PCB design much simpler.
And the idea to be able to change the behaviour of an electronic circuit just by
reprogramming it, without using a solder iron, intrigued me. Today it is common
practice to update firmware to fix bugs or add features but in 1993 it was not so
common. At least not to my knowledge.

I wrote a complete DOS tool and when i was satisfied Windows became reasonable
stable and a standard(windows 3.1).
And thus i rewrote the tool. The tool was for my own usage. When i learned it would
be usable to others as well i decided to add Help files, and to sell it for a small fee.

In 1995 MCS started to sell BASCOM-LT, a BASIC compiler for Windows 3.1. It was
the first Windows application that offered a complete and affordable solution : editor,
compiler, simulator and programmer. BASCOM-LT was a 8051 BASIC compiler. The
reason why it became popular was that it included a lot of functionality that was easy
to use from BASIC. To use an LCD display was simple, just a configuration line to
define the used pins, and voila : a working application in minutes. And when you
needed a different LCD display, you could simply change the CONFIG line.
And when a different processor was needed, you only had to change the definition file
!
Another reason for the success is that we hidden all complexity for the user. No ASM
to deal with, simple statements, and of course free updates and support.
Small companies that used the BASIC Stamp also recognized another advantage :
there was no need for expensive modules and the code ran much quicker.

When windows 95 became more an industry standard, users also wanted a 32 bit
version. So BASCOM-LT was rewritten for a big part and support for arrays and
floating point (single) was added.
The many different 8051 variants make it impossible to support all chips but the DAT
files were easy to add by the user.

When Atmel launched the AVR chip, the 8051 compiler was rewritten once again to
support the powerful AVR chips. The result was BASCOM-AVR.
The AVR chip has a lot of internal memory, and it has simple linear memory. The best
part is that you can program the chip inside the circuit. No wonder this chip family
became so popular.
And because the chip is so powerful, we could extend the compiler as well. We could
add features which are almost impossible to add for the 8051.

25Index

© 2008 MCS Electronics

With more and more users, there was no way i could manage everything in my spare
time. So in order to guarantee the future of BASCOM, i decided to work full time for
MCS.
Today MCS is still a small company with only 3 employees.
We believe in free updates and support. With the number of (demo) users, it is
however not possible to support everybody. You need to realize that reading and
answering emails is time consuming.
Not to mention to duplicate used hardware. We are unique that we even support
hardware!

Since a long time we are working on a more professional version of the software.
Some times we put a feature of it to the current BASCOM version.
An ARM version is under development too.
Note that we do not give details or time frames for these versions, nor do we do for
other features.
In order to migrate to a future version it is however important that you keep your
software up to date. This will make a migration more simple.

Things we find important :

· the environment. we reuse all usable packing material like foam, plastic bubbles we
receive when we ship your order.

· that everybody can use microprocessors. They are not scary, but are just chips like
all other chips.

· customer privacy : we keep your name, details and code confidential.
· little advertisements on our web. You will only find them at our homepage and they

are from us only.
· free updates. (they are free since 1995 but it is not a guarantee it will remain free

for ever). the intention is to keep them free.
· free (but limited) support. Limited only because we do not have the resources to

read/answer all emails.
· support for new chips. it is important to be able to use new released chips.
· the customer : we simply add what is requested most. It does not matter what, as

long as it is requested a lot.
· that you have fun with electronics, no matter where you life, no matter which

religion you have, no matter how old you are, if you are male, female, purple or
white.

· that you can use the free demo for free. But that you pay for a full version if you
use it commercial. Do not use cracked soft. Using cracks means the end of all
software.

Have fun !

Mark Alberts
MCS Electronics

1.2.1 Custom Designs

MCS does produce hardware to support special options. Like the EM4095 Reference
Design or the TCP TWI motherboard and adapter boards. We try not to use SMD
parts. In some cases this is not possible however.
For a prototype or small series, through hole components are simple to use. We do
this with the hobbyist in mind. So our reference designs use little SMD parts as
possible.

212

26 BASCOM-AVR

© 2008 MCS Electronics

We also do custom hard and software projects. Of course we can also produce
hardware with SMD parts only. We also produce custom Windows software.

MCS knows a number of BASCOM consultants that can help you with your design.
See also 'About MCS '

1.2.2 Application Notes

When you want to show your application at our web as an example on what you can
achieve with BASCOM, we like to publish it our web, but of course with your
permission. We never publish anything without your explicit permission.

AN's are also welcome. When you developed a great AN you want to share with other
BASCOM users, just send it and we will make an AN out of it. It is important that the
comment in the source is in English.

24

Part

II

28 BASCOM-AVR

© 2008 MCS Electronics

2 Installation

2.1 Installation of BASCOM

After you have downloaded the ZIP file you need to UNZIP the file.
On Windows XP, for the DEMO version, run the setupdemo.exe file from within the
Zipped file.

The commercial version comes with a license file in the form of a DLL. This file is
always on the disk where the file SETUP.EXE is located. When explorer does not show
this file, you must set the option in explorer to view system files (because a DLL is a
system file).
For the commercial version the setup file is named SETUP.EXE

Some resellers might distribute the DLL file in a zipped file. Or the file might have the
extension of a number like "123". In this case you must rename the extension to DLL.

 Make sure the DLL is in the same directory as the SETUP.EXE file.

When you are using the DEMO version you don't need to worry about the license file.

When you are installing on a NT machine like NT4 , W2000, XP or Vista, you need to
have Administrator rights.
After installing BASCOM you must reboot the computer before you run BASCOM.

The installation example will describe how the FULL version installs. This is almost
identical to the installation of the DEMO version.

Run the SETUPDEMO.EXE (or SETUP.EXE) by double clicking on it in explorer.

The following window will appear:

(screen shots may differ a bit)

29Installation

© 2008 MCS Electronics

Click on the Next button to continue installation.

The following license info window will appear:

Read the instructions , select 'I accept the agreement' and press the Next button.

30 BASCOM-AVR

© 2008 MCS Electronics

The following window will be shown :

Read the additional information and click the Next button to continue.

Now the next screen will appear:

You can select the drive and path where you like BASCOM to be installed. You can
also accept the default value which is :

31Installation

© 2008 MCS Electronics

C:\Program Files\MCS Electronics\BASCOM-AVR

When you are finished click the Next Button to continue.
When the directory exists, because you install a newer version, you will get a warning
:

In case of this warning, select Yes.

You will now see the following window:

You can choose to create into a new Program Group named 'BASCOM-AVR' , or you
can modify the name, or install into an existing Program Group. Press the Next-
button after you have made your choice.

Now the files will be installed.
After the main files are installed, some additional files will be installed

32 BASCOM-AVR

© 2008 MCS Electronics

These additional files can be PDF files when the program is distributed on a CD-ROM.

When the installation is ready you will see the last screen :

You have to reboot your computer when you want to make advantage of the
programmers that BASCOM supports. You can also do this at a later stage.

33Installation

© 2008 MCS Electronics

The BASCOM-AVR Program folder is created:

You can view the "Read me" and "License" files content and you can start BASCOM-
AVR.
BASCOM supports both HTML Help and old Win help(HLP). The HLP file is not
distributed in the setup. You need to use the Update Wiz to download it. But it is
advised to use the HTML-Help file.
When you used to use the HLP file, and find it missing now, turn on 'Use HTML Help'
in Options, Environment, IDE.

When the UpdateWiz is not installed, you can download it from the register .

93

34

34 BASCOM-AVR

© 2008 MCS Electronics

2.2 Updates

The update process is simple.
· Go to the main MCS website at http://www.mcselec.com
· In the left pane under 'Main Menu' you will find a link named 'Registration/Updates'

Notice that the website uses two different accounts : one for the forum/shop and one
for the registration/updates. You will see the following screen:

http://www.mcselec.com

35Installation

© 2008 MCS Electronics

· Click the link and select 'Create new account'

You need to provide a username, password, email and full name. Company name is
optional. When you want to receive notifications when updates are available, select
this option.
When you filled in the information, click 'Submit Registration'.

· After you click submit, you can get various error messages. For example that a
username already exists. Press the Back-button in your browser, and correct the
problem, then try again

· If the registration is successful you will get a message that the registration
succeeded.

· Now you can login. You will see the following screen :

http://register.mcselec.com/register.php

36 BASCOM-AVR

© 2008 MCS Electronics

· You need to chose 'Product registration'.
· The following screen will be shown:

· Select a product from the list.
· Enter the serial number

It is important that you enter a valid serial number. Do not try to enter serial
numbers from cracked versions. When you enter invalid serial numbers, you will loose
support and the ability to update.
The valid serial number is shown in the Help, About box.

37Installation

© 2008 MCS Electronics

When the product is selected, the serial number is entered, and you press 'Register
product' you will see the following message :

· This does mean that you registered successfully.
· MCS Electronics will validate all registrations once in a few days. When the product

is validated you will receive an email. After you receive the email, you can login to
the register again. When you did not received an email within 1 week, check if the
email address was entered correct. If it was correct, send an email to sales.

· Now you need to select 'Download LIC files'. The following screen will be shown:

38 BASCOM-AVR

© 2008 MCS Electronics

At the top you can see which products are registered, and which status they have.
When you want to do a FULL SETUP, you need to download the full version.
You do not need to uninstall a previous version. You can install an update into the
same directory or a new directory.
You can also order the same update on CD-ROM. You will be directed to the on line
shop. Notice that the shop uses a different account/username
When you uninstall a previous version, it will remove the license file which is not part
of the setup.exe
So in the event that you do run uninstall first, make a backup of the license dll ;
bscavrL.DLL

The ZIP file you download contains only one setup.exe. You need to run this
executable.
It is also important that you put the license DLL into the same directory as setup.exe
Setup will copy this file to the BASCOM application directory. You can also manual
copy this file.
The license file is on CD-ROM, diskette, or the media (email) you received it on. It is
only supplied once.
Without the file, BASCOM will not run.

The file is named bsc5132L.DLL for BASCOM-8051 and bscavrL.DLL for BASCOM-AVR
When you got the license by email, it was zipped and probably had a different
extension. Consult the original installation instructions.
The file is only provided once, we can not, and do not provide it again.

See Installing BASCOM on how to do a full install.

It is also possible to do a partial update. For example to update some DAT files, or to
update to a beta which is only available as an update.
For partial updates, you need the Update Wiz.

28

39Installation

© 2008 MCS Electronics

When you do not have the Update Wiz, you can download it.
Unzip it to the same directory as BASCOM.

The Update Wiz uses LIC files which you can download. A LIC file is a text file, it is
not the LICENSE DLL !
Store the downloaded LIC file in the same directory as the Update Wiz.
When you store the Update Wiz into the same directory as BASCOM, the license DLL
already exist there.
When you put the Update Wiz and the LIC files into a separate directory, you need to
copy the BASCOM license DLL to this directory too.

When you run the Update Wiz, it will check for a new version and will download this if
available. It will then run again.

40 BASCOM-AVR

© 2008 MCS Electronics

When the Update Wiz finds a LIC file, it will check if the update/install location is
specified. For new downloaded LIC files, the update wiz does not know the update
directory, and will ask for the directory you want to update. This can be any (new)
directory, but usually is the BASCOM application directory.

After you click Ok, the directory to update is stored in the LIC file.
It will not be asked again.

Click the Next button to start the update.
It depends on the downloaded LIC files how many products are found.
You will get a similar window :

41Installation

© 2008 MCS Electronics

You need to select the product that you want to update. In the sample there are
multiple choices.
Press the Next-button to continue.

The Wiz will compare files on the web with your local files in the specified directory.

When it finds packages that are newer, they will be shown in a list. By default they
are all selected.
You can unselect the packages you do not want to update.
Press Next to download the selected packages.

42 BASCOM-AVR

© 2008 MCS Electronics

During the download you will see the history file.
When all packages are downloaded, they will be installed/unzipped.
Press the Next-button to install the downloaded files.

During the installation you will see the progress.
When installation is ready, you need to press the Finish-button.

The Wiz can also backup all files it will replace. Use the Setup button on the
main screen of the UpdateWiz to change the settings. A full zipped backup will be
made. The name of the backup files has the name of the license file with the ZIP
extension.

You can install multiple versions in different directories.

43Installation

© 2008 MCS Electronics

2.3 Move to new PC

When you want to move BASCOM to a new PC. You have a number of options.
The most simple is to download a full setup file from http://register.mcselec.com
Then, after the installation, copy the license file bscavrL.DLL to the bascom-avr
application directory of the new PC.
Or let setup.exe do this for you. When you put the license file in the same directory
as setup.exe, setup will copy/install the file for you.

http://register.mcselec.com

Part

III

45BASCOM IDE

© 2008 MCS Electronics

3 BASCOM IDE

3.1 Running BASCOM-AVR

After you have installed BASCOM, you will find a program entry under MCS
Electronics\BASCOM-AVR

Double-click the BASCOM-AVR icon to run BASCOM.

The following window will appear. (If this is your first run, the edit window will be
empty.)

The most-recently opened file will be loaded automatically. Like most Windows
programs, there is a menu and a toolbar. The toolbar can be customized. To do this,
place the mouse cursor right beside the 'Help' menu.
Then right-click. You can turn on/off the toolbars or you can choose 'Customize'.

This will show the following window:

46 BASCOM-AVR

© 2008 MCS Electronics

You have the option to create new Toolbars or the reset the toolbars to the default.
To place a new button on a menu bar, select the 'Commands' TAB.

In the example above, the Program Category has been selected and at the right pane,
all buttons that belong to the Program-category are shown.
You can now select a button and drag & drop it to the Toolbar. To remove a button
from the Toolbar, you drag it out of the Toolbar and release the left mouse button.

On the Options-TAB you can further customize the Toolbar:

47BASCOM IDE

© 2008 MCS Electronics

To preserve screen space there are no large icons available.

Option Description

Menus show recent used
commands first

With this option the IDE will learn the menu options
you use. It will show only the most used menu
options. The idea is that you can find your option
quicker this way.

Show full menus after a short
delay

This option will show the remaining menu options
after short delay so you do not need to click another
menu option to show all menu options.

Reset my usage data This option will reset the data the IDE has collected
about your menu choices.

Show Tool tips on toolbars This option is on by default and it will show a tool
tip when you hold the mouse cursor above a toolbar
button

Show shortcut keys in Tool tips This option is on by default and it will show the
shortcut in the tool tip. For example CTRL+C for the
Copy button.

3.2 File New

This option creates a new window in which you will write your program.
The focus is set to the new window.
You can have multiple windows open at the same time.
Only one window can have the focus. When you execute other functions such as
Simulate or Program Chip , BASCOM will use the files that belong to the current
active program. This is in most cases the program which has the focus.

File new shortcut: , CTRL + N

61 72

48 BASCOM-AVR

© 2008 MCS Electronics

3.3 File Open

With this option you can load an existing program from disk.

BASCOM saves files in standard ASCII format. Therefore, if you want to load a file
that was made with another editor be sure that it is saved as an ASCII file. Most
programs allow you to export the file as a DOS or ASCII file.

Note that you can specify that BASCOM must reformat the file when it opens it with
the Options Environment option. This should only be necessary when loading files
made with another editor.

File open shortcut : , CTRL+O

3.4 File Close

Close the current program.

The current editor window will be closed. When you have made changes to the
program, you will be asked to save the program first. You can then decide to save,
cancel, or not to save the changes you have made.

File close shortcut :

3.5 File Save

With this option, you save your current program to disk under the same file name.
The file name is visible in the Windows caption of the edit window.

If the program was created with the File New option, you will be asked to name
the file first. Use the File Save As option to give the file another name.

Note that the file is saved as an ASCII file.

File save shortcut : , CTRL+S

3.6 File Save As

With this option, you can save your current program to disk under a different file
name.
When you want to make some changes to your program, but you do not want to
make changes to the current version you can use the "Save As" option. It will leave
your program as it was saved, and will create a new file with a new name so you end
up with two copies. You then make changes to the new created file.

Note that the file is saved as an ASCII file.

File save as shortcut :

93

47

48

49BASCOM IDE

© 2008 MCS Electronics

3.7 File Print Preview

With this option, you can preview the current program before it is printed.
Note that the current program is the program that has the focus.

File print preview shortcut :

3.8 File Print

With this option, you can print the current program.
Note that the current program is the program that has the focus.

File print shortcut : , CTRL+P

3.9 File Exit

With this option, you can leave BASCOM.
If you have made changes to your program, you can save them upon leaving
BASCOM.

All of the files you have open, at the moment you choose exit, will be remembered.
The next time you run BASCOM, they will be opened automatically.

File exit shortcut :

3.10 Edit Undo

With this option, you can undo the last text manipulation.

Edit Undo shortcut : , CTRL+Z

3.11 Edit Redo

With this option, you can redo the last undo.

Edit Redo shortcut : , CTRL+SHIFT+Z

3.12 Edit Cut

With this option, you can cut selected text into the clipboard.

Edit cut shortcut : , CTRL+X

3.13 Edit Copy

With this option, you can copy selected text into the clipboard.

Edit copy shortcut : , CTRL+C

50 BASCOM-AVR

© 2008 MCS Electronics

3.14 Edit Paste

With this option, you can paste text from the clipboard starting at the current cursor
position.

Edit paste shortcut : , CTRL+V

3.15 Edit Find

With this option, you can search for text in your program.
Text at the current cursor position will automatically be placed in the find dialog box.

Edit Find shortcut : , CTRL+F

3.16 Edit Find Next

With this option, you can search again for the last specified search item.

Edit Find Next shortcut : , F3

3.17 Edit Replace

With this option, you can replace selected text in your program.

Edit Replace shortcut : , CTRL+R

3.18 Edit Goto

With this option, you can immediately go to a specified line number.

Edit go to line shortcut : ,CTRL+G

3.19 Edit Toggle Bookmark

With this option, you can set/reset a bookmark, so you can jump in your code with
the Edit Go to Bookmark option. Shortcut : CTRL+K + x where x can be 1-8

Bookmarks are stored in a file named <project>.BM

3.20 Edit Goto Bookmark

With this option, you can jump to a bookmark.

There can be up to 8 bookmarks. Shortcut : CTRL+Q+ x where x can be 1-8

Bookmarks are stored in a file named <project>.BM

3.21 Edit Indent Block

With this option, you can indent a selected block of text.

Edit Indent Block shortcut : , CTRL+SHIFT+I

51BASCOM IDE

© 2008 MCS Electronics

3.22 Edit Unindent Block

With this option, you can unindent a block.

Edit Unindent Block shortcut : , CTRL+SHIFT+U

3.23 Edit Remark Block

With this option, you can Remark or Unremark a selected block of text.
While you can use '(and ') to remark a block of code, you might prefer the old BASIC
way using just one ' .
When a remark is found, it will be removed. When there is no remark, it will insert a
remark.

3.24 View PinOut

The Pin Out viewer is a dock able window that shows the case of the active chip.
The active chip is determined by the value of $REGFILE .

When you move the mouse cursor over a pin, you will see that the pin will be colored
red. At the bottom of the window, a pin description is show. In the sample above you
will see that each line has a different color. This means that the pin has multiple
alternative functions.
The first blue colored function is as generic IO pin.
The second green colored function is RESET pin.
The third black colored function is PIN change interrupt.

296

52 BASCOM-AVR

© 2008 MCS Electronics

A pin can have one or more functions. Some functions can be used together.
When you move the mouse cursor away, the pin will be colored blue to indicate that
you viewed this pin. For example, when you need to look at it again.

You can also search for a pin description. Enter some text and return.
Here is an example when you search the VCC pin :

When pins are found that have the search phrase in the description, the pin will be
colored blue.
By clicking 'Clear Pin HL' you can clear all colored pins.

Some chips might have multiple cases. You can select the case from the package list.

53BASCOM IDE

© 2008 MCS Electronics

When you change from package, all pin colors will be cleared.
When you double click a pin, the pin will be colored green. Another double click will
color it red/blue.
When a pin is green, it will not be colored red/blue. The green color serves as a kind
of bookmark.
The only exception is the search function. It will make bookmarked green pins, blue
too.

Use the right mouse to access a popup menu. This menu allows you to zoom the
image to a bigger or smaller size.

Double click the chip to show the chip data.

54 BASCOM-AVR

© 2008 MCS Electronics

When you want to search for a chip, click the 'Chip Search' button.
It will show the following window:

You can provide criteria such as 2 UARTS. All criteria are OR-ed together. This means
that when one of the criteria is met, the chip will be included in the list.

55BASCOM IDE

© 2008 MCS Electronics

Only chips supported by BASCOM will be listed. When a chip has SRAM, and is
not supported yet, it will be in the near future since the goal is to support all chips.

When you find an error in the pin description, please send an email to support so it
can be corrected.

3.25 View PDF viewer

The PDF viewer is dock able panel which is located by default on the right side of the
IDE.

The viewer itself contains a tree with the topics and the actual PDF viewer.
The tree topics can be searched by right clicking on the tree. Choose 'Search' and
enter a search text.
When a topic has sub topics, the topic is bold.

When you have enabled 'Auto open Processor PDF' in Options, Environment, PDF, the
data sheet will be automatically loaded when you change the $REGFILE value.
It can be shown in a new sheet or it can replace the current PDF.

Open a PDF.

Copy selected text to the clipboard. You can not copy from protected PDF
documents.

First page.

56 BASCOM-AVR

© 2008 MCS Electronics

Previous page.

Current page indicator. You can enter a page number to jump to a different
page.

Next page.

Last page.

Find text in PDF.

Zoom in.

Zoom out.

Rotate page to the left and right.

Print page(s).

When you right click in the PDF, a pop up menu with the most common options will
appear.
In Options, Environment, PDF you can specify how data sheets must be
downloaded.

Data sheets can be downloaded automatic. When the $REGFILE is changed and the
PDF is not present, you will be asked if the PDF must be downloaded.
If you choose to download, it will be downloaded from the Atmel website.

When you click 'Do not show this message again' , you will not be asked anymore if
you want to download the Mega32.PDF. You will be asked to download other PDF
documents when they do not exist.

During the download you will see a similar window:

You can also download all newer PDF's from the Atmel website with the option :
Tools, PDF Update

93

84

57BASCOM IDE

© 2008 MCS Electronics

When PDF's are downloaded with the UpdateWiz, they are downloaded from the MCS
Electronics website.

3.26 View Error Panel

This option will show the Error panel.

When there are no errors, the list will be empty. You will also be able to close the
window.
When there are errors :

You will not be able to close the window until the error is solved and the program is
checked/compiled.
The panel is dockable and by default docked to the bottom of the IDE.

3.27 View Tip

Action
Shows the Tip of the day Window

You can click the Next-button to show another tip. Or you can close the window.
When you do not want to see the tips when BASCOM is started, you can unselect the
'Show tips at startup' option.

You can submit your own tips at the register : http://register.mcselec.com

http://register.mcselec.com

58 BASCOM-AVR

© 2008 MCS Electronics

3.28 Program Compile

With this option, you compile your current program.

Your program will be saved automatically before being compiled.

The following files will be created depending on the Option Compiler Settings.

File Description

xxx.BIN Binary file which can be programmed into the microprocessor.

xxx.DBG Debug file that is needed by the simulator.

xxx.OBJ Object file for simulating using AVR Studio. Also needed by
the internal simulator.

xxx.HEX Intel hexadecimal file, which is needed by some
programmers.

xxx.ERR Error file. Only created when errors are found.

xxx.RPT Report file.

xxx.EEP EEPROM image file

If a serious error occurs, you will receive an error message in a dialog box and the
compilation will end.

All other errors will be displayed at the bottom of the edit window, just above the
status bar.

When you click on the line with the error info, you will jump to the line that contains

the error. The margin will also display the sign.

At the next compilation, the error window will disappear or reappear if there are still
errors.
See also 'Syntax Check' for further explanation of the Error window.

Program compile shortcut: , F7

3.29 Program Syntax Check

With this option, your program is checked for syntax errors. No file will be created
except for an error file, if an error is found.

Program syntax check shortcut , CTRL + F7

When there is an error, an error window will be made visible at the bottom of the
screen.

86

58

59BASCOM IDE

© 2008 MCS Electronics

You can double click the error line to go to the place where the errors is found. Some
errors point to a line zero that does not exist. These errors are caused by references
to the assembler library and are the result of other errors.
The error window is a dockable window that is docked by default to the bottom of the
screen. You can drag it outside this position or double click the caption(Errors) to
make it undock :

Here the panel is undocked. Like most windows you can close it. But the error must
be resolved (corrected and syntax checked/recompiled) for this window can be
closed !
By double clicking the caption (top space where the name of the window is show) you
can dock it back to it's original position.

When you have closed the window and want to view it again, you can choose the

60 BASCOM-AVR

© 2008 MCS Electronics

View, Error Panel option from the main menu.

3.30 Program Show Result

Use this option to view information concerning the result of the compilation.

See the Options Compiler Output for specifying which files will be created.

The files that can be viewed are "report" and "error".

File show result shortcut : ,CTRL+W

Information provided in the report:

Info Description

Report Name of the program

Date and time The compilation date and time.

Compiler The version of the compiler.

Processor The selected target processor.

SRAM Size of microprocessor SRAM (internal RAM).

EEPROM Size of microprocessor EEPROM (internal EEPROM).

ROMSIZE Size of the microprocessor FLASH ROM.

ROMIMAGE Size of the compiled program.

BAUD Selected baud rate.

XTAL Selected XTAL or frequency.

BAUD error The error percentage of the baud rate.

XRAM Size of external RAM if available.

Stack start The location in memory, where the hardware stack points to. The
HW-stack pointer grows downward.

S-Stacksize The size of the software stack.

S-Stackstart The location in memory where the software stack pointer points
to. The software stack pointer grows downward.

Framesize The size of the frame. The frame is used for storing local
variables.

Framestart The location in memory where the frame starts.

LCD address The address that must be placed on the bus to enable the LCD
display E-line.

LCD RS The address that must be placed on the bus to enable the LCD
RS-line

LCD mode The mode the LCD display is used with. 4 bit mode or 8 bit mode.

LCD DB7-DB4 The port pins used for controlling the LCD in pin mode.

LCD E The port pin used to control the LCD enable line.

LCD RS The port pin used to control the LCD RS line.

Variable The variable name and address in memory

Constant Constants name and value

Some internal constants are :

_CHIP : number that identifies the selected chip
_RAMSIZE : size of SRAM

88

61BASCOM IDE

© 2008 MCS Electronics

_ERAMSIZE : size of EEPROM
_XTAL : value of crystal
_BUILD : number that identifies the version of the compiler
_COMPILER : number that identifies the platform of the compiler

Warnings This is a list with variables that are dimensioned but not used.
Some of them

EEPROM binary
image map

This is a list of all ERAM variables with their value. It is only
shown when DATA lines are used to create the EEP file.
(EEPROM binary image).

3.31 Program Simulate

With this option, you can simulate your program.

You can simulate your programs with AVR Studio or any other Simulator available or
you can use the built in Simulator.

The simulator that will be used when you press F2, depends on the selection you
made in the Options Simulator TAB. The default is the built in Simulator.

Program Simulate shortcut : , F2

To use the built in Simulator the files DBG and OBJ must be selected from the Options
Compiler Output TAB.

The OBJ file is the same file that is used with the AVR Studio simulator.

The DBG file contains info about variables and many other info needed to simulate a
program.

501

62 BASCOM-AVR

© 2008 MCS Electronics

The Simulator window is divided into a few sections:

The Toolbar
The toolbar contains the buttons you can press to start an action.

This is the RUN button, it starts a simulation. You can also press F5. The
simulation will pause when you press the pause button. It is advised, that you step
through your code at the first debug session. When you press F8, you step through
the code line by line which is a clearer way to see what is happening.

This is the PAUSE button. Pressing this button will pause the simulation.

This is the STOP button. Pressing this button will stop the simulation. You can't
continue from this point, because all of the variables are reset. You need to press
the RUN button when you want to simulate your program again.

This is the STEP button. Pressing this button (or F8) will simulate one code line of
your BASIC program. The simulator will go to the RUN state. After the line is

63BASCOM IDE

© 2008 MCS Electronics

executed the simulator will be in the PAUSE state. If you press F8 again, and it takes
a long time too simulate the code, press F8 again, and the simulator will go to the
pause state.

This is the STEP OVER button or SHIFT+F8). It has the same effect as the STEP
button, but sub programs are executed completely, and th simulator does not step
into the SUB program.

This is the RUN TO button. The simulator will RUN until it gets to the current line.
The line must contain executable code. Move the cursor to the desired line before
pressing the button.

This button will show the processor registers window.

The values are shown in hexadecimal format. To change a value, click the cell in the
VAL column, and type the new value. When you right click the mouse, you can choose
between the Decimal, Hexadecimal and Binary formats.
The register window will show the values by default in black. When a register value
has been changed, the color will change into red. Each time you step through the
code, all changed registers are marked blue. This way, the red colored value indicate
the registers that were changed since you last pressed F8(step code). A register that
has not been changed at all, will remain black.

This is the IO button and will show processor Input and Output registers.

64 BASCOM-AVR

© 2008 MCS Electronics

The IO window works similar to the Register window.
A right click of the mouse will show a popup menu so you can choose the format of
the values.
And the colors also work the same as for the registers : black, value has not been
changed since last step(F8). Red : the value was changed the last time your pressed
F8. Blue : the value was changed since the begin of simulation. When you press the
STOP-button, all colors will be reset to black.

Pressing this button shows the Memory window.

The values can be changed the same way as in the Register window.
When you move from cell to cell you can view in the status bar which variable is
stored at that address.
The SRAM TAB will show internal memory and XRAM memory.
The EEPROM TAB will show the memory content of the EEPROM.
The colors work exactly the same as for the register and IO windows. Since internal
ram is cleared by the compiler at startup, you will see all values will be colored blue.
You can clear the colors by right clicking the mouse and choosing 'Clear Colors'.

 The refresh variables button will refresh all variables during a run (F5). When
you use the hardware simulator, the LEDS will only update their state when you have

65BASCOM IDE

© 2008 MCS Electronics

enabled this option. Note that using this option will slow down simulation. That is why
it is an option. When you use F8 to step through your code you do not need to turn
this option on as the variables are refreshed after each step.

 When you want to simulate the processors internal timers you need to
turn this option on. Simulating the timers uses a lot of processor time, so you might
not want this option on in most cases. When you are debugging timer code it is
helpful to simulate the timers.
The simulator supports the basic timer modes. As there are many new chips with new
timer modes it is possible that the simulator does not support all modes. When you
need to simulate a timer the best option may be to use the latest version of AVR
Studio and load the BASCOM Object file.
Even AVR Studio may have some flaws, so the best option remains to test the code in
a real chip.

 This option allows you to use a real terminal emulator for the serial
communication simulation.
Normally the simulator prints serial output to the blue window, and you can also
enter data that needs to be sent to the serial port.
When you enable the terminal option, the data is sent to the actual serial port, and
when serial data is received by the serial port, it will be shown.

Under the toolbar section there is a TAB with a number of pages:

VARIABLES

This section allows you to see the value of program variables. You can add variables
by double clicking in the Variable-column. A list will pop up from which you can select
the variable.
To watch an array variable, type the name of the variable with the index.

During simulation you can change the values of the variables in the Value-column,
Hex-column or Bin-column. You must press ENTER to store the changes.

To delete a variable, you can press CTRL+DEL.

66 BASCOM-AVR

© 2008 MCS Electronics

To enter more variables, press the DOWN-key so a new row will become visible.

It is also possible to watch a variable by selecting it in the code window, and then
pressing enter. It will be added to the variable list automatically.
Notice that it takes time to refresh the variables. So remove variables that do not
need to be watched anymore for faster simulation speed.

LOCALS

The LOCALS window shows the variables found in a SUB or FUNCTION. Only local
variables are shown. You can not add variables in the LOCALS section.
Changing the value of local variables works the same as in the Variables TAB.

WATCH

67BASCOM IDE

© 2008 MCS Electronics

The Watch-TAB can be used to enter an expression that will be evaluated during
simulation. When the expression is true the simulation is paused.

To enter a new expression, type the expression in the text-field below the Remove
button, and press the Add-button.
When you press the Modify-button, the current selected expression from the list will
be replaced with the current typed value in the text field.

To delete an expression, select the desired expression from the list, and press the
Remove-button.
During simulation when an expression becomes true, the expression that matches will
be selected and the Watch-TAB will be shown.

uP

This TAB shows the value of the microprocessor status register (SREG).

The flags can be changed by clicking on the check boxes.

The software stack, hardware stack, and frame pointer values are shown. The
minimum or maximum value that occurred during simulation is also shown. When

68 BASCOM-AVR

© 2008 MCS Electronics

one of these data areas enter or overlap another one, a stack or frame overflow
occurs.
This will be signaled with a pause and a check box.

Pressing the snapshot-button will save a snapshot of the current register values and
create a copy of the memory.
You will notice that the Snapshot-button will change to ‘Stop’

Now execute some code by pressing F8 and press the Snapshot-button again.

A window will pop up that will show all modified address locations.
This can help to determine which registers or memory a statement uses.

When you write an ISR (Interrupt Service Routine) with the NOSAVE option, you can
use this to determine which registers are used and then save only the modified
registers.

INTERRUPTS

This TAB shows the interrupt sources. When no ISR's are programmed all buttons will
be disabled.
When you have written an ISR (using ON INT...), the button for that interrupt will be
enabled. Only the interrupts that are used will be enabled.

By clicking an interrupt button the corresponding ISR is executed.
This is how you simulate the interrupts. When you have enabled 'Sim Timers' it can
also trigger the event.

The pulse generator can be used to supply pulses to the timer when it is used in

69BASCOM IDE

© 2008 MCS Electronics

counter mode.
First select the desired pin from the pull down box. Depending on the chip one or
more pins are available. Most chips have 2 counters so there will usually be 2 input
pins.
Next, select the number of pulses and the desired delay time between the pulses,
then press the Pulse-button to generate the pulses.

The delay time is needed since other tasks must be processed as well.

The option ‘Sim timers’ must be selected when you want to simulate timers/counters.

TERMINAL Section
Under the window with the TABS you will find the terminal emulator window. It is the
dark blue area.

In your program when you use PRINT, the output will be shown in this window.

When you use INPUT in your program, you must set the focus to the terminal window
and type in the desired value.

You can also make the print output go directly to the COM port.
Check the Terminal option to enable this feature.
The terminal emulator settings will be used for the baud rate and COM port.
Any data received by the COM port will also be shown in the terminal emulator
window.

Notice that most microprocessors have only 1 UART. The UART0-TAB is used to
communicate with tis UART. The UART1-TAB need to be selected in order to view the
UART1 output, or to send data to UART1.

Software UARTS are not supported by the simulator. They can not be simulated.

SOURCE Section
Under the Terminal section you find the Source Window.
It contains the source code of the program you are simulating. All lines that contain
executable code have a yellow point in the left margin.
You can set a breakpoint on these lines by selecting the line and pressing F9.

By holding the mouse cursor over a variable name, the value of the variable is shown
in the status bar.
If you select a variable, and press ENTER, it will be added to the Variable window.

In order to use the function keys (F8 for stepping for example), the focus must be set
to the Source Window.

A blue arrow will show the line that will be executed next..

The hardware simulator.

By pressing the hardware simulation button the windows shown below will be
displayed.

70 BASCOM-AVR

© 2008 MCS Electronics

The top section is a virtual LCD display. It works to display code in PIN mode, and bus
mode. For bus mode, only the 8-bit bus mode is supported by the simulator.

Below the LCD display area are LED bars which give a visual indication of the ports.

By clicking an LED it will toggle.
PA means PORTA, PB means PORTB, etc.
IA means PINA, IB means PINB etc. (Shows the value of the Input pins)
It depends on the kind of microprocessor you have selected, as to which ports will be
shown.

Right beside the PIN led's, there is a track bar. This bar can be used to simulate the
input voltage applied the ADC converter. Note that not all chips have an AD
converter. You can set a value for each channel by selecting the desired channel
below the track bar.

Next to the track bar is a numeric keypad. This keypad can be used to simulate the
GETKBD() function.

When you simulate the Keyboard, it is important that you press/click the keyboard
button before simulating the getkbd() line !!!

To simulate the Comparator, specify the comparator input voltage level using
Comparator IN0.

Enable Real Hardware Simulation

By clicking the button you can simulate the actual processor ports in-circuit!
The processor chip used must have a serial port.

In order simulate real hardware you must compile the basmon.bas file.

To do this, follow this example:
Lets say you have the DT006 simmstick, and you are using a 2313 AVR chip.

Open the basmon.bas file and change the line $REGFILE = "xxx" to $REGFILE =
"2313def.dat"
Now compile the program and program the chip.
It is best to set the lock bits so the monitor does not get overwritten if you
accidentally press F4.
The real hardware simulation only works when the target micro system has a serial

71BASCOM IDE

© 2008 MCS Electronics

port. Most have and so does the DT006.

Connect a cable between the COM port of your PC and the DT006. You probably
already have one connected. Normally it is used to send data to the terminal
emulator with the PRINT statement.

The monitor program is compiled for 19200 baud. The Options Communication
settings must be set to the same baud rate!
The same settings for the monitor program are used for the Terminal emulator, so
select the COM port, and the baud rate of 19200.

Power up or reset the DT006. It probably already is powered since you just previously
compiled the basmon.bas program and stored it in the 2313.
When you press the real hardware simulation button now the simulator will send and
receive data when a port, pin or DDR register is changed.

This allows you to simulate an attached hardware LCD display for example, or
something simpler, like an LED. In the SAMPLES dir, you will find the program DT006.
You can compile the program and press F2.

When you step through the program the LED's will change!

All statements can be simulated this way but they have to be able to use static
timing. Which means that 1-wire will not work because it depends on timing. I2C has
a static bus and thus will work.

NOTE: It is important that when you finish your simulation sessions that you click the
button again to disable the Real hardware simulation.

When the program hangs it probably means that something went wrong with the
serial communication. The only way to escape is to press the Real hardware

Simulation button again.

The Real Hardware Simulation is a cost effective way to test attached hardware.

 The refresh variables button will refresh all variables during a run(F5). When
you use the hardware simulator, the LEDS will only update their state when you have
enabled this option. Note that using this option will slow down the simulation.

Watchdog Simulation
Most AVR chips have an internal Watchdog. This Watchdog timer is clocked from an
internal oscillator. The frequency is approximately 1 MHz. Voltage and temperature
variations can have an impact on the WD timer. It is not a very precise timer. So
some tolerance is needed when you refresh/reset the WD-timer. The Simulator will
warn you when a WD overflow will occur. But only when you have enabled the WD
timer.

The status bar

The status bar shows the PC (program counter) and the number of cycles. You can
reset the cycles by positioning the mouse cursor on the status bar and then right
click. You will then get a pop up menu with the option to reset the cycles.
You can use this to determine how much time a program statement takes.
Do not jump to a conclusion too quick, the time shown might also depend on the
value of a variable.

72 BASCOM-AVR

© 2008 MCS Electronics

For example, with WAITMS var this might be obvious, but with the division of a value
the time might vary too.

3.32 Program Send to Chip

Program send to chip shortcut , F4

This option will bring up the selected programmer window, or will program the chip
directly if the 'Auto Flash' option is selected in the Programmer options section.

The following section applies to the Programmer window (program chip directly NOT
selected) otherwise this is not shown to the user.

“Buffer” below refers to the buffer memory that holds data to be programmed to, or
read from the chip.

Menu item Description

File Exit Return to editor

File, Test With this option you can set the logic level to the LPT pins.
This is only intended for the Sample Electronics programmer.

Buffer Clear Clears buffer

Buffer Load from file Loads a file into the buffer

Buffer Save to file Saves the buffer content to a file

Chip Identify Identifies the chip

Write buffer into chip Programs the buffer into the chip ROM or EEPROM

Read chip code into
buffer

Reads the code or data from the chips code memory or data
memory

Chip blank check Checks if the chip is blank or erased

Chip erase Erase the content of both the program memory and the data
memory

Chip verify Verifies if the buffer is the same as the chip program or data
memory

Chip Set lock bits Writes the selected lock bits LB1 and/or LB2. Only an erase
will reset the lock bits

Chip auto program Erases the chip and programs the chip. After the programming
is completed, verification is performed.

The following window will be shown for most programmers:

98

73BASCOM IDE

© 2008 MCS Electronics

Note that a chip must be ERASED before it can be programmed.

By default the Flash ROM TAB is shown and the binary data is displayed.
When you have an EEPROM in your project, the EEPROM TAB will show this data too.

The most important TAB is in many cases the Lock & Fuse Bits TAB.
When you select it , the lock and fuse bits will be read.

74 BASCOM-AVR

© 2008 MCS Electronics

These Lock and Fuse bits are different in almost every chip !
You can select new settings and write them to the chip. But be careful ! When you
select a wrong oscillator option , you can not program the chip anymore without
applying an external clock signal.
This is also the solution to communicate with the chip again : connect a clock pulse to
the oscillator input. You could use an output from a working micro, or a clock
generator or simple 555 chip circuit.

When you found the right settings, you can use $PROG to write the proper
settings to new, un-programmed chips. To get this setting you press the 'Write PRG'
button.
After a new chip is programmed with $PROG, you should remark the line for safety
and quicker programming.

The 'Write PRG' will write the settings, read from the Microprocessor, it will NOT insert
the unsaved settings you have made manual. Thus, you must first use the 'Write XXX'
buttons to write the changed fuse bits settings to the chip, then you can use the
'Write PRG'.

Notice that the Write xxx buttons are disabled by default. Only after you have
changed a lock or fuse bit value, the corresponding button will be enabled. You must
click this button in order to apply the new Lock or Fuse bit settings.

Many new chips have an internal oscillator. The default value is in most cases 8 MHz.
But since in most cases the 'Divide by 8' option is also enabled, the oscillator value
will be 1 MHz. We suggest to change the 'Divide by 8' fuse bit so you will have a
speed of 8 MHz.
In your program you can use $crystal = 8000000 then.

$crystal will only inform the compiler which oscillator speed you have selected.

294

262

75BASCOM IDE

© 2008 MCS Electronics

This is needed for a number of statements. $crystal will NOT set the speed of the
oscillator itself.

 Do not change the fuse bit that will change the RESET to a port pin. Some chips
have this option so you can use the reset pin as a normal port pin. While this is a
great option it also means you can not program the chip anymore using the ISP.

3.33 Tools Terminal Emulator

With this option you can communicate via the RS-232 interface to the microcomputer.
The following window will appear:

Information you type and information that the computer board sends are displayed in
the same window.

Note that you must use the same baud rate on both sides of the transmission. If you
compiled your program with the Compiler Settings at 4800 baud, you must also set
the Communication Settings to 4800 baud.

The setting for the baud rate is also reported in the report file.

NOTE: The focus MUST be on this window in order to see any data (text, etc)
sent from the processor. You will NOT see any data sent by the processor right after a
reset. You must use an external hardware reset AFTER the terminal Emulator window

is given focus in order to see the data. Using the Reset shortcut, you will not be
able to see any data because pressing the shortcut causes the Terminal emulator to
lose focus. This is different than “Hyper Terminal” which always receives data even
when the Hyper terminal window does not have focus. Use Hyper terminal if you need
to see the program output immediately after programming or reset.

File Upload
Uploads the current program from the processor chip in HEX format. This option is
meant for loading the program into a monitor program for example. It will send the
current compiled program HEX file to the serial port.

76 BASCOM-AVR

© 2008 MCS Electronics

File Escape
Aborts the upload to the monitor program.

File Exit
Closes terminal emulator.

Terminal Clear
Clears the terminal window.

Terminal Open Log
Opens or closes the LOG file. When there is no LOG file selected you will be asked to
enter a filename or to select a filename. All info that is printed to the terminal window
is captured into the log file. The menu caption will change into 'Close Log' and when
you choose this option the file will be closed.

Terminal Send ASCII
This option allows you to send any ASCII character you need to send. Values from
000 to 255 may be entered.

Terminal Send Magic number
This option will send 4 bytes to the terminal emulator. The intention is to use it
together with the boot loader examples. Some of the boot loader samples check for a
number of characters when the chip resets. When they receive 4 'magic' characters
after each other, they will start the boot load procedure. This menu options send
these 4 magic characters.

Terminal Setting
This options will show the terminal settings so you can change them quickly.
It is the same as Options, Communication .

3.34 Tools LCD Designer

With this option you can design special characters for LCD-text displays.

The following window will appear:

92

77BASCOM IDE

© 2008 MCS Electronics

The LCD-matrix has 7x5 points. The bottom row is reserved for the cursor but can be
used.
You can select a point by clicking the left mouse button. If a cell was selected it will
be unselected.

Clicking the Set All button will set all points.
Clicking the Clear All button will clear all points.

When you are finished you can press the Ok button : a statement will be inserted in
your active program-editor window at the current cursor position. The statement
looks like this :

Deflcdchar ?,1,2,3,4,5,6,7,8

You must replace the ?-sign with a character number ranging from 0-7.
The eight bytes define how the character will appear. So they will be different
depending on the character you have drawn.

See Also
Font Editor 125

78 BASCOM-AVR

© 2008 MCS Electronics

3.35 Tools LIB Manager

With this option the following window will appear:

The Libraries are shown in the left pane. When you select a library, the routines that
are in the library will be shown in the right pane.

After selecting a routine in the left pane, you can DELETE it with the DELETE button..

Clicking the ADD button allows you to add an ASM routine to the library.

The COMPILE button will compile the lib into an LBX file. When an error occurs you
will get an error. By watching the content of the generated lbx file you can determine
the error.

A compiled LBX file does not contain comments and a huge amount of mnemonics are
compiled into object code. This object code is inserted at compile time of the main
BASIC program. This results in faster compilation time.

The DEMO version comes with the compiled MCS.LIB file which is named MCS.LBX.
The ASM source (MCS.LIB) is included only with the commercial edition.

With the ability to create LBX files you can create add on packages for BASCOM and
sell them. For example, the LBX files could be distributed for free, and the ASM
source could be sold.

Some library examples :

· MODBUS crc routine for the modbus slave program.
· Glcd.lib contains the graphical LCD asm code

79BASCOM IDE

© 2008 MCS Electronics

Commercial packages available from MCS:

· I2CSLAVE library
· BCCARD for communication with www.basiccard.com chipcards

See Also
$LIB for writing your own libraries

3.36 Tools Graphic Converter

The Graphic converter is intended to convert BMP files into BASCOM Graphic Files (.
BGF) that can be used with Graphic LCD displays.

The following dialog box will be shown:

To load a picture click the Load button.
The picture can be maximum 128 pixels high and 240 pixels width.

When the picture is larger it will be adjusted.

You can use your favorite graphic tool to create the bitmaps and use the Graphic
converter to convert them into black and white images.

When you click the Save-button the picture will be converted into black and white.
Any non-white color will be converted into black.

The resulting file will have the BGF extension.

You can also paste a picture from the clipboard by clicking the Paste button.

Press the Ok-button to return to the editor.

The picture can be shown with the ShowPic statement or the ShowpicE statement.

283

749

80 BASCOM-AVR

© 2008 MCS Electronics

 The BGF files are RLE encoded to save space.

When you use your own drawing routine you can also save the pictures
uncompressed by setting the Uncompressed check box. The resulting BGF files can
not be shown with the showpic or showpicE statements anymore in that case!

The BGF format is made up as following:

· first byte is the height of the picture
· second byte is the width of the picture
· for each row, all pixels are scanned from left to right in steps of 6 or 8

depending on the font size. The resulting byte in stored with RLE compression

The RLE method used is : byte value, AA(hex), repeats.
So a sequence of 5, AA, 10 means that a byte with the value of 5 must be repeated
16 times (hex notation used)

Option Description

Height The height in pixels of the image.

Width The width in pixels of the image.

Font The T6963 supports 6x8 and 8x8 fonts. This is the font select that
must match the CONFIG statement. For other displays, use 8*8.

Type The size of the display. When the size is not listed, use one with the
same width.

SED Series If your display is a SEDxxxx chip, select this option.

Uncompresse
d

Images are RLE encoded. Select this option when you do not want to
compress the image.

3.37 Tools Stack Analyzer

The Stack analyzer helps to determine the proper stack size.

See $DBG for the proper usage of this option.

3.38 Tools Plugin Manager

The Plug in Manager allows you to specify which Plug-in's needs to be loaded the next
time you start BASCOM.

264

81BASCOM IDE

© 2008 MCS Electronics

Just select the plug in's you want to load/use by setting the check box.
The plug in's menu's will be loaded under the Tools Menu.

To add a button to the toolbar, right click the mouse on the menu bar, and choose
customize.

When you want to write your own plug in's, contact support@mcselec.com

3.39 Tools Batch Compile

The Batch Compiler is intended to compile multiple files.
Shortcut : CTRL+B

The Batch compile option was added for internal test usage. It is used by MCS to test
the provided test samples.
The following window is shown :

82 BASCOM-AVR

© 2008 MCS Electronics

There are a number of menu options.

File Load Batch
Load an earlier created and saved batch file list from disk.

File Save Batch
Save a created list of files to disk
When you have composed a list with various files it is a good idea to save it for later
re usage.

File Save Result
Save the batch compile log file to disk. A file named batchresult.txt will be saved in
the BASCOM application directory.

File Exit
Close window

Batch Compile
Compile the checked files. By default all files you added are checked. During
compilation all files that were compiled without errors are unchecked.

83BASCOM IDE

© 2008 MCS Electronics

This screen print shows that $inc.bas could not be compiled.
And that array.bas was not yet compiled.

Batch Add Files
Add files to the list. You can select multiple *.BAS files that will be added to the list.

Batch Add Dir
Add a directory to the list. All sub directories will be added too. The entire directory
and the sub directories are searched for *.BAS files. They are all added to the list.

Batch Clear List
Clear the list of files.

Batch Clear Good
Remove the files that were compiled without error. You will keep a list with files that
compiled with an error.

All results are shown in an error list at the bottom of the screen.
When you double click an item, the file will be opened by the editor.

See Also
$NOCOMP 292

84 BASCOM-AVR

© 2008 MCS Electronics

3.40 Tools PDF Update

Use this option to update all Atmel PDF files.
The Atmel data sheets are stored in the \PDF subdirectory.
The following window will be shown :

There is only one option available : Check. When you click the Check-button, the
Atmel server will be checked for newer versions of the PDF documents.
You need to make sure that BASCOM is allowed to contact the internet.

The check will read all available DAT files and check if there is a reference to the PDF.
When an item is disabled(grayed) then it means there is no link to the PDF in the DAT
file.

During the check the window will look like this :

85BASCOM IDE

© 2008 MCS Electronics

All PDF's that are newer will have a check mark.
You can manual unselect or select the PDF's.
In the log window at the bottom of the window you can view which files will be
downloaded.

When you want to download the selected files, press the Download-button.
This will close all PDF documents in the PDF viewer. A backup of each PDF file
downloaded will be made before it is downloaded. You need to restore it when
something goes wrong during the download(server drops the connection for
example).
When a document is downloaded, the check mark will be removed.

After all documents are downloaded, they documents are opened again in the PDF
viewer.

3.41 Tools Resource Editor

The resource editor can be used to edit the resource strings of your application.
The resource editor will create a <project>.BCR file.
The resource editor is part of the Resource Add On, and is only available when you
have this add on installed.

The simplest way to get the resources from your application is to create a BCS file
using the DUMP option.
Then import them with the resource editor.

86 BASCOM-AVR

© 2008 MCS Electronics

The following options are available when you right click with the mouse in the
resource editor.

Option Description

Search Search for a string.

Find Next Find next occurrence.

Delete Row Delete the current row.

Add Row Add a new row for a new string.

Import This option will import the BCS file which you can create with
the $RESOURCE DUMP option.

Set Language Name Change the language name of the current language/column.

Add Language Add a new column for a new language.

Delete Language Delete the current column (language).

The resource editor is pretty simple. The only task is allow you to edit the various
strings. You can also use notepad or Excel to create the BCR file which is explained in
the $RESOURCE topic.

3.42 Options Compiler

With this option, you can modify the compiler options.

The following TAB pages are available:

Options Compiler Chip
Options Compiler Output
Options Compiler Communication
Options Compiler I2C , SPI, 1WIRE
Options Compiler LCD

297

87

88

89

90

91

87BASCOM IDE

© 2008 MCS Electronics

3.42.1 Options Compiler Chip

The following options are available:

Options Compiler Chip
Item Description

Chip Selects the target chip. Each chip has a corresponding x.DAT file
with specifications of the chip. Note that some DAT files are not
available yet.

XRAM Selects the size of the external RAM. KB means Kilo Bytes.

For 32 KB you need a 62256 STATIC RAM chip.

HW Stack The amount of bytes available for the hardware stack. When you
use GOSUB or CALL, you are using 2 bytes of HW stack space.

When you nest 2 GOSUB’s you are using 4 bytes (2*2). Most
statements need HW stack too. An interrupt needs 32 bytes.

Soft Stack Specifies the size of the software stack.

Each local variable uses 2 bytes. Each variable that is passed to a
sub program uses 2 bytes too. So when you have used 10 locals in
a SUB and the SUB passes 3 parameters, you need 13 * 2 = 26
bytes.

Frame size Specifies the size of the frame.

Each local variable is stored in a space that is named the frame
space.
When you have 2 local integers and a string with a length of 10,
you need a frame size of (2*2) + 11 = 15 bytes.
The internal conversion routines used when you use INPUT num, or
STR(), or VAL(), etc, also use the frame. They need a maximum of

88 BASCOM-AVR

© 2008 MCS Electronics

16 bytes. So for this example 15+16 = 31 would be a good value.

XRAM wait state Select to insert a wait state for the external RAM.

External Access
enable

Select this option to allow external access of the micro. The 8515
for example can use port A and C to control a RAM chip. This is
almost always selected if XRAM is used

Default Press or click this button to use the current Compiler Chip settings
as default for all new projects.

3.42.2 Options Compiler Output

Options Compiler Output
Item Description

Binary file Select to generate a binary file. (xxx.bin)

Debug file Select to generate a debug file (xxx.dbg)

Hex file Select to generate an Intel HEX file (xxx.hex)

Report file Select to generate a report file (xxx.rpt)

Error file Select to generate an error file (xxx.err)

AVR Studio
object file

Select to generate an AVR Studio object file (xxx.obj)

Size warning Select to generate a warning when the code size exceeds the Flash
ROM size.

Swap words This option will swap the bytes of the object code words. Useful for
some programmers. Should be disabled for most programmers.

Don't use it with the internal supported programmers.

Optimize code This options does additional optimization of the generated code.
Since it takes more compile time it is an option.

Show internal
variables

Internal variables are used. Most of them refer to a register. Like
_TEMP1 = R24. This option shows these variables in the report.

89BASCOM IDE

© 2008 MCS Electronics

3.42.3 Options Compiler Communication

Options Compiler Communication
Item Description

Baud rate Selects the baud rate for the serial communication statements. You
can also type in a new baud rate.
It is advised to use $BAUD in the source code which overrides this
setting.

Frequency Select the frequency of the used crystal. You can also type in a new
frequency. It is advised to use $CRYSTAL in the source code which
overrides this setting. Settings in source code are preferred since it is
more clear.

The settings for the internal hardware UART are:

No parity , 8 data bits , 1 stop bit

Some AVR chips have the option to specify different data bits and different stop bits
and parity.

Note that these settings must match the settings of the terminal emulator. In the
simulator the output is always shown correct since the baud rate is not taken in
consideration during simulation. With real hardware when you print data at 9600
baud, the terminal emulator will show weird characters when not set to the same
baud rate, in this example, to 9600 baud.

257

262

90 BASCOM-AVR

© 2008 MCS Electronics

3.42.4 Options Compiler I2C, SPI, 1WIRE

Options Compiler I2C, SPI, 1WIRE
Item Description

SCL port Select the port pin that serves as the SCL-line for the I2C related
statements.

SDA port Select the port pin that serves as the SDA-line for the I2C related
statements.

1WIRE Select the port pin that serves as the 1WIRE-line for the 1Wire
related statements.

Clock Select the port pin that serves as the clock-line for the SPI related
statements.

MOSI Select the port pin that serves as the MOSI-line for the SPI related
statements.

MISO Select the port pin that serves as the MISO-line for the SPI related
statements.

SS Select the port pin that serves as the SS-line for the SPI related
statements.

Use hardware
SPI

Select to use built-in hardware for SPI, otherwise software
emulation of SPI will be used. The 2313 does not have internal HW
SPI so it can only be used with software SPI mode.
When you do use hardware SPI, the above settings are not used
anymore since the SPI pins are dedicated pins and can not be
chosen by the user.

It is advised to use the various CONFIG commands in your source code. It make
more clear in the source code which pins are used.

375

91BASCOM IDE

© 2008 MCS Electronics

3.42.5 Options Compiler LCD

Options Compiler LCD
Item Description

LCD type The LCD display used.

Bus mode The LCD can be operated in BUS mode or in PIN mode. In
PIN mode, the data lines of the LCD are connected to the
processor port pins. In BUS mode the data lines of the LCD
are connected to the data lines of the BUS.

Select 4 when you have only connect DB4-DB7. When the
data mode is 'pin' , you should select 4.

Data mode Select the mode in which the LCD is operating. In PIN
mode, individual processor pins can be used to drive the
LCD. In BUS mode, the external data bus is used to drive
the LCD.

LCD address In BUS mode you must specify which address will select the
enable line of the LCD display. For the STK200, this is C000
= A14 + A15.

RS address In BUS mode you must specify which address will select the
RS line of the LCD display. For the STK200, this is 8000 =
A15

Enable For PIN mode, you must select the processor pin that is
connected to the enable line of the LCD display.

RS For PIN mode, you must select the processor pin that is
connected to the RS line of the LCD display.

DB7-DB4 For PIN mode, you must select the processor pins that are
connected to the upper four data lines of the LCD display.

Make upper 3 bits high Some displays require that for setting custom characters,

92 BASCOM-AVR

© 2008 MCS Electronics

in LCD designer the upper 3 bits must be 1. Should not be used by default.

It is advised to use the CONFIG LCD command. This way the settings are stored in
your source code and not in the separate CFG file.

3.43 Options Communication

With this option, you can modify the communication settings for the terminal
emulator.

Item Description

Comport The communication port of your PC that you use for the terminal
emulator.

Baud rate The baud rate to use.

Parity Parity, default None.

Data bits Number of data bits, default 8.

Stop bits Number of stop bits, default 1.

Handshake The handshake used, default is none.

Emulation Emulation used, default BBS ANSI.

Font Font type and color used by the emulator.

Back color Background color of the terminal emulator.

Note that the baud rate of the terminal emulator and the baud rate setting of the
compiler options , must be the same in order to work correctly.

The reason why you can specify them both to be different is that you can use the
terminal emulator for other purposes too.

89

93BASCOM IDE

© 2008 MCS Electronics

3.44 Options Environment

OPTION DESCRIPTION

Auto Indent When you press return, the cursor is set to the next line at the
current column position.

Don't change
case

When set, the reformat won't change the case of the line after you
have edited it.

Default is that the text is reformatted so every word begins with
upper case.

Reformat BAS
files

Reformat files when loading them into the editor.
All lines are reformatted so that multiple spaces are removed.

This is only necessary when you are loading files that where created
with another editor. Normally you won't need to set this option.

Reformat code Reformat code when entered in the editor.
The reformat option will change the modified line.
For example a = a + 1 will be changed into : a = a + 1 . When
you forget a string end marker ", one will be added, and endif will
be changed into End IF.

Smart TAB When set, a TAB will place the cursor to the column where text
starts on the previous line.

Syntax
highlighting

This options highlights BASCOM statements in the editor.

Show margin Shows a margin on the right side of the editor.

Comment The position of the comment. Comment is positioned to the right of
your source code. Exception if comment is first character of a line.

TAB-size Number of spaces that are generated for a TAB.

Key mapping Choose default, Classic, Brief or Epsilon.

No reformat File extensions separated by a space that will not be reformatted

94 BASCOM-AVR

© 2008 MCS Electronics

extension when loaded. For example when DAT is entered, opening a DAT file
can be done without that it is reformatted.

Size of new
editor window

When a new editor window is created you can select how it will be
made. Normal or Maximized (full window)

Line Numbers Show line numbers in the margin.

OPTION DESCRIPTION

Background color The background color of the editor window.

Keyword color The color of the reserved words. Default Navy.

The keywords can be displayed in bold too.

Comment color The color of comment. Default green.

Comment can be shown in Italic too.

ASM color Color to use for ASM statements. Default purple.

HW registers color The color to use for the hardware registers/ports. Default
maroon.

String color The color to use for string constants : "test"

Variable color The color to use for variables.

Editor font Click on this label to select another font for the editor window.

95BASCOM IDE

© 2008 MCS Electronics

OPTION DESCRIPTION

Tool tips Show tool tips.

File location Click to select a directory where your program files are stored.
By default Windows will use the My Documents path.

Use HTML Help HTML help or CHM Help is the preferred help file. Since HLP is
not supported under Vista, it is advised to switch to CHM/
HTML Help.
With the UpdateWiz you can still download the HLP file.

Code hints Select this option to enable code hints. You can get code hints
after you have type a statement that is recognized as a valid
statement or function.

Hint Time The delay time in mS before a code hint will be shown.

Hint Color The background color of the hints.

Allow multiple
Instances

Select this option when you want to run multiple instances of
BASCOM. When not enabled, running a second copy will
terminate the first one.

Auto save on compile The code is always saved when you compile. When you select
this option, the code is saved under the same name. When
this option is not selected, you will be prompted for a new
filename.

Auto backup Check this option to make periodic backups. When checked
you can specify the backup time in minutes. The file will also
be saved when you press the compiler button.

Auto load last file When enabled, this option will load the last file that was open
into the editor, when you start BASCOM.

Auto load all files When enabled, this option will load all files that were open
when you closed BASCOM.

Reset docking This will reset the dockable windows to the default position.

Language This will set the language in the main menu to the selected
language. Not all listed languages are supported/translated

96 BASCOM-AVR

© 2008 MCS Electronics

yet.

OPTION DESCRIPTION

Auto open processor
PDF

This option will automatic load the PDF of the selected micro
processor in the PDF viewer. The $REGFILE value
determines which data sheet is loaded. The PDF must exist
otherwise it can not be loaded.

Open PDF in new sheet Every time you change the value of the $REGFILE the
processor PDF can be shown in the same sheet, or a new
sheet can be shown with the PDF. A good option in case
your project uses multiple processors.

Auto save/load project
PDF

Load all PDF's when the project is opened that were loaded
when the project was closed.

97BASCOM IDE

© 2008 MCS Electronics

3.45 Options Simulator

With this option you can modify the simulator settings.

OPTION DESCRIPTION

Use integrated
simulator

Set this option to use BASCOM’s simulator. You can also use
AVR Studio by clearing this option.

Run simulator after
compilation

Run the selected simulator after a successful compilation.

Program The path with the program name of the external simulator.

Parameter The parameter to pass to the program. {FILE}.OBJ will
supply the name of the current program with the extension .
OBJ to the simulator.

98 BASCOM-AVR

© 2008 MCS Electronics

3.46 Options Programmer

With this option you can modify the programmer settings.

OPTION DESCRIPTION

Programmer Select one from the list.

Play sound Name of a WAV file to be played when programming is finished.

Press the directory button to select a file.

Erase Warning Set this option when you want a confirmation when the chip is
erased.

Auto flash Some programmers support auto flash. Pressing F4 will program
the chip without showing the programmer window.

Auto verify Some programmers support verifying. The chip content will be
verified after programming.

Upload code and
data

Set this option to program both the FLASH memory and the
EEPROM memory

Program after
compile

When compilation is successful, the chip will be programmed

Set focus to
terminal
emulator

When the chip is programmed, the terminal emulator will be shown

Parallel printer port programmers

LPT address Port address of the LPT that is connected to the programmer.

Port delay An optional delay in uS. It should be 0. But on some systems a
delay might be needed.

99BASCOM IDE

© 2008 MCS Electronics

Serial port programmer

COM port The com port the programmer is connected to.

STK500 EXE The path of stk500.exe. This is the full file location to the files
stk500.exe that comes with the STK500.

USB For mkII and other Atmel USB programmers you can enter the
serial number here. Or you can look it up from the list.

Other

Use HEX Select when a HEX file must be sent instead of the bin file.

Program The program to execute. This is your programmer software.

Parameter The optional parameter that the program might need.

Use {FILE} to insert the binary filename(file.bin) and {EEPROM} to
insert the filename of the generated EEP file.

When ‘Use Hex’ is checked the filename (file.hex) will be inserted
for {FILE}. In all cases a binary file will be inserted for {EEPROM}
with the extension .EEP

See Also
Supported programmers

3.46.1 Supported Programmers

BASCOM supports the following programmers

AVR ICP910 based on the AVR910.ASM application note

STK200 ISP programmer from Atmel

The PG302 programmer from Iguana Labs

The simple cable programmer from Sample Electronics.

KITSRUS KIT122 Programmer

MCS Universal Interface Programmer

The MCS Universal Interface supports a number of programmers as well. In fact it is
possible to support most parallel printer port programmers.

STK500 programmer and Extended STK500 programmer.

Lawicel BootLoader

USB-ISP Programmer

MCS Bootloader

PROGGY

FLIP

Elektor / AVR ISP mkII

99

109

109

101

101

102

103

105

108

109

113

115

115

117

100 BASCOM-AVR

© 2008 MCS Electronics

3.46.1.1 ISP programmer

BASCOM supports the STK200 and STK200+ and STK300 ISP programmer from
Atmel.

This is a very reliable parallel printer port programmer.
The STK200 ISP programmer is included in the STK200 starter kit.
Most programs were tested with the STK200.

For those who don't have this kit and the programmer the following schematic shows
how to make your own programmer:

The dongle has a chip with no identification but since the schematic is all over the
web, it is included. MCS also sells a STK200 compatible programmer.

Here is a tip received from a user :

If the parallel port is disconnected from the interface and left floating, the '244 latch
outputs will waver, causing your micro controller to randomly reset during operation.
The simple addition of a 100K pull-up resistor between pin 1 and 20 of the latch, and
another between pin 19 and 20, will eliminate this problem. You'll then have HIGH-Z
on the latch outputs when the cable is disconnected (as well as when it's connected
and you aren't programming), so you can use the MOSI etc. pins for I/O.

101BASCOM IDE

© 2008 MCS Electronics

3.46.1.2 PG302 programmer

The PG302 is a serial programmer. It works and looks exactly as the original PG302
software.

Select the programmer from The Option Programmer menu or right click on the
button to show the Option Programmer menu

3.46.1.3 Sample Electronics cable programmer

Sample Electronics submitted the simple cable programmer.

They produce professional programmers too. This simple programmer you can make
yourself within 10 minutes.
What you need is a DB25 centronics male connector, a flat cable and a connector that
can be connected to the target MCU board.

The connections to make are as following:

DB25 pin Target MCU pin
(AT90S8535)

Target MCU
M103/M128

Target MCU pin 8515 DT104

2, D0 MOSI, pin 6 PE.0, 2 MOSI, 6 J5, pin 4

4, D2 RESET, pin 9 RESET, 20 RESET, 9 J5, pin 8

5, D3 CLOCK, pin 8 PB.1,11 CLOCK, 8 J5, pin 6

11, BUSY MISO, pin 7 PE.1, 3 MISO, 7 J5, pin 5

18-25,GND GROUND GROUND GND,20 J5, pin 1

The MCU pin numbers are shown for an 8535! And 8515
Note that 18-25 means pins 18,19,20,21,22,23,24 and 25

You can use a small resistor of 100-220 ohm in series with the D0, D2 and D3 line in
order not to short circuit your LPT port in the event the MCU pins are high.
It was tested without these resistors and no problems occurred.

 Tip : when testing programmers etc. on the LPT it is best to buy an I/O card for

98

102 BASCOM-AVR

© 2008 MCS Electronics

your PC that has a LPT port. This way you don’t destroy your LPT port that is on the
motherboard in the event you make a mistake!

The following picture shows the connections to make. Both a setup for the DT104 and
stand-alone PCB are shown.

I received the following useful information:

I have been having spurious success with the simple cable programmer from Sample
Electronics for the AVR series.
After resorting to hooking up the CRO I have figured it out (I think). When trying to
identify the chip, no response on the MISO pin indicates that the Programming Enable
command has not been correctly received by the target.

The SCK line Mark/Space times were okay but it looked a bit sad with a slow rise time
but a rapid fall time. So I initially tried to improve the rise
time with a pull-up. No change ie still could not identify chip. I was about to add some
buffers when I came across an Atmel app note for their serial programmer "During
this first phase of the programming cycle, keeping the SCK line free from pulses is
critical, as pulses will cause the target AVR to loose synchronization with the
programmer. When synchronization is lost, the only means of regaining
synchronization is to release the RESET line for more than 100ms."

I have added a 100pF cap from SCK to GND and works first time every time now. The
SCK rise time is still sad but there must have been enough noise to corrupt the initial
command despite using a 600mm shielded cable.

3.46.1.4 KITSRUS Programmer

The K122 is a KIT from KITSRUS. (www.kitsrus.com)

The programmer supports the most popular 20 and 40 pins AVR chips.

On the Programmer Options tab you must select this programmer and the COM port it
is connected to.

On the Monitor Options tab you must specify the upload speed of 9600, Monitor delay
of 1 and Prefix delay 1.

103BASCOM IDE

© 2008 MCS Electronics

When you press the Program button the Terminal Emulator screen will pop up:

A special toolbar is now visible.
You must press the Program enable button to enable the programmer.
When you enable the programmer the right baud rate will be set.
When you are finished you must press the Enable button again to disable it.
This way you can have a micro connected to your COM port that works with a
different BAUD rate.
There is an option to select between FLASH and EEPROM.
The prompt will show the current mode which is set to FLASH by default.

The buttons on the toolbar allow you to :
ERASE, PROGRAM, VERIFY, DUMP and set the LOCK BITS.
When DUMP is selected you will be asked for a file name.
When the DUMP is ready you must CLOSE the LOGFILE where the data is stored. This
can be done to select the CLOSE LOGFILE option form the menu.

3.46.1.5 MCS Universal Interface Programmer

The MCS Universal Interface programmer allows you to customize the pins that are
used for the ISP interface. The file prog.settings stores the various interfaces.

The content :

;how to use this file to add support for other programmers

;first create a section like [newprog]

; then enter the entries:

; BASE= $hexaddress

; MOSI= address in form of BASE[+offset] , bit [,inverted]

; CLOCK= same as MOSI

; RESET=same as MOSI

104 BASCOM-AVR

© 2008 MCS Electronics

; MISO=same as MOSI

; The bit is a numer that must be written to set the bit

; for example 128 to set bit 7

; Optional is ,INVERTED to specify that inverse logic is used

; When 128 is specified for the bit, NOT 128 will be written(127)

[FUTURELEC]

;tested and ok
BASE=$378
MOSI=BASE+2,1,inverted
CLOCK=BASE,1
RESET=BASE,2
MISO=BASE+1,64

[sample]
;tested and ok
BASE=$378
MOSI=BASE,1
CLOCK=BASE,8
RESET=BASE,4
MISO=BASE+1,128,INVERTED

[stk200]
;tested and ok
BASE=$378
MOSI=BASE,32
CLOCK=BASE,16
RESET=BASE,128
MISO=BASE+1,64

Four programmers are supported : Futurelec, Sample and STK200/STK300 and
WinAVR/ SP12.
To add your own programmer open the file with notepad and add a new section
name. For the example I will use stk200 that is already in the file.

[stk200]
The LPT base address must be specified. For LPT1 this is in most cases $378. $ means
hexadecimal.

The pins that are needed are MOSI, CLOCK, RESET and MISO.
Add the pin name MOSI =

After the pin name add the address of the register. For the STK200 the data lines are
used so BASE must be specified. After the address of the register, specify the bit
number value to set the pin high. Pin 0 will be 1, pin 1 would be 2, pin 2 would be 4
etc. D5 is used for the stk so we specify 32.

When the value is set by writing a logic 0, also specify, INVERTED.

105BASCOM IDE

© 2008 MCS Electronics

After you have specified all pins, save the file and restart BASCOM.
Select the Universal Programmer Interface and select the entry you created.
After you have selected an entry save your settings and exit BASCOM. At the next
startup of BASCOM, the settings will be used.

The following picture shows the LPT connector and the relation of the pins to the LPT
registers.

Always add your entry to the bottom of the file and email the settings to
support@mcselec.com so it can be added to BASCOM.

3.46.1.6 STK500 Programmer

When you select the STK500 programmer, BASCOM will run the files named stk500.
exe that is installed with AVR Studio.

That is why you have to specify the file location of the stk500.exe
The normal STK500 support will erase, and program the flash.
The STK500.EXE supports a number of Atmel programmers which all use the STK500
V1 or V2 protocol.
For the AVR ISP mkII, you need to supply the serial number of the USB programmer.
The USB port will be used then instead of the serial port.

You can also use the native driver which does not use/need the stk500.exe
If you select this programmer, you will see the following window when you launch the
programmer with F4(manual program)

106 BASCOM-AVR

© 2008 MCS Electronics

When the source code is compiled and the BIN file exists, it is loaded automatic into
the buffer.
When an EEPROM image file exists (EEP), it is loaded too into the EEPROM buffer.
When it does not exist you will see a warning which you can ignore.
When the target device is not read yet, the CHIP will be unidentified which is marked
as ???.
In the status bar you can see the loaded file, and the size of the file. Notice that
16000 will be shown as 16 KB.
You can select the EEPROM-TAB to view the EEPROM image. Memory locations can be
altered. Select a cell, and type a new value. Then press ENTER to confirm. You can
immediately see the new value.
When you select the Lock and Fusebits-TAB the lock and fuse bits will be read.

107BASCOM IDE

© 2008 MCS Electronics

As you can see that as soon as the target chip is determined, the chip name is shown
under the tool bar.
The FLASH size and EEPROM size are shown too.
As soon as you alter a lock or fusebit, the corresponding Write-button will be enabled.
You need to click it to write the new value. The lock and fuse bits are read again so
you can see if it worked out. The lock and fuse bits shown will depend on the used
chip. Every chip has different fuse bits. Some fuse bits can not be altered via the
serial programming method. The native stk500 driver uses the serial programming
method. Some fuse bits require the parallel or high voltage programming method. For
example the fusebit 'enable serial downloading' can not be changed with the serial
programming method.
Fuse bits of interest are : the clock divider and the oscillator fuse bits. When you
select a wrong oscillator fusebit (for example you select an external oscillator) the
chip will not work anymore till you connect such an external oscillator! Of course a
simple 555 chip can generate a clock signal you can use to 'wake' a locked chip.

Once you have all settings right, you can press the 'Write PRG' button which will
insert some code into your program at the current cursor position. This is a $PROG
directive.
For example : $prog &HFF , &HED , &HD0 , &HFF
When you compile your program with the $PROG directive it will generate a PRG
file with the lock and fuse bit settings.
If you then auto program(see later) a chip, it will use these settings.
$PROG is great to load the right lock and fuse bits into a new chip. But be careful : do
not enable $PROG till you are done with development. Otherwise programming will be
slow because of the extra reading and writing steps.

294

108 BASCOM-AVR

© 2008 MCS Electronics

The following menu options are available:

Option Description

File

 Exit Close programmer.

Buffer

 Clear Clear buffer. Will put a value of 255 (FF hex) into each memory
location. When the FLASH-TAB has the focus, the FLASH buffer
will be cleared. When the EEPROM-TAB has the focus, the
EEPROM buffer will be cleared. 255 is the value of an empty
memory location.

 Load from File This will shown an open file dialog so you can select a binary
file (BIN)

The file is loaded into the buffer.

Save to File Will save the current buffer to a file.

Reload Reloads the buffer from the file image.

Chip

 Identify Will attempt to read the signature of the chip. When the
signature is unknown(no DAT file available) or there is no chip
or other error, you will get an error. Otherwise the chip name
will be shown.

 Write buffer to chip This will write the active buffer(FLASH or EEPROM) into the
chip.

 Read chipcode When the chip lock bit is not set you can read the FLASH or
EEPROM into the buffer.

 Blank check Check if the chip FLASH or EEPROM is empty.

 Erase Erases the chip FLASH. It depends on the fusebits if the
EEPROM is erased too. Normally the EEPROM is erased too but
some chip have a fuse bit to preserve EEPROM when erasing
the chip.
A chip MUST be erased before it can be programmed.

 Verify Checks if the buffer matches the chip FLASH or EEPROM.

Auto program This will eraser, and program the FLASH and EEPROM and
if $PROG is used, it will set the lock and fusebits too.

3.46.1.7 Lawicel BootLoader

The Lawicel Boot loader must be used with the StAVeR. The StAVeR contains a boot
loader so you only need a serial interface, no parallel programmer or other
programmers.

You can also use Hyper terminal.

When you have selected the Lawicel Boot loader from the Options, Programmer, the
following window will appear when you press F4.

109BASCOM IDE

© 2008 MCS Electronics

As the window suggests, press the reset button on the activity board or StAVeR, and
the chip will be programmed. This is visible by a second wind that will be shown
during programming.

When the programming succeeds, both windows will be closed.

When an error occurs, you will get an error message and you can clock the Cancel
button in order to return to the Editor.

3.46.1.8 AVR ISP Programmer

The AVRISP programmer is AVR ICP910 based on the AVR910.ASM application note.

The old ICP910 does not support Mega chips. Only a modified version of the AVR910.
ASM supports Universal commands so all chips can be programmed.

The new AVRISP from Atmel that can be used with AVR Studio, is not compatible! You
need to select STK500 programmer because the new AVRISP programmer from
Atmel, uses the STK500 protocol.

When you do not want to use the default baud rate that AVR910 is using, you can
edit the file bascavr.ini from the Windows directory.
Add the section [AVRISP]
Then add: COM=19200,n,8,1

This is the default. When you made your own dongle, you can increase the baud rate

You need to save the file and restart BASCOM before the settings will be in effect.

3.46.1.9 USB-ISP Programmer

The USB-ISP Programmer is a special USB programmer that is fully compatible with
BASCOM's advanced programmer options.
Since many new PC's and especial Laptop's do not have a parallel programmer
anymore, MCS selected the USB-ISP programmer from EMBUD.

The drivers are located in the USB sub directory that is located in the BASCOM-AVR
application folder.

105

110 BASCOM-AVR

© 2008 MCS Electronics

When you connect the programmer, Windows (98, ME, 2000, XP) will recognize the
new device automatically.

Then the Hardware wizard will be started :

Select 'No, not this time' and click Next, as there is no driver at Microsoft's web.

The Wiz will show :

111BASCOM IDE

© 2008 MCS Electronics

You need to select 'Install from a list or specific location' and click Next.

You can specify the path of the USB driver. This is by default :

C:\Program Files\MCS Electronics\BASCOM-AVR\USB

Use the Browse-button to select it, or a different location, depending on your installation.

112 BASCOM-AVR

© 2008 MCS Electronics

As the driver is not certified by Micros ft, you will see the following window:

You need to select 'Continue Anyway'. A restore point will be made if your OS
supports this and the driver will be installed.
After installation you must see the following window :

After you press Finish you will see Windows can use the programmer :

113BASCOM IDE

© 2008 MCS Electronics

In BASCOM , Options, Programmer you can select the new programmer now.

New models of the USB programmer allow to set the speed.
The USB-ISP programmer is very quick and supports all options that the Sample
Electronics and STK200 programmers support. It is good replacement for the STK200.

When you use other USB devices that use the FTDI drivers, there might occur a
problem. Manual install the drivers of these other devices, then install the USB-ISP
driver.

3.46.1.10 MCS Bootloader

The MCS Boot loader is intended to be used with the $LOADER sample.
It uses the X-modem Checksum protocol to upload the binary file. It works very
quick.
The Boot loader sample can upload both normal flash programs and EEPROM images.
The Boot loader sends a byte with value of 123 to the AVR Boot loader. This boot
loader program then enter the boot loader or will jump to the reset vector (0000) to
execute the normal flash program.

When it receives 124 instead of 123, it will upload the EEPROM.
When you select a BIN file the flash will be uploaded. When you select an EEP file, the
EEPROM will be uploaded.

The Boot loader has some specific options.

285

114 BASCOM-AVR

© 2008 MCS Electronics

You can choose the boot size which is 1024 for the BASCOM $LOADER example.
Since this space is used from the normal flash memory, it means your application has
1024 less words for the main application. (A word is 2 byte, so 2KB less)

The boot loader is started when the chip is reset. Thus you need to reset the chip
after you have pressed F4(program). But when you have connected the DTR line to
the chip reset (with a MAX232 buffer) you can reset the chip automatically. You do
need to set the 'Reset via DTR' option then.

By choosing 'Close programmer window when ready' the window will be closed when
the loader returns 0.
In all other cases it will remain opened so you can look at a possible cause.

After you have pressed F4 to following window will appear :

115BASCOM IDE

© 2008 MCS Electronics

As you can see, the loader sends a byte with value of 123.
You need to reset the chip, and then you see that the loader returned 123 which
means it received the value.
It will start the upload and you see a progress bar. After the loader is ready, you see
a finish code of 0.
A finish code of 0 means that all wend well.
Other finish codes will not close the window even if this option is enabled.
You need to manual close the window then.

3.46.1.11 PROGGY

PROGGY is a popular USB programmer written by Red_Mamba.

You need to install it and make sure that the registry key :
HKEY_CURRENT_USER\Software\Red_Mamba\Atmel programator exists with
the parameter : InstallPath

InstallPath should point to the executable which name is atme.exe
When you install PROGGY, it will be handled for you. When you have an older version,
you need to update.

BASCOM will call the programmer with the following options : -p -s -e
The -e will cause the programmer to exit after the programming.

3.46.1.12 FLIP

FLIP is a free programmer from Atmel. BASCOM supports FLIP for the USB chips/
interface.

The USB chips are programmed with a boot loader. This is very convenient since you
do not need any hardware to program the chip. FLIP can be downloaded from the
Atmel site.
URL : http://www.atmel.com/dyn/resources/prod_documents/Flip%20Installer%20-%203.3.1.exe
The FLIP website you can find at :

http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+
Architecture&tool_id=3886

FLIP is a Java application. The BASCOM-IDE can use the FLIP software to program the chip too.

http://www.atmel.com/dyn/resources/prod_documents/Flip%20Installer%20-%203.3.1.exe
http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+Architecture&tool_id=3886
http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+Architecture&tool_id=3886

116 BASCOM-AVR

© 2008 MCS Electronics

But in order to use the FLIP programmer, you need to install FLIP first.
When FLIP is working, you can select FLIP from Options, Programmer, in order to program quickly
without the FLIP executable.
On Vista there is a problem with loading some of the FLIP DLL's. In case you get an error, copy
the FLIP DLL's to the BASCOM application directory.
You need to copy the following files :
· atjniisp.dll
· AtLibUsbDfu.dll
· msvcp60.dll
· msvcrt.dll

You can run the flipDLLcopy.cmd file from the BASCOM application directory to copy these files.
The content of the command file :
copy "c:\program files\atmel\flip 3.3.1\bin\atjniisp.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\AtLibUsbDfu.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\msvcp60.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\msvcrt.dll" .
pause

The last line pauses so you can view the result. Notice the . (dot) that will copy the file to the
current directory, which is the reason that you need to run this file from the BASCOM application
directory.

As with other programmers, you press F4 to program the HEX file into the chip. A small window
will become visible.
A number of dialogs are possible:

In this case, you try to program a chip which is not supported by FLIP. The Mega88 is not an USB
chip so the error makes sense.

The next dialog informs you about a missing DFU device.

In this case, the boot loader is not found. You can run the boot loader by following the sequence
from the dialog box.
In order to make this work, the HWB and RST input both need a small switch to ground.
When HWB is pressed(low) during a reset, the boot loader will be executed.

TIPS & Tricks
FLIP is only supported by Atmel. Here you will find some tips about FLIP. In order to use
BASCOM's FLIP support, you must have running FLIP successfully first !
Here is a good tip from a user :
IMO he Flip 3.3.1 Installer is a little bit stupid.

117BASCOM IDE

© 2008 MCS Electronics

The dll´s are located in the Path ...\Atmel\Flip 3.3.1\bin .
The Installer has set a correct Path-Variable in Windows for this path.
But, the libusb0.dll isn´t in that location. It is in ...\Atmel\Flip
3.3.1\USB !
So I moved the libusb0.dll into the \bin dir and Flip runs without the
errors. (GRRRR)

In the ...\Atmel\Flip 3.3.1\USB dir I have also detected the missing
.inf File.
After installing this, Windows detects the AT90USB162 and Flip can
connect the device.

3.46.1.13 Elektor / AVR ISP mkII

The Elektor programmer is a neat small USB programmer which is fully compatible to
the AVR ISP mKII programmer.
When you select this programmer, you will get the same interface as the STK500
native programmer.
F4 will launch the programmer. For more details read the help section for the STK500
programmer.

Just like Atmel AVR Studio, the programmer uses the LIBUSB USB drivers. When you
do a full setup, you can select to install this driver. Like other USB drivers/products, it
will NOT work on Windows 95.
When you performed an update, you must manual install the USB drivers. Download
the file name USBLIBSETUP.EXE from the MCS web and run the setup as an
administrator. Installing LIBUSB is at your own risk. Make a backup before you do so!

3.47 Options Monitor

With this option you can modify the monitor settings.

OPTION DESCRIPTION

Upload
speed

Selects the baud rate used for uploading

Monitor
prefix

String that will be send to the monitor before the upload starts

Monitor
suffix

String that us sent to the monitor after the download is completed.

Monitor
delay

Time in milliseconds to wait after a line has been sent to the monitor.

Prefix delay Time in milliseconds to wait after a prefix has been sent to the
monitor.

105

118 BASCOM-AVR

© 2008 MCS Electronics

3.48 Options Printer

With this option you can modify the printer settings.

OPTION DESCRIPTION

Font Printer font to use when printing

Setup Click to change the printer setup

Color Will print in color. Use this only for color printers.

Wrap lines Wrap long lines. When not enabled, long lines will be partial shown.

Print
header

Print a header with the filename.

Line
numbers

Will be the line number before each line.

Syntax Enable this to use the same syntax highlighting as the editor

Left margin The left margin of the paper.

Right
margin

The right margin of the paper.

Top margin The top margin of the paper.

Bottom
margin

The bottom margin of the paper.

3.49 Window Cascade

Cascade all open editor windows.

119BASCOM IDE

© 2008 MCS Electronics

3.50 Window Tile

Tile all open editor windows.

3.51 Window Arrange Icons

Arrange the icons of the minimized editor windows.

3.52 Windows Maximize All

Maximize all open editor windows.

3.53 Window Minimize All

Minimize all open editor windows.

3.54 Help About

This option shows an about box as shown below.

Your serial number is shown on the third line of the about box.
You will need this when you have questions about the product.

The compiler and IDE version numbers are also shown.

When you click the App data dir link, the folder which contains the BASCOM settings
will be opened:

120 BASCOM-AVR

© 2008 MCS Electronics

It contains the bascom-avr.xml file with all settings and the bascavr.log file. When
you need support, you might be asked to email these files.

When you need support, also click the Copy-button. It will copy the following info to
the clipboard, which you can paste in your email :

Dont forget that Serial numbers should not be sent to the user list.
Make sure you sent your email to support and not a public list !

Compiler version :1.11.8.3
IDE version :1.11.8.5
Serial number :XX-XXXX-XXXXX
Windows OS :Microsoft Windows XP
Windows SP :Service Pack 2
Explorer :7.0.5730.11
Company :MCS
Owner :Mark Alberts
Windows dir :C:\WINNT
App data dir :C:\Documents and Settings
System dir :C:\WINNT\system32

When you click the support link, your email client will be started and an email to
support@mcselec.com will be created.

Click on Ok to return to the editor.

3.55 Help Index

Shows the BASCOM help file.

When you are in the editor window, the current word selected or by the cursor will be
used as a keyword.
Notice that when the help window is small, you might need to make the help window
bigger to show the whole content.

The help contains complete sample code and partial sample code.
In all cases the samples are shown to give you an idea of the operation. When trying

121BASCOM IDE

© 2008 MCS Electronics

a program you should always use the samples from the SAMPLES directory. These are
updated and tested when new versions are published. The (partial) samples are not
all updates, only when they contain errors. So the samples from the help might need
some small adjustments while the samples form the SAMPLES dir will work at least on
the used chip.

3.56 Help MCS Forum

This option will start your default Web browser and direct it to http://www.mcselec.
com/index2.php?option=com_forum&Itemid=59

This forum is hosted by MCS Electronics. There are various forums available. You can
post your questions there. Do not cross post your questions on multiple forums and to
support.

The forum is available for all users : demo or commercial users.
Note that everything you write might be on line for ever. So mind your language.

Users of the commercial version can email MCS support.

The forum allows uploads for code examples, circuits etc.
If you try to abuse the forum or any other part of the MCS web, you will be banned
from the site.

http://www.mcselec.com/index2.php?option=com_forum&Itemid=59
http://www.mcselec.com/index2.php?option=com_forum&Itemid=59

122 BASCOM-AVR

© 2008 MCS Electronics

3.57 Help MCS Shop

This option will start your default web browser and direct it to :http://www.mcselec.
com/index.php?option=com_phpshop&Itemid=1

You can order items and pay with PayPal. PayPal will accept most credit cards.

Before you order, it is best to check the resellers page to find a reseller near you.
Resellers can help you in your own language, have all MCS items on stock, and are in
the same time zone.

Before you can order items, you need to create an account.
Read the following about the new website : http://www.mcselec.com/index.php?
option=com_content&task=view&id=133&Itemid=1

3.58 Help Support

This option will start your default browser with the following URL :

http://www.mcselec.com/support-center/

It depends from your browser settings if a new window or TAB will be created.
At the support site you can browse articles. You can also search on keywords.

824

http://www.mcselec.com/index.php?option=com_phpshop&Itemid=1
http://www.mcselec.com/index.php?option=com_phpshop&Itemid=1
http://www.mcselec.com/index.php?option=com_content&task=view&id=133&Itemid=1
http://www.mcselec.com/index.php?option=com_content&task=view&id=133&Itemid=1
http://www.mcselec.com/support-center/

123BASCOM IDE

© 2008 MCS Electronics

3.59 Help Knowledge Base

This option will ask you to enter a search string.

This search string will be passed to the MCS support site.
The above example that searches for "FUSEBIT" will result in the following :

You can click one of the found articles to read it.

3.60 Help Credits

BASCOM was invented in 1995. Many users gave feedback and helped with tips, code,
suggestions, support, a user list, and of course with buying the software.
The software improved a lot during the last 10 years and will so during the next
decade.

While it is impossible to thank everybody there are a few people that deserve credits :

· Josef Franz Vögel. He wrote a significant part of the libraries in BASCOM-AVR.
He is also author of AVR-DOS.

124 BASCOM-AVR

© 2008 MCS Electronics

· Dr.-Ing. Claus Kuehnel for his book 'AVR RISC' , that helped me a lot when I
began to study the AVR chips. Check his website at http://www.ckuehnel.ch

· Atmel, who gave permission to use the AVR picture in the start up screen. And
for the great tech support. Check their website at http://www.atmel.com

· Brian Dickens, who did most of the Beta testing. He also checked the
documentation on grammar and spelling errors. (he is not responsible for the
spelling errors i added later :-))

· Jack Tidwell. I used his FP unit for singles. It is the best one available.

3.61 BASCOM Editor Keys

Key Action

LEFT ARROW One character to the left

RIGHT ARROW One character to the right

UP ARROW One line up

DOWN ARROW One line down

HOME To the beginning of a line

END To the end of a line

PAGE UP Up one window

PAGE DOWN Down one window

CTRL+LEFT One word to the left

CTRL+RIGHT One word to the right

CTRL+HOME To the start of the text

CTRL+END To the end of the text

CTRL+ Y Delete current line

INS Toggles insert/over strike mode

F1 Help (context sensitive)

F2 Run simulator

F3 Find next text

F4 Send to chip (run flash programmer)

F5 Run

F7 Compile File

F8 Step

F9 Set breakpoint

F10 Run to

CTRL+F7 Syntax Check

CTRL+F Find text

CTRL+G Go to line

CTRL+K+x Toggle bookmark. X can be 1-8

CTRL+L LCD Designer

CTRL+M File Simulation

CTRL+N New File

CTRL+O Load File

CTRL+P Print File

CTRL+Q+x Go to Bookmark. X can be 1-8

CTRL+R Replace text

http://www.ckuehnel.ch
http://www.atmel.com

125BASCOM IDE

© 2008 MCS Electronics

CTRL+S Save File

CTRL+T Terminal emulator

CTRL+P Compiler Options

CTRL+W Show result of compilation

CTRL+X Cut selected text to clipboard

CTRL+Z Undo last modification

SHIFT+CTRL+Z Redo last undo

CTRL+INS Copy selected text to clipboard

SHIFT+INS Copy text from clipboard to editor

CTRL+SHIFT+J Indent Block

CTRL+SHIFT+U Unindent Block

Select text Hold the SHIFT key down and use the cursor keys to select text.
or keep the left mouse key pressed and drag the cursor over the
text to select.

3.62 Program Development Order

· Start BASCOM
· Open a file or create a new one
· ! Important ! Check the chip settings, baud rate and frequency settings for the

target system
· Save the file
· Compile the file (this will also save the file !!!)
· If an error occurs fix it and recompile (F7)
· Run the simulator(F2)
· Program the chip(F4)

3.63 PlugIns

3.63.1 Font Editor

The Font Editor is a Plug in that is intended to create Fonts that can be used with
Graphical display such as SED1521, KS108, color displays, etc.

When you have installed the Font Editor , a menu option becomes available under the
Tools menu : Font Editor.

When you choose this option the following window will appear:

126 BASCOM-AVR

© 2008 MCS Electronics

You can open an existing Font file, or Save a modified file.

The supplied font files are installed in the Samples directory.
You can copy an image from the clipboard, and you can then move the image up ,
down, left and right.

When you select a new character, the current character is saved. The suggest button
will draw an image of the current selected character.

When you keep the left mouse button pressed, you can set the pixels in the grid.
When you keep the right mouse button pressed, you can clear the pixels in the grid.

When you choose the option to create a new Font, you must provide the name of the
font, the height of the font in pixels and the width of the font in pixels.

The Max ASCII is the last ASCII character value you want to use. Each character will
occupy space. So it is important that you do not choose a value that is too high and
will not be used.

When you display normal text, the maximum number is 127 so it does not make
sense to specify a value of 255.

A font file is a plain text file.
Lets have a look at the first few lines of the 8x8 font:

Font8x8:
$asm

127BASCOM IDE

© 2008 MCS Electronics

.db 1,8,8,0

.db 0,0,0,0,0,0,0,0 ;

.db 0,0,6,95,6,0,0,0 ; !

The first line contains the name of the font. With the SETFONT statement you can
select the font. Essential, this sets a data pointer to the location of the font data.

The second line ($ASM) is a directive for the internal assembler that asm code will
follow.
All other lines are data lines.

The third line contains 4 bytes: 1 (height in bytes of the font) , 8 (width in pixels of
the font), 8 (block size of the font) and a 0 which was not used before the 'truetype'
support, but used for aligning the data in memory. This because AVR object code is a
word long.

This last position is 0 by default. Except for 'TrueType' fonts. In BASCOM a TrueType
font is a font where every character can have it's own width. The letter 'i' for example
takes less space then the letter 'w'. The EADOG128 library demonstrates the
TrueType option.
In order to display TT, the code need to determine the space at the left and right of
the character. This space is then skipped and a fixed space is used between the
characters. You can replace the 0 by the width you want to use. The value 2 seems a
good one for small fonts.

All other lines are bytes that represent the character.

723

Part

IV

129BASCOM HARDWARE

© 2008 MCS Electronics

4 BASCOM HARDWARE

4.1 Additional Hardware

Of course just running a program on the chip is not enough. You will probably attach
many types of electronic devices to the processor ports.
BASCOM supports a lot of hardware and so it has lots of hardware related statements.
Before explaining about programming the additional hardware, it might be better to
talk about the chip.

The AVR internal hardware

Attaching an LCD display

Using the I2C protocol

Using the 1WIRE protocol

Using the SPI protocol

You can attach additional hardware to the ports of the microprocessor.
The following statements will then be able to be used:

I2CSEND and I2CRECEIVE and other I2C related statements.

CLS, LCD, DISPLAY and other related LCD-statements.

1WRESET , 1WWRITE and 1WREAD

4.2 AVR Internal Hardware

The AVR chips all have internal hardware that can be used.

For this description of the hardware the 90S8515 was used. Newer chips like the
Mega8515 may differ and have more or less internal hardware.

You will need to read the manufacturers data sheet for the processor you are using to
learn about the special internal hardware available.

Timer / Counters

The AT90S8515 provides two general purpose Timer/Counters - one 8-bit T/C and
one 16-bit T/C. The Timer/Counters have individual pre-scaling selection from the
same 10-bit pre-scaling timer. Both Timer/Counters can either be used as a timer
with an internal clock time base or as a counter with an external pin connection which
triggers the counting.

129

139

150

157

160

609 608

366 629 547

314 326 317

130 BASCOM-AVR

© 2008 MCS Electronics

More about TIMERO

More about TIMER1

The WATCHDOG Timer

Almost all AVR chips have the ports B and D. The 40 or more pin devices also have
ports A and C that also can be used for addressing an external RAM chip (XRAM).
Since all ports are similar except that PORT B and PORT D have alternative functions,
only these ports are described.

PORT B
PORT D

4.3 AVR Internal Registers

You can manipulate the internal register values directly from BASCOM. They are also
reserved words. Each register acts like a memory location or program variable, except
that the bits of each byte have a special meaning. The bits control how the internal
hardware functions, or report the status of internal hardware functions. Read the
data sheet to determine what each bit function is for.

The internal registers for the AVR90S8515 are : (other processors are similar,
but vary)

Addr. Register

$3F SREG I T H S V N Z C

$3E SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

$3D SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C Reserved

132

133

135

138

135

137

131BASCOM HARDWARE

© 2008 MCS Electronics

$3B GIMSK INT1 INT0 - - - - - -

$3A GIFR INTF1 INTF0

$39 TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -

$38 TIFR TOV1 OCF1A OCF1B -ICF1 -TOV0 -

$37 Reserved

$36 Reserved

$35 MCUCR SRE SRW SE SM ISC11 ISC10 ISC01 ISC00

$34 Reserved

$33 TCCR0 - - - - - CS02 CS01 CS00

$32 TCNT0 Timer/Counter0 (8 Bit)

$31 Reserved

$30 Reserved

$2F TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - -PWM11 PWM10

$2E TCCR1B ICNC1 ICES1 - - CTC1 CS12 CS11 CS10

$2D TCNT1H Timer/Counter1 - Counter Register High Byte

$2C TCNT1L Timer/Counter1 - Counter Register Low Byte

$2B OCR1AH Timer/Counter1 - Output Compare Register A High Byte

$2A OCR1AL Timer/Counter1 - Output Compare Register A Low Byte

$29 OCR1BH Timer/Counter1 - Output Compare Register B High Byte

$28 OCR1BL Timer/Counter1 - Output Compare Register B Low Byte

$27 Reserved

$26 Reserved

$25 ICR1H Timer/Counter1 - Input Capture Register High Byte

$24 ICR1L Timer/Counter1 - Input Capture Register Low Byte

$23 Reserved

$22 Reserved

$21 WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0

$20 Reserved

$1F Reserved - - - - - - - EEAR8

$1E EEARL EEPROM Address Register Low Byte

$1D EEDR EEPROM Data Register

$1C EECR - - - - - EEMWE EEWE EERE

$1B PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1
PORTA0

$1A DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1
PORTB0

$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1
PORTC0

$14 DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1
PORTD0

$11 DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F SPDR SPI Data Register

132 BASCOM-AVR

© 2008 MCS Electronics

$0E SPSR SPIF WCOL - - - - - -

$0D SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C UDR UART I/O Data Register

$0B USR RXC TXC UDRE FE OR - - -

$0A UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8

$09 UBRR UART Baud Rate Register

$08 ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

$00 Reserved

The registers and their addresses are defined in the xxx.DAT files which are placed in
the BASCOM-AVR application directory.

The registers can be used as normal byte variables.

PORTB = 40 will place a value of 40 into port B.

Note that internal registers are reserved words. This means that they can't be
dimensioned as BASCOM variables!

So you can't use the statement DIM SREG As Byte because SREG is an internal
register.

You can however manipulate the register with the SREG = value statement, or var =
SREG statement.

4.4 AVR Internal Hardware TIMER0

The 8-Bit Timer/Counter0

 The 90S8515 was used for this example. Other chips might have a somewhat
different timer.
The 8-bit Timer/Counter0 can select its clock source from CK, pre-scaled CK, or an
external pin. In addition it can be stopped (no clock).

The overflow status flag is found in the Timer/Counter Interrupt Flag Register - TIFR.
Control signals are found in the Timer/Counter0 Control Register - TCCR0. The
interrupt enable/disable settings for Timer/Counter0 are found in the Timer/Counter
Interrupt Mask Register - TIMSK.

When Timer/Counter0 is externally clocked, the external signal is synchronized with
the oscillator frequency of the CPU. To assure proper sampling of the external clock,
the minimum time between two external clock transitions must be at least one
internal CPU clock period. The external clock signal is sampled on the rising edge of
the internal CPU clock.

133BASCOM HARDWARE

© 2008 MCS Electronics

The 8-bit Timer/Counter0 features both a high resolution and a high accuracy mode
with lower pre-scaling values. Similarly, high pre-scaling values make the Timer/
Counter0 useful for lower speed functions or exact timing functions with infrequent
actions.

4.5 AVR Internal Hardware TIMER1

The 16-Bit Timer/Counter1

 The 90S8515 was used for the documentation. Other chips might have a
somewhat different timer.

The 16-bit Timer/Counter1 can select its clock source from CK, pre-scaled CK, or an
external pin. In addition it can be stopped (no clock).

The different status flags (overflow, compare match and capture event) and control
signals are found in the Timer/Counter1 Control Registers - TCCR1A and TCCR1B.

The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/
Counter Interrupt Mask Register - TIMSK.

When Timer/Counter1 is externally clocked, the external signal is synchronized with
the oscillator frequency of the CPU. To assure proper sampling of the external clock,
the minimum time between two external clock transitions must be at least one

134 BASCOM-AVR

© 2008 MCS Electronics

internal CPU clock period.

The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high resolution and a high accuracy usage
with lower pre-scaling values.

Similarly, high pre-scaling values make the Timer/Counter1 useful for lower speed
functions or exact timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output
Compare Register 1 A and B -OCR1A and OCR1B as the data values to be compared
to the Timer/Counter1 contents.

The Output Compare functions include optional clearing of the counter on compareA
match, and can change the logic levels on the Output Compare pins on both compare
matches.

Timer/Counter1 can also be used as a 8, 9 or 10-bit Pulse Width Modulator (PWM). In
this mode the counter and the OCR1A/OCR1B registers serve as a dual glitch-free
stand-alone PWM with centered pulses.

The Input Capture function of Timer/Counter1 provides a capture of the Timer/
Counter1 value to the Input Capture Register - ICR1, triggered by an external event
on the Input Capture Pin - ICP. The actual capture event settings are defined by the
Timer/Counter1 Control Register -TCCR1B.

In addition, the Analog Comparator can be set to trigger the Capture.

135BASCOM HARDWARE

© 2008 MCS Electronics

4.6 AVR Internal Hardware Watchdog timer

The Watchdog Timer

The Watchdog Timer is clocked from a separate on-chip oscillator which runs at
approximately 1MHz. This is the typical value at VCC = 5V.

By controlling the Watchdog Timer pre-scaler, the Watchdog reset interval can be
adjusted from 16K to 2,048K cycles (nominally 16 - 2048 ms). The BASCOM RESET
WATCHDOG - instruction resets the Watchdog Timer.

Eight different clock cycle periods can be selected to determine the reset period.

If the reset period expires without another Watchdog reset, the AT90Sxxxx resets and
program execution starts at the reset vector address.

4.7 AVR Internal Hardware Port B

Port B

Port B is an 8-bit bi-directional I/O port. Three data memory address locations are
allocated for the Port B, one each for the Data Register - PORTB, $18($38), Data

136 BASCOM-AVR

© 2008 MCS Electronics

Direction Register - DDRB, $17($37) and the Port B Input Pins - PINB, $16($36). The
Port B Input Pins address is read only, while the Data Register and the Data Direction
Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers
can sink 20mA and thus drive LED displays directly. When pins PB0 to PB7 are used
as inputs and are externally pulled low, they will source current if the internal pull-up
resistors are activated.

The Port B pins with alternate functions are shown in the following table:

When the pins are used for the alternate function the DDRB and PORTB register has
to be set according to the alternate function description.

Port B Pins Alternate Functions

Port Pin Alternate Functions

PORTB.0 T0 (Timer/Counter 0 external
counter input)

PORTB.1 T1 (Timer/Counter 1 external
counter input)

PORTB.2 AIN0 (Analog comparator positive
input)

PORTB.3 AIN1 (Analog comparator negative
input)

PORTB.4 SS (SPI Slave Select input)

PORTB.5 MOSI (SPI Bus Master Output/Slave
Input)

PORTB.6 MISO (SPI Bus Master Input/Slave
Output)

PORTB.7 SCK (SPI Bus Serial Clock)

The Port B Input Pins address - PINB - is not a register, and this address enables
access to the physical value on each Port B pin. When reading PORTB, the PORTB
Data Latch is read, and when reading PINB, the logical values present on the pins are
read.

PortB As General Digital I/O

All 8 bits in port B are equal when used as digital I/O pins. PORTB.X, General I/O pin:
The DDBn bit in the DDRB register selects the direction of this pin, if DDBn is set
(one), PBn is configured as an output pin. If DDBn is cleared (zero), PBn is configured
as an input pin. If PORTBn is set (one) when the pin configured as an input pin, the
MOS pull up resistor is activated.

To switch the pull up resistor off, the PORTBn has to be cleared (zero) or the pin has
to be configured as an output pin.

DDBn Effects on Port B Pins

DDBn PORTBn I/O Pull up Comment

0 0 Input No Tri-state (Hi-Z)

137BASCOM HARDWARE

© 2008 MCS Electronics

0 1 Input Yes PBn will source
current if ext.
pulled low.

1 0 Output No Push-Pull Zero
Output

1 1 Output No Push-Pull One
Output

By default, the DDR and PORT registers are 0. CONFIG PORTx=OUTPUT will set the
entire DDR register. CONFIG PINX.Y will also set the DDR register for a single bit/pin.
When you need the pull up to be activated, you have to write to the PORT register.

4.8 AVR Internal Hardware Port D

Port D

Port D Pins Alternate Functions

Port Pin Alternate Function

PORTD.0 RDX (UART Input line)

PORTD.1 TDX (UART Output line)

PORTD.2 INT0 (External interrupt 0 input)

PORTD.3 INT1 (External interrupt 1 input)

PORTD.5 OC1A (Timer/Counter1 Output compareA match
output)

PORTD.6 WR (Write strobe to external memory)

PORTD.7 RD (Read strobe to external memory)

RD - PORTD, Bit 7
RD is the external data memory read control strobe.

WR - PORTD, Bit 6
WR is the external data memory write control strobe.

OC1- PORTD, Bit 5
Output compare match output: The PD5 pin can serve as an external output when the
Timer/Counter1 com-pare matches.

The PD5 pin has to be configured as an out-put (DDD5 set (one)) to serve this f
unction. See the Timer/Counter1 description for further details, and how to enable the
output. The OC1 pin is also the output pin for the PWM mode timer function.

INT1 - PORTD, Bit 3
External Interrupt source 1: The PD3 pin can serve as an external interrupt source to
the MCU. See the interrupt description for further details, and how to enable the
source

INT0 - PORTD, Bit 2
INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt

138 BASCOM-AVR

© 2008 MCS Electronics

source to the MCU. See the interrupt description for further details, and how to enable
the source.

TXD - PORTD, Bit 1
Transmit Data (Data output pin for the UART). When the UART transmitter is enabled,
this pin is configured as an output regardless of the value of DDRD1.

RXD - PORTD, Bit 0
Receive Data (Data input pin for the UART). When the UART receiver is enabled this
pin is configured as an output regardless of the value of DDRD0. When the UART
forces this pin to be an input, a logical one in PORTD0 will turn on the internal pull-
up.

When pins TXD and RXD are not used for RS-232 they can be used as an input or
output pin.

No PRINT, INPUT or other RS-232 statement may be used in that case.

The UCR register will by default not set bits 3 and 4 that enable the TXD and RXD
pins for RS-232 communication. It is however reported that this not works for all
chips. In this case you must clear the bits in the UCR register with the following
statements:

RESET UCR.3
RESET UCR.4
or as an alernative : UCR=0

4.9 Adding XRAM

Some AVR chips like the 90S8515 for example can be extended with external RAM
(SRAM) memory.
On these chips Port A serves as a Multiplexed Address (A0 – A7)/Data (D0 – D7) bus.
Port C also serves as the upper Address bits (A8 - A15) output when using external
SRAM.

The maximum size of XRAM can be 64 Kbytes.

Example: The STK200 has a 62256 ram chip (32K x 8 bit).

Here is some info from the BASCOM user list :

If you do go with the external ram , be careful of the clock speed.
Using a 4 MHz crystal , will require a SRAM with 70 nS access time or less. Also the
data latch (74HC573) will have to be from a faster
family such as a 74FHC573 if you go beyond 4 MHz.

You can also program an extra wait state, to use slower memory.

Here you will find a pdf file showing the STK200 schematics:
http://www.avr-forum.com/Stk200_schematic.pdf

If you use a 32 KB SRAM, then connect the /CS signal to A15 which give to the range
of &H0000 to &H7FFF, if you use a 64 KB SRAM, then

139BASCOM HARDWARE

© 2008 MCS Electronics

tie /CS to GND, so the RAM is selected all the time.

4.10 Attaching an LCD Display

A LCD display can be connected with two methods.

· By wiring the LCD-pins to the processor port pins. This is the pin mode. The
advantage is that you can choose the pins and that they don't have to be on the
same port. This can make your PCB design simple. The disadvantage is that more
code is needed.

· By attaching the LCD-data pins to the data bus. This is convenient when you have
an external RAM chip and will add only a little extra code.

The LCD-display can be connected in PIN mode as follows:

LCD
DISPLAY

PORT PIN

DB7 PORTB.7 14

DB6 PORTB.6 13

DB5 PORTB.5 12

DB4 PORTB.4 11

E PORTB.3 6

RS PORTB.2 4

RW Ground 5

Vss Ground 1

Vdd +5 Volt 2

140 BASCOM-AVR

© 2008 MCS Electronics

Vo 0-5 Volt 3

This leaves PORTB.1 and PORTB.0 and PORTD for other purposes.

You can change these pin settings from the Options LCD menu.

BASCOM supports many statements to control the LCD-display.

For those who want to have more control of the example below shows how to use the
internal BASCOM routines.

$ASM
 Ldi _temp1, 5 'load register R24 with value
 Rcall _Lcd_control 'it is a control value to control the display
 Ldi _temp1,65 'load register with new value (letter A)
 Rcall _Write_lcd 'write it to the LCD-display
$END ASM

Note that _lcd_control and _write_lcd are assembler subroutines which can be called
from BASCOM.

See the manufacturer's details from your LCD display for the correct pin assignment.

4.11 Memory usage

SRAM
Every variable uses memory. This memory is also called SRAM.

The available memory depends on the chip.

A special kind of memory are the registers in the AVR. Registers 0-31 have addresses
0-31.
Almost all registers are used by the compiler or might be used in the future.
Which registers are used depends on the program statements you use.

This brings us back to the SRAM.
No SRAM is used by the compiler other than the space needed for the software stack
and frame.
Some statements might use some SRAM. When this is the case it is mentioned in the
help topic of that statement.

Each 8 bits used occupy one byte.
Each byte variable occupies one byte.
Each integer/word variable occupies two bytes.
Each Long or Single variable occupies four bytes.
Each double variable occupies 8 bytes.
Each string variable occupies at least 2 byes.
A string with a length of 10. occupies 11 byes. The extra byte is needed to indicate
the end of the string.
Use bits or byte variables wherever you can to save memory. (not allowed for
negative values)

91

141BASCOM HARDWARE

© 2008 MCS Electronics

The software stack is used to store the addresses of LOCAL variables and for variables
that are passed to SUB routines.

Each LOCAL variable and passed variable to a SUB, uses two bytes to store the
address. So when you have a SUB routine in your program that passes 10 variables,
you need 10 * 2 = 20 bytes. When you use 2 LOCAL variables in the SUB program
that receives the 10 variables, you need additional 2 * 2 = 4 bytes.

The software stack size can be calculated by taking the maximum number of
parameters in a SUB routine, adding the number of LOCAL variables and multiplying
the result by 2. To be safe, add 4 more bytes for internally used LOCAL variables.

LOCAL variables are stored in a place that is named the Frame.

When you have a LOCAL STRING with a size of 40 bytes, and a LOCAL LONG, you
need 41 + 4 bytes = 45 bytes of frame space.

When you use conversion routines such as STR(), VAL() etc. that convert from
numeric to string and vice versa, you also need a frame. It should be 16 bytes in this
case.
Add additional space for the local data.

Note that the use of the INPUT statement with a numeric variable, or the use of the
PRINT or LCD statement with a numeric variable, will also force you to reserve 16
bytes of frame space. This because these routines use the internal numeric<>string
conversion routines.

XRAM
You can easy add external memory to an 8515. Then XRAM (extended memory)
will become available. When you add a 32 KB RAM, the first address will be 0.
But because the XRAM can only start after the internal SRAM, which is &H0260 for the
8515, the lower memory locations of the XRAM will not be available for use.

ERAM
Most AVR chips have internal EEPROM on board.
This EEPROM can be used to store and retrieve data.
In BASCOM, this data space is called ERAM.

An important difference is that an ERAM variable can only be written to a maximum
of 100.000 times. So only assign an ERAM variable when it is needed, and never use
it in a loop or the ERAM will become unusable.

Constant code usage
Constants are stored in a constant table.
Each used constant in your program will end up in the constant table.

For example:

Print "ABCD"
Print "ABCD"

142 BASCOM-AVR

© 2008 MCS Electronics

This example will only store one constant (ABCD).

Print "ABCD"
Print "ABC"

In this example, two constants will be stored because the strings differ.

4.12 Using the UART

UART
A Universal Asynchronous Receiver and Transmitter (UART) can be used to send and
receive data between two devices. More specific these devices can be PC-to-PC, PC-
to-micro controller and micro controller-to-micro controller. The UART communicates
using TTL voltages +5V and 0V or LVTTL depending on your micro controllers VCC
voltage.

If you wish to connect to a PC you need to use RS232 protocol specifications. This
means that the hardware communication is done with specific voltage levels. (+15V
and -15V) This can be achieved by using a MAX232 level shifter.

The hardware is explained in this schematic:

The DB-9 connector has 9 pins but you only need to use 3 of them. Notice that the
drawing above shows the FRONT VIEW thus remember that you are soldering on the
other side. On most connectors the pin outs can also be found on the connector itself.

If your controller has no UART you can use a software UART see below. If your
controller has one UART you connect controller pins TxD and RxD to TxD and RxD in
the schematic above. If your controller has more than one UART you connect
controller pins TxD0 and RxD0 to TxD and RxD in the schematic above.
You now need to initialize the program in your micro controller, open a new .bas file
and add the following code in the beginning of your program.

$ r e g f i l e = "your micro here def.dat"
$ c r y s t a l = 8000000
$baud = 19200

Make sure to define your micro controller after $regfile for example if you use the ATMega32
$ r e g f i l e = "m32de f . da t "

143BASCOM HARDWARE

© 2008 MCS Electronics

Some new chips can use an internal oscillator, also some chips are configured to use
the internal oscillator by default. Using an internal oscillator means you do not need
an external crystal.

Perform this step only if you have an internal oscillator.
Open the BASCOM-AVR programmer like this:

· Select the “Lock and Fuse Bits” tab and maximize the programmer window.
· Check if you see the following in the “Fusebit” section:

 "1:Divide Clock by 8 Disabled"
 and
 "Int. RC Osc. 8 MHz; Start-up time: X CK + X ms; [CKSEL=XXXX SUT=XX]"

These options are not available for all AVR’s, if you don’t have the option do not
change any fuse bits.

If these options are available, but in a wrong setting. Change the setting in the drop
down box and click another Fuse section. Finally click the "Program FS" button. Click
"Refresh" to see the actual setting.

Now connect a straight cable between the DB-9 connector, micro controller side and
the PC side.
Program a test program into your micro controller, it should look like this:

$ r e g f i l e = "m32de f . da t " 'Define your own
$ c r y s t a l = 8000000
$baud = 19200

144 BASCOM-AVR

© 2008 MCS Electronics

Do
 Print "Hello World"
 Waitms 25
Loop

End

Now open the BASCOM-AVR Terminal and set your connection settings by clicking
“Terminal” -> “Settings” Select your computers COM port and select baud 19200,
Parity none, Data bits 8, Stop bits 1, Handshake none, emulation none.

If you see the Hello World displayed in the BASCOM-AVR Terminal emulator window,
your configuration is OK. Congratulations.

Example
You can also try this example with the BASCOM Terminal emulator, it shows you how to send and
receive with various commands.

$regfile = "m88def.dat"
$crystal = 8000000
$baud = 19200

Dim Akey As Byte 'Here we declare a byte variable

Print
Print "Hello, hit any alphanumerical key..."
Akey = Waitkey() 'Waitkey waits untill a char is received from the UART
Print Akey

Wait 1
Print

145BASCOM HARDWARE

© 2008 MCS Electronics

Print "Thanks!, as you could see the controller prints a number"
Print "but not the key you pressed."

Wait 1
Print
Print "Now try the enter key..."
Akey = Waitkey()
Akey = Waitkey()
Print Akey

Print
Print "The number you see is the ASCII value of the key you pressed."
Print "We need to convert the number back to the key..."
Print 'Notice what this line does
Print "Please try an alphanumerical key again..."
Akey = Waitkey()
Print Chr(akey) 'Notice what this does
Print "That's fine!"

Wait 1
Print
Print "For a lot of functions, just one key is not enough..."
Print "Now type your name and hit enter to confirm"

Dim Inputstring As String * 12 'Declare a string variable here

Do
Akey = Waitkey()
If Akey = 13 Then Goto Thanks 'On enter key goto thanks
 Inputstring = Inputstring + Chr(akey) 'Assign the string
Loop

Thanks:
Print "Thank you " ; Inputstring ; " !" 'Notice what ; does

Wait 1
Print
Print "Take a look at the program code and try to understand"
Print "how this program works. Also press F1 at the statements"
Print
Print "If you understand everything continue to the next experiment"

End

ASCII
As you could have seen in the previous example we use the PRINT statement to send
something to the UART. Actually we do not send just text. We send ASCII characters.
ASCII means American Standard Code for Information Interchange. Basically ASCII is
a list of 127 characters.

ASCII Table (Incomplete)

Decimal Hex Binary Value
------- --- ------ -----
 000 000 00000000 NUL (Null char.)
 008 008 00001000 BS (Backspace)
 009 009 00001001 HT (Horizontal Tab)
 010 00A 00001010 LF (Line Feed)
 012 00C 00001100 FF (Form Feed)
 013 00D 00001101 CR (Carriage Return)
 048 030 00110000 0
 049 031 00110001 1

146 BASCOM-AVR

© 2008 MCS Electronics

 052 034 00110100 4
 065 041 01000001 A
 066 042 01000010 B
 067 043 01000011 C

You can find a complete ASCII table here

CARRIAGE RETURN (CR) AND LINE FEED (LF)
In the previous example you can also see that a second print statement always prints
the printed text to the following line. This is caused by the fact that the print
statement always adds the CR and LF characters.

Basically if we state:
Print “ABC”
We send 65 66 67 13 10 to the UART. (In binary format)

The carriage return character (13) returns the cursor back to column position 0 of the
current line. The line feed (10) moves the cursor to the next line.

Print “ABC” ;
When we type a semicolon (;) at the end of the line...
Bascom does not send a carriage return/line feed, so you can print another text after
the ABC on the same line.

Print “ABC” ; Chr(13) ;
This would send only ABC CR. The next print would overwrite the ABC.

OVERVIEW
Here are some other commands that you can use for UART communications:

Waitkey()
Waitkey will until a character is received in the serial buffer.

Ischarwai t ing()
Returns 1 when a character is waiting in the hardware UART buffer.

Inkey()
Inkey returns the ASCII value of the first character in the serial input buffer.

P r i n t
Sends a variable or non-variable string to the UART

ANOTHER EXAMPLE
This example shows how to use Ischarwaiting to test if there is a key pressed. And if there is, read
to a variable.

'Print "Press B key to start"
Dim Serialcharwaiting As Byte, Serialchar As Byte

Serialcharwaiting = Ischarwaiting() 'Check if B or b pressed then goto
If Serialcharwaiting = 1 Then
 Serialchar = Inkey()
 If Serialchar = 66 Or Serialchar = 98 Then
 Goto MyRoutine
 End If
End If

Goto Main

253

147BASCOM HARDWARE

© 2008 MCS Electronics

Myroutine:
'Statements

Main:
'Statements
End

BUFFERING SERIAL DATA
If you wish to send and receive data at high speed, you need to use serial input and
serial output buffers. This buffering is implemented in BASCOM-AVR and can only be
used for hardware UART’s.

To configure a UART to use buffers, you need to use the Config statement.

Config Serialout = Buffered , Size = 20
and/or
Config Serialin = Buffered , Size = 20

More information can be found in BASCOM-Help. Search topic = "config serialin" .
There is also a sample program “RS232BUFFER.BAS” in the samples folder if you wish
a demonstration of the buffering.

SOFTWARE UART
The previous examples used the hardware UART. That means the compiler uses the
internal UART registers and internal hardware (RxD(0) and TxD(0)) of the AVR. If you
don’t have a hardware UART you can also use a software UART.

The Bascom compiler makes it easy to “create” additional UART’s. Bascom creates
software UART’s on virtually every port pin.

Remember that a software UART is not as robust as a hardware UART, thus you can
get timing problems if you have lots of interrupts in your program.

For this example we use micro controller pins portc.1 and portc.2.
Connect portc.1 to TxD and portc.2 to RxD see the schematic above.

Change the $regfile and program this example:

$regfile = "m88def.dat"
$crystal = 8000000
$baud = 19200

Dim B As Byte
Waitms 100

'Open a TRANSMIT channel for output
Open "comc.1:19200,8,n,1" For Output As #1
Print #1 , "serial output"

'Now open a RECEIVE channel for input
Open "comc.2:19200,8,n,1" For Input As #2
'Since there is no relation between the input and output pin
'there is NO ECHO while keys are typed

Print #1 , "Press any alpha numerical key"

'With INKEY() we can check if there is data available

444

148 BASCOM-AVR

© 2008 MCS Electronics

'To use it with the software UART you must provide the channel
Do
 'Store in byte
 B = Inkey(#2)
 'When the value > 0 we got something
 If B > 0 Then
 Print #1 , Chr(b) 'Print the character
 End If
Loop
Close #2 'Close the channels
Close #1

End

After you have programmed the controller and you connected the serial cable, open

the terminal emulator by clicking on in Bascom.
You should see the program asking for an alphanumerical input, and it should print
the input back to the terminal.

4.13 USING RS485

RS485

RS485 is used for serial communication and well suited for transmission over large
distances.
Similar to RS232 we need a level shifter.

149BASCOM HARDWARE

© 2008 MCS Electronics

The sample above uses a MEGA161 or MEGA162 which has 2 UARTS. This way you
can have both a RS232 and RS485 interface.
The RS232 is used for debugging.
In order to test you need 2 or more similar circuits. One circuit would be the master.
The other(s) would be a slave.
The same hardware is used to test the MODBUS protocol. The bus need to be
terminated at both ends with a resistor. 100 ohm is a typical used value.
The GND of both circuits may not be connected ! Only connect point A and B from
both circuits. For industrial usage it is best to use an optical isolated level shifter.

Simple MASTER sample
$regfile = "m162def.dat" ' specify the used micro
$crystal = 8000000
$baud = 19200 ' use baud rate
$hwstack = 42 ' default use 32 for the hardware stack
$swstack = 40 ' default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

$lib "modbus.lbx"
Config Print1 = Portb.1 , Mode = Set ' use portb.1 for the direction

150 BASCOM-AVR

© 2008 MCS Electronics

Rs485dir Alias Portb.1
Config Rs485dir = Output
Rs485dir = 0 ' go to receive mode
Portc.0 = 1 ' a switch is connected to pinc.0 so activate pull up resistor
' TX RX
' COM0 PD.1 PD.0 monitor
' COM1 PB.3 PB.2 rs485
' PB.1 data direction rs485

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits =
8 , Clockpol = 0
Config Com2 = 9600 , Synchrone = 0 , Parity = Even , Stopbits = 1 , Databits = 8 ,
Clockpol = 0 ' MUST MATCH THE SLAVE

'use OPEN/CLOSE for using the second UART
Open "COM2:" For Binary As #1

'dimension some variables
Dim B As Byte
Dim W As Word
Dim L As Long

W = &H4567 ' set some values
L = &H12345678

Print "RS-485 MODBUS master"
Do
 If Pinc.0 = 0 Then ' test button
 Waitms 500 ' delay since we want to send just 1
frame
 Print "send request to slave/server" ' to debug terminal
 ' Print #1 , Makemodbus(2 , 3 , 8 , 2); 'slave 2, function 3, start
address 8, 2 bytes
 ' Print #1 , Makemodbus(2 , 6 , 8 , W); 'slave 2, function 6, address
8 , value of w
 Print #1 , Makemodbus(b , 16 , 8 , L); 'send a long
 End If
 If Ischarwaiting(#1) <> 0 Then 'did we got something back?
 B = Waitkey(#1) ' yes so get it
 Print Hex(b) ; ","; ' print it
 End If
Loop

A slave would simply listen to data, and once enough data received, send it back.
The MODBUS slave code is available as a commercial add on.

4.14 Using the I2C protocol

I²C bus
I²C bus is an abbreviation for Inter Integrated Circuit bus. It is also known as IIC and
I2C.

I²C is a serial and synchronous bus protocol. In standard applications hardware and

151BASCOM HARDWARE

© 2008 MCS Electronics

timing are often the same. The way data is treated on the I²C bus is to be defined by
the manufacturer of the I²C master and slave chips.

In a simple I²C system there can only be one master, but multiple slaves. The
difference between master and slave is that the master generates the clock pulse.
The master also defines when communication should occur. For bus timing it is
important that the slowest slave should still be able to follow the master’s clock. In
other words the bus is as fast as the slowest slave.

A typical hardware configuration is shown in the figure below:

Note that more slave chips can be connected to the SDA and SCL lines, normally Rp
has a value of 1kOHM. The clock generated by the master is called Serial Clock (SCL)
and the data is called Serial Data (SDA).

In most applications the micro controller is the I²C Master. Slave chips can be Real
Time Clocks and Temperature sensors. For example the DS1307 and the DS1624
from www.maxim-ic.com. Of coarse you can also create your own slaves. In that case
there is micro controller to micro controller communication.

LOGIC BUS LEVELS AND CONDITIONS

Data can only occur after the master generates a start condition. A start condition is
a high-to-low transition of
the SDA line while SCL remains high. After each data transfer a stop condition is generated. A
stop condition is a low-to-high transition of the SDA line while SCL remains high.

http://www.maxim-ic.com

152 BASCOM-AVR

© 2008 MCS Electronics

As said a data transfer can occur after a start condition of the master. The length of
data sent over I²C is always 8 bit this includes a read/write direction bit, so you can
effectively send 7 bits every time.
The most significant bit MSB is always passed first on the bus.

If the master writes to the bus the R/W bit = 0 and if the master reads the R/W bit = 1.

After the R/W bit the master should generate one clock period for an acknowledgement ACK.

Each receiving chip that is addressed is obliged to generate an acknowledge after the
reception of each byte. A chip that acknowledges must pull down the SDA line during
the acknowledge clock pulse in such a way that the SDA line is stable LOW during the
HIGH period of the acknowledge related clock pulse.

After an acknowledge there can be a stop condition, if the master wishes to leave the
bus idle. Or a repeated start condition. A repeated start is the same as a start
condition.

When the master reads from a slave it should acknowledge after each byte received.
There are two reasons for the master not to acknowledge. The master sends a not
acknowledge if data was not received correctly or if the master wishes the stop
receiving.

In other words if the master wishes to stop receiving, it sends a not
acknowledge after the last received byte.

The master can stop any communication on the bus at any time by sending a stop
condition.

BUS ADRESSING

Let’s say we have a slave chip with the address “1101000” and that the master
wishes to write to that slave, the slave would then be in receiver mode, like this:

153BASCOM HARDWARE

© 2008 MCS Electronics

You can see here that the master always generates the start condition, then the
master sends the address of the slave and a “0” for R/W. After that the master sends
a command or word address. The function of that command or word address can be
found in the data sheet of the slave addressed.

After that the master can send the data desired and stop the transfer with a stop
condition.

Again the start condition and the slave address, only this time the master sends “1”
for the R/W bit. The slave can then begin to send after the acknowledge. If the
master wishes to stop receiving it should send a not acknowledge.

EXAMPLE
This example shows you how to setup and read the temperature from a DS1624
temperature sensor.
Connect the DS1624 like this:

Then program this sample into your micro controller and connect your micro
controller to the serial port of your PC.

$regfile = "m88def.dat" 'Define the chip you use
$crystal = 8000000 'Define speed
$baud = 19200 'Define UART BAUD rate

'Declare RAM for temperature storage
Dim I2ctemp As Byte 'Storage for the temperature

154 BASCOM-AVR

© 2008 MCS Electronics

'Configure pins we want to use for the I²C bus
Config Scl = Portd.1 'Is serial clock SCL
Config Sda = Portd.3 'Is serial data SDA

'Declare constants - I2C chip addresses
Const Ds1624wr = &B10010000 'DS1624 Sensor write
Const Ds1624rd = &B10010001 'DS1624 Sensor read

'This section initializes the DS1624
 I2cstart 'Sends start condition
 I2cwbyte Ds1624wr 'Sends the address

'byte with r/w 0

'Access the CONFIG register (&HAC address byte)
 I2cwbyte &HAC
'Set continuous conversion (&H00 command byte)
 I2cwbyte &H00
 I2cstop 'Sends stop condition
 Waitms 25 'We have to wait some time after a stop

 I2cstart
 I2cwbyte Ds1624wr
'Start conversion (&HEE command byte)
 I2cwbyte &HEE
 I2cstop
 Waitms 25
'End of initialization

Print 'Print empty line

Do

 'Get the current temperature
 I2cstart
 I2cwbyte Ds1624wr
 I2cwbyte &HAA 'Read temperature (&HAA command byte)
 I2cstart
 I2cwbyte Ds1624rd 'The chip will give register contents
'Temperature is stored as 12,5 but the ,5 first
 I2crbyte I2ctemp
'So you'll have to read twice... first the ,5
 I2crbyte I2ctemp , Nack
'And then the 12... we don't store the ,5
 I2cstop
 'That's
why we read twice.

'We give NACK if the last byte is read

 'Finally we print
Print "Temperature: " ; Str(i2ctemp) ; " degrees" ; Chr(13);

 Waitms 25

Loop
End

155BASCOM HARDWARE

© 2008 MCS Electronics

You should be able to read the temperature in your terminal emulator.
Note that the used command bytes in this example can be found in DS1624
temperature sensor data sheet.

OVERVIEW

Config Sda = P o r t x . x
Configures a port pin for use as serial data SDA.

Config Scl = P o r t x . x
Configures a port pin for use as serial clock SCL.

I 2 c s t a r t
Sends the start condition.

I2cstop
Sends the stop condition.

I2cwbyte
Writes one byte to an I²Cslave.

I2crbyte
Reads one byte from an I²Cslave.
I2csend
Writes a number of bytes to an I²Cslave.

I 2c rece ive
Reads a number of bytes from an I²Cslave.

Practice
The design below shows how to implement an I2C-bus. The circuit is using a Mega88
as a master.
The TWI bus is used. While you can use any pin for software mode I2C, when a micro
has TWI hardware build in, it is advised to use the TWI hardware.

R1 and R2 are 4K7 pull up resistors.

There are many I2C slave chips available. The example shows the PCF8574. With the
additional TWI slave library you can make your own slave chips.

156 BASCOM-AVR

© 2008 MCS Electronics

The following information was submitted by Detlef Queck.

Many people have problems over and over with I2C(TWI) Termination. Use 4,7k or 10
k pull up? How long can the SCL, SDA line be when used with pull ups etc, etc.

You can simplify this confusing problem. Here is a Schematic for an active
Termination of I2C and TWI. We have used this Schematic for over 10 years, and
have had no problems with it. The I2C (TWI) lines can be up to 80cm (400KHz)
without any problem when the Terminator is at the end of the lines.

157BASCOM HARDWARE

© 2008 MCS Electronics

4.15 Using the 1 WIRE protocol

The 1-wire protocol was invented by Dallas Semiconductors and needs only 1 wire for
two-way communication. You also need power and ground of course.

This topic is written by Göte Haluza. He tested the new 1-wire search routines and is
building a weather station.

Dallas Semiconductor (DS) 1-wire. This is a brief description of DS 1-wire bus when
used in combination with BASCOM. For more detailed explanations about the 1-wire
bus, please go to http://www.maxim-ic.com. Using BASCOM makes the world a lot
easier. This paper will approach the subject from a "BASCOM-user-point-of-view".

1-wire-net is a serial communication protocol, used by DS devices. The bus could be
implemented in two basic ways :

With 2 wires, then DQ and ground is used on the device. Power is supplied on the DQ
line, which is +5V, and used to charge a capacitor in the DS device. This power is
used by the device for its internal needs during communication, which makes DQ go
low for short periods of time. This bus is called the 1-wire bus.

With 3 wires, when +5V is supplied to the VDD line of the device, and DQ + ground
as above. This bus is called the 2-wire bus.

So, the ground line is "not counted" by DS. But hereafter we use DS naming
conventions.

How it works. (1-wire)
The normal state of the bus is DQ=high. Through DQ the device gets its power, and

158 BASCOM-AVR

© 2008 MCS Electronics

performs the tasks it is designed for.

When the host (your micro controller (uC)) wants something to happen with the 1-
wire bus, it issues a reset-command. That is a very simple electric function that
happens then; the DQ goes active low for a time (480uS on original DS 1-wire bus).
This put the DS-devices in reset mode; then (they) send a presence pulse, and then
(they) listen to the host.

The presence pulse is simply an active low, this time issued by the device(s).

Now, the host cannot know what is on the bus, it is only aware of that at least 1 DS
device is attached on the bus.

All communication on the 1-wire bus is initialized by the host, and issued by time-
slots of active-low on a normally high line (DQ), issued by the device, which is
sending at the moment. The devices(s) internal capacitor supplies its power needs
during the low-time.

How do you work with 1-wire-bus
Thereafter, you can read a device, and write to it. If you know you only have 1 sensor
attached, or if you want to address all sensors, you can start with a "Skip Rom" -
command. This means; take no notice about the IDs of the sensors - skip that part of
the communication.

When you made a 1-wire-reset, all devices of the bus are listening. If you chose to
address only one of them, the rest of them will not listen again before you have made
a new 1-wire-reset on the bus.

I do not describe BASCOM commands in this text - they are pretty much self-
explanatory. But the uC has to write the commands to the bus - and thereafter read
the answer. What you have to write as a command depends on devices you are using
- and what you want to do with it. Every DS chip has a data sheet, which you can find
at http://www.dalsemi.com/datasheets/pdfindex.html. There you can find out all
about the actual devices command structure.

There are some things to have in mind when deciding which of the bus-types to use.

The commands, from BASCOM, are the same in both cases. So this is not a problem.

The +5V power-supply on the VDD when using a 2-wire bus has to be from a
separate power supply, according to DS. But it still works with taking the power from
the same source as for the processor, directly on the stabilizing transistor. I have not
got it to work taking power directly from the processor pin.

Some devices consume some more power during special operations. The DS1820
consumes a lot of power during the operation "Convert Temperature". Because the
sensors knows how they are powered (it is also possible to get this information from
the devices) some operations, as "Convert T" takes different amount of time for the
sensor to execute. The command "Convert T" as example, takes ~200mS on 2-wire,
but ~700mS on 1-wire. This has to be considered during programming.

And that power also has to be supplied somehow.

If you use 2-wire, you don't have to read further in this part. You can do
simultaneously "Convert T" on all the devices you attach on the bus. And save time.
This command is the most power-consuming command, possible to execute on
several devices, I am aware of.

159BASCOM HARDWARE

© 2008 MCS Electronics

If you use 1-wire, there are things to think about. It is about not consuming more
power than you feed. And how to feed power? That depends on the devices (their
consumption) and what you are doing with them (their consumption in a specific
operation).

Short, not-so-accurate description of power needs, not reflecting on cable lengths.

Only the processor pin as power supplier, will work < 5 sensors. (AVR, 1-wire-
functions use an internal pull-up. 8051 not yet tested). Don't even think of
simultaneous commands on multiple sensors.

With +5V through a 4K7 resistor, to the DQ-line, 70 sensors are tested. But, take
care, cause issuing "Convert T" simultaneously, would cause that to give false
readings. About ~15 sensors is the maximum amount of usable devices, which
simultaneously performs some action. This approach DS refers to as "pull-up
resistor".

With this in mind, a bus with up to 70 devices has been successfully powered this
way.

The resistor mentioned, 4K7, could be of smaller value. DS says minimum 1K5, I
have tested down to 500 ohm - below that the bus is not usable any more. (AVR).
Lowering the resistor feeds more power - and makes the bus more noise resistant.
But, the resistor minimum value is naturally also depending on the uC-pin electric
capabilities. Stay at 4K7 - which is standard recommendation.

DS recommends yet another approach, called "strong pull-up" which (short) works via
a MOS-FET transistor, feeding the DQ lines with enough power, still on 1-wire, during
power-consuming tasks. This is not tested, but should naturally work. Because this
functionality is really a limited one; BASCOM has no special support for that. But
anyway, we tell you about it, just in case you wonder. Strong pull-up has to use one
uC pin extra - to drive the MOS-FET.

Cable lengths (this section is only for some limitation understanding)

For short runs up to 30 meters, cable selection for use on the 1-Wire bus is less
critical. Even flat modular phone cable works with limited numbers of 1-Wire devices.
However, the longer the 1-Wire bus, the more pronounced cable effects become, and
therefore greater importance is placed on cable selection.

For longer distances, DS recommends twisted-pair-cable (CAT5).

DS standard examples show 100 meters cable lengths, so they say, that's no
problem. They also show examples with 300m cabling, and I think I have seen
something with 600-meter bus (but I cant find it again).

Noise and CRC
The longer cable and the noisier environment, the more false readings will be made.
The devices are equipped with a CRC-generator - the LSByte of the sending is always
a checksum. Look in program examples to learn how to re-calculate this checksum in
your uC. AND, if you notice that there are false readings - do something about your
cables. (Shield, lower resistor)

Transfer speed

160 BASCOM-AVR

© 2008 MCS Electronics

On the original 1-wire bus, DS says the transfer speed is about 14Kbits /second. And,
if that was not enough, some devices has an overdrive option. That multiplies the
speed by 10. This is issued by making the communication-time-slots smaller (from 60
uS to 6uS) which naturally will make the devices more sensitive, and CRC-error will
probably occur more often. But, if that is not an issue, ~140Kbit is a reachable speed
to the devices. So, whatever you thought before, it is FAST.

The BASCOM scanning of the bus is finds about 50 devices / second , and reading a
specific sensors value to a uC should be about 13 devices / second.

Topology
Of the 1w-net - that is an issue we will not cover so much. Star-net, bus-net? It
seems like you can mix that. It is a bus-net, but not so sensitive about that.

The benefit of the 1-wire bus
Each device is individual - and you can communicate with it over the media of 2
wires. Still, you can address one individual device, if you like. Get its value. There are
64 ^ 2 unique identifications-numbers.

Naturally, if lot of cables are unwanted, this is a big benefit. And you only occupy 1
processor pin.

DS supplies with different types of devices, which all are made for interfacing an uC -
directly. No extra hardware. There are sensors, so you can get knowledge about the
real world, and there are also potentiometers and relays, so you can do something
about it. On the very same bus.

And the Ibutton approach from DS (ever heard of it?) is based on 1wire technology.
Maybe something to pick up.

BASCOM let you use an uC with 1wire-devices so easy, that (since now) that also has
to count as a benefit - maybe one of the largest. ;-)

The disadvantages of the 1-wire bus
So far as I know, DS is the only manufacturer of sensors for the bus. Some people
think their devices are expensive. And, until now, it was really difficult to
communicate with the devices. Particularly when using the benefit of several devices
on one bus. Still some people say that the 1w-bus is slow - but I don't think so.

Göte Haluza
System engineer

4.16 Using the SPI protocol

General description of the SPI

The SPI allows high-speed synchronous data transfer between the AVR and peripheral
devices or between several AVR devices. On most parts the SPI has a second purpose
where it is used for In System Programming (ISP).

The interconnection between two SPI devices always happens between a master
device and a slave device. Compared to some peripheral devices like sensors which
can only run in slave mode, the SPI of the AVR can be configured for both master and

161BASCOM HARDWARE

© 2008 MCS Electronics

slave mode.

The mode the AVR is running in is specified by the settings of the master bit (MSTR)
in the SPI control register (SPCR).

Special considerations about the /SS pin have to be taken into account. This will be
described later in the section "Multi Slave Systems - /SS pin Functionality".

The master is the active part in this system and has to provide the clock signal a
serial data transmission is based on. The slave is not capable of generating the clock
signal and thus can not get active on its own.

The slave just sends and receives data if the master generates the necessary clock
signal. The master however generates the clock signal only while sending data. That
means that the master has to send data to the slave to read data from the slave.

Data transmission between Master and Slave

The interaction between a master and a slave AVR is shown in Figure 1. Two identical
SPI units are displayed. The left unit is configured as master while the right unit is
configured as slave. The MISO, MOSI and SCK lines are connected with the
corresponding lines of the other part.

The mode in which a part is running determines if they are input or output signal
lines. Because a bit is shifted from the master to the slave and from the slave to the
master simultaneously in one clock cycle both 8-bit shift registers can be considered
as one 16-bit circular shift register. This means that after eight SCK clock pulses the
data between master and slave will be exchanged.

The system is single buffered in the transmit direction and double buffered in the
receive direction. This influences the data handling in the following ways:

1. New bytes to be sent can not be written to the data register (SPDR) / shift register
before the entire shift cycle is completed.
2. Received bytes are written to the Receive Buffer immediately after the
transmission is completed.
3. The Receive Buffer has to be read before the next transmission is completed or
data will be lost.
4. Reading the SPDR will return the data of the Receive Buffer.

After a transfer is completed the SPI Interrupt Flag (SPIF) will be set in the SPI Status
Register (SPSR). This will cause the corresponding interrupt to be executed if this
interrupt and the global interrupts are enabled. Setting the SPI Interrupt Enable

162 BASCOM-AVR

© 2008 MCS Electronics

(SPIE) bit in the SPCR enables the interrupt of the SPI while setting the I bit in the
SREG enables the global interrupts.

Pins of the SPI

The SPI consists of four different signal lines. These lines are the shift clock (SCK),
the Master Out Slave In line (MOSI), the Master In Slave Out line (MISO) and the
active low Slave Select line (/SS). When the SPI is enabled, the data direction of the
MOSI, MISO, SCK and /SS pins are overridden according to the following table.

Table 1. SPI Pin Overrides

Pin Direction Overrides Master SPI Mode Direction Overrides Slave SPI Modes

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

This table shows that just the input pins are automatically configured. The output
pins have to be initialized manually by software. The reason for this is to avoid
damages e.g. through driver contention.

Multi Slave Systems - /SS pin Functionality
The Slave Select (/SS) pin plays a central role in the SPI configuration. Depending on
the mode the part is running in and the configuration of this pin, it can be used to
activate or deactivate the devices. The /SS pin can be compared with a chip select pin
which has some extra features. In master mode, the /SS pin must be held high to
ensure master SPI operation if this pin is configured as an input pin. A low level will
switch the SPI into slave mode and the hardware of the SPI will perform the following
actions:

1. The master bit (MSTR) in the SPI Control Register (SPCR) is cleared and the SPI
system becomes a slave. The direction of the pins will be switched according to Table
1.

2. The SPI Interrupt Flag (SPIF) in the SPI Status Register (SPSR) will be set. If the
SPI interrupt and the global interrupts are enabled the interrupt routine will be
executed. This can be useful in systems with more than one master to avoid that two
masters are accessing the SPI bus at the same time. If the /SS pin is configured as
output pin it can be used as a general purpose output pin which does not affect the
SPI system.

Note: In cases where the AVR is configured for master mode and it can not be
ensured that the /SS pin will stay high between two transmissions, the status of the
MSTR bit has to be checked before a new byte is written. Once the MSTR bit has been
cleared by a low level on the /SS line, it must be set by the application to re-enable
SPI master mode.

In slave mode the /SS pin is always an input. When /SS is held low, the SPI is
activated and MISO becomes output if configured so by the user. All other pins are
inputs. When /SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data.

163BASCOM HARDWARE

© 2008 MCS Electronics

Table 2 shows an overview of the /SS Pin Functionality.

Note: In slave mode, the SPI logic will be reset once the /SS pin is brought high. If
the /SS pin is brought high during a transmission, the SPI will stop sending and
receiving immediately and both data received and data sent must be considered as
lost.

TABLE 2. Overview of SS pin.

Mode /SS Config /SS Pin level Description

Slave Always input High Slave deactivated

Low Slave activated

Master Input High Master activated

Low Master deactivated

Output High Master activated

Low

As shown in Table 2, the /SS pin in slave mode is always an input pin. A low level
activates the SPI of the device while a high level causes its deactivation. A Single
Master Multiple Slave System with an AVR configured in master mode and /SS
configured as output pin is shown in Figure 2. The amount of slaves, which can be
connected to this AVR is only limited by the number of I/O pins to generate the slave
select signals.

The ability to connect several devices to the same SPI-bus is based on the fact that
only one master and only one slave is active at the same time. The MISO, MOSI and
SCK lines of all the other slaves are tri stated (configured as input pins of a high
impedance with no pull up resistors enabled). A false implementation (e.g. if two
slaves are activated at the same time) can cause a driver contention which can lead
to a CMOS latch up state and must be avoided. Resistances of 1 to 10 k ohms in
series with the pins of the SPI can be used to prevent the system from latching up.
However this affects the maximum usable data rate, depending on the loading
capacitance on the SPI pins.

164 BASCOM-AVR

© 2008 MCS Electronics

Unidirectional SPI devices require just the clock line and one of the data lines. If the
device is using the MISO line or the MOSI line depends on its purpose. Simple sensors
for instance are just sending data (see S2 in Figure 2), while an external DAC usually
just receives data (see S3 in Figure 2).

SPI Timing
The SPI has four modes of operation, 0 through 3. These modes essentially control
the way data is clocked in or out of an SPI device. The configuration is done by two
bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL
control bit, which selects an active high or active low clock. The clock phase (CPHA)
control bit selects one of the two fundamentally different transfer formats. To ensure
a proper communication between master and slave both devices have to run in the
same mode. This can require a reconfiguration of the master to match the
requirements of different peripheral slaves.

The settings of CPOL and CPHA specify the different SPI modes, shown in Table 3.
Because this is no standard and specified different in other literature, the
configuration of the SPI has to be done carefully.

Table 3. SPI Mode configuration

SPI Mode CPOL CPHA Shift SCK edge Capture SCK edge

0 0 0 Falling Rising

1 0 1 Rising Falling

2 1 0 Rising Falling

3 1 1 Falling Rising

The clock polarity has no significant effect on the transfer format. Switching this bit
causes the clock signal to be inverted (active high becomes active low and idle low
becomes idle high). The settings of the clock phase, how-ever, selects one of the two
different transfer timings, which are described closer in the next two chapters. Since
the MOSI and MISO lines of the master and the slave are directly connected to each
other, the diagrams show the timing of both devices, master and slave. The /SS line
is
the slave select input of the slave. The /SS pin of the master is not shown in the
diagrams. It has to be inactive by a high level on this pin (if configured as input pin)
or by configuring it as an output pin.

A.) CPHA = 0 and CPOL = 0 (Mode 0) and CPHA = 0 and CPOL = 1 (Mode 1)

The timing of a SPI transfer where CPHA is zero is shown in Figure 3. Two wave forms
are shown for the SCK signal -one for CPOL equals zero and another for CPOL equals
one.

165BASCOM HARDWARE

© 2008 MCS Electronics

When the SPI is configured as a slave, the transmission starts with the falling edge of
the /SS line. This activates the SPI of the slave and the MSB of the byte stored in its
data register (SPDR) is output on the MISO line. The actual transfer is started by a
software write to the SPDR of the master. This causes the clock signal to be
generated. In cases where the CPHA equals zero, the SCK signal remains zero for the
first half of the first SCK cycle. This ensures that the data is stable on the input lines
of both the master and the slave. The data on the input lines is read with the edge of
the SCK line from its inactive to its active state (rising edge if CPOL equals zero and
falling edge if CPOL equals one). The edge of the SCK line from its active to its
inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one)
causes the data to be shifted one bit further so that the next bit is output on the
MOSI and MISO lines.

After eight clock pulses the transmission is completed. In both the master and the
slave device the SPI interrupt flag (SPIF) is set and the received byte is transferred to
the receive buffer.

B.) CPHA = 1 and CPOL = 0 (Mode 2) and CPHA = 1 and CPOL = 1 (Mode 3)

The timing of a SPI transfer where CPHA is one is shown in Figure 4. Two wave forms
are shown for the SCK signal -one for CPOL equals zero and another for CPOL equals
one.

166 BASCOM-AVR

© 2008 MCS Electronics

Like in the previous cases the falling edge of the /SS lines selects and activates the
slave. Compared to the previous cases, where CPHA equals zero, the transmission is
not started and the MSB is not output by the slave at this stage. The actual transfer is
started by a software write to the SPDR of the master what causes the clock signal to
be generated. The first edge of the SCK signal from its inactive to its active state
(rising edge if CPOL equals zero and falling edge if CPOL equals one) causes both the
master and the slave to output the MSB of the byte in the SPDR.

As shown in Figure 4, there is no delay of half a SCK-cycle like in Mode 0 and 1. The
SCK line changes its level immediately at the beginning of the first SCK-cycle. The
data on the input lines is read with the edge of the SCK line from its active to its
inactive state (falling edge if CPOL equals zero and rising edge if CPOL equals one).

After eight clock pulses the transmission is completed. In both the master and the
slave device the SPI interrupt flag (SPIF) is set and the received byte is transferred to
the receive buffer.

Considerations for high speed transmissions

Parts which run at higher system clock frequencies and SPI modules capable of
running at speed grades up to half the system clock require a more specific timing to
match the needs of both the sender and receiver. The following two diagrams show
the timing of the AVR in master and in slave mode for the SPI Modes 0 and 1. The
exact values of the displayed times vary between the different pars and are not an
issue in this application note. However the functionality of all parts is in principle the
same so that the following considerations apply to all parts.

167BASCOM HARDWARE

© 2008 MCS Electronics

The minimum timing of the clock signal is given by the times "1" and "2". The value
"1" specifies the SCK period while the value "2" specifies the high / low times of the
clock signal. The maximum rise and fall time of the SCK signal is specified by the
time "3". These are the first timings of the AVR to check if they match the
requirements of the slave.

The Setup time "4" and Hold time "5" are important times because they specify the
requirements the AVR has on the interface of the slave. These times determine how
long before the clock edge the slave has to have valid output data ready and how
long after the clock edge this data has to be valid.

If the Setup and Hold time are long enough the slave suits to the requirements of the
AVR but does the AVR suit to the requirements of the slave?

The time "6" (Out to SCK) specifies the minimum time the AVR has valid output data
ready before the clock edge occurs. This time can be compared to the Setup time "4"
of the slave.

The time "7" (SCK to Out) specifies the maximum time after which the AVR outputs
the next data bit while the time "8" (SCK to Out high) the minimum time specifies
during which the last data bit is valid on the MOSI line after the SCK was set back to
its idle state.

168 BASCOM-AVR

© 2008 MCS Electronics

In principle the timings are the same in slave mode like previously described in
master mode. Because of the switching of the roles between master and slave the
requirements on the timing are inverted as well. The minimum times of the master
mode are now maximum times and vice versa.

SPI Transmission Conflicts
A write collision occurs if the SPDR is written while a transfer is in progress. Since this
register is just single buffered in the transmit direction, writing to SPDR causes data
to be written directly into the SPI shift register. Because this write operation would
corrupt the data of the current transfer, a write-collision error in generated by setting
the WCOL bit in the SPSR. The write operation will not be executed in this case and
the transfer continues undisturbed. A write collision is generally a slave error because
a slave has no control over when a master will initiate a transfer. A master, however,
knows when a transfer is in progress. Thus a master should not generate write
collision errors, although the SPI logic can detect these errors in a master as well as
in a slave mode.

When you set the SPI option from the Options, Compiler, SPI menu SPCR will be set
to 01010100 which means ; enable SPI, master mode, CPOL = 1

When you want to control the various options with the hardware SPI you can use the
CONFIG SPI statement.

4.17 Power Up

At power up all ports are in Tri-state and can serve as input pins.

When you want to use the ports (pins) as output, you must set the data direction first
with the statement : CONFIG PORTB = OUTPUT

Individual bits can also be set to be used as input or output.

For example : DDRB = &B00001111 , will set a value of 15 to the data direction
register of PORTB.

PORTB.0 to PORTB.3 (the lower 4 bits) can be used as outputs because they are set
high. The upper four bits (PORTB.4 to PORTB.7), can be used for input because they
are set low.

You can also set the direction of a port pin with the statement :

CONFIG PINB.0 = OUTPUT | INPUT

The internal RAM is cleared at power up or when a reset occurs. Use $NORAMCLEAR
to disable this feature.

You may use $INITMICRO to set a port level and direction immediately on startup.

453

274

169BASCOM HARDWARE

© 2008 MCS Electronics

4.18 Chips

4.18.1 AT86RF401

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.2 AT90S1200

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.3 AT90S2313

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

170 BASCOM-AVR

© 2008 MCS Electronics

The ATTiny2313 should be used for new designs.

4.18.4 AT90S2323

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

171BASCOM HARDWARE

© 2008 MCS Electronics

4.18.5 AT90S2333

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.6 AT90S2343

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

[tip from Martin Verschuren]

When using the AT90S2343 with BASCOM-AVR 1.11.6.4 and the STK200.
Programming must be done with jumper ext-clk.

The BASCOM build in programmer will detect a Tiny22, which seems to have the
same ID string as the 2343 (Atmel source) so no wonder.

By using the internal clock RCEN=0, then the jumper of the STK200 must be on int.

172 BASCOM-AVR

© 2008 MCS Electronics

clk after programming.

Don't leave this away, some AT90S2343 will not correctly startup.

In your own project notice that you have to pull up the clk pin(2) at power up else it
won't work. (I just looked for it for a day to get this problem solved:-)

Note : the at90s2343 and tiny22 have the same chip ID. In BASCOM you need to
choose the tiny22 even if you use the 2343.

I note from MCS : only the AT23LS43-1 has the internal oscillator programmed by
default! All other 2343 chips need an external clock signal. Tip: use a AT90S2313 and
connect X2 to the clock input of the 2343.

[tip from David Chambers]

Using the AT90S2343 with BASCOM 1.11.7.3 the DT006 hardware there are no
problems with programming the chip ie no special jumper conditions to enable
programming. However it is best to remove links connecting ports to the DT006 LED’s
before programming. If access to PB3 and PB4 is desired then jumpers J11 & J12
must be installed with pins 2 and 3 linked in both cases. Note that PB3 and PB4 are
each connected to a momentary pushbutton on the DT006 board. These can be used
to check contact closure functions, so bear this in mind when writing code for contact
monitoring.

The current ATMEL data sheet specifies that all versions –1, -4 and –10 are supplied
with a fuse bit set for the internal clock that operates at approximately 1Mhz. If using
the internal clock make sure to enter 1000000 under
Options\Compiler\Communication\frequency.

A great little chip with minimal external components. Only the resistor and capacitor
required for RESET during power up.

Note that the LED’s on the DT006 are not connected to the same programmed port
pins when changing the chip type. This is because the special functions assigned
ports varies between the 8pin, 20 pin and 28 pin products eg the MOSI, MISI and
SCK functions are assigned to PB0, PB1 and PB2 for an 8 pin processor and PB5, PB6
and PB7 for a 20 pin processor. The result is that for a given program the LED’s that
respond are different.

173BASCOM HARDWARE

© 2008 MCS Electronics

4.18.7 AT90S4414

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.8 AT90S4433

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

174 BASCOM-AVR

© 2008 MCS Electronics

175BASCOM HARDWARE

© 2008 MCS Electronics

4.18.9 AT90S4434

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

176 BASCOM-AVR

© 2008 MCS Electronics

4.18.10 AT90S8515

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.11 AT90S8535

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

177BASCOM HARDWARE

© 2008 MCS Electronics

4.18.12 AT90PWM2-3

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

178 BASCOM-AVR

© 2008 MCS Electronics

4.18.13 AT90CAN128

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

179BASCOM HARDWARE

© 2008 MCS Electronics

180 BASCOM-AVR

© 2008 MCS Electronics

4.18.14 AT90USB162

See also the USB162 module for easy soldering of proto types.

4.18.15 ATtiny12

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

220

181BASCOM HARDWARE

© 2008 MCS Electronics

4.18.16 ATtiny13

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.17 ATtiny15

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.18 ATtiny22

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

182 BASCOM-AVR

© 2008 MCS Electronics

4.18.19 ATtiny24

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The data sheet does not specify that HWMUL is supported. The DAT file reflect this :

HWMUL=0 ; this chip does not have hardware multiplication

Some users reported that the HWMUL did work. Some batches might support the HW
MUL, but since we found chips that did not, the value is set to 0. You can change it at
your own risk.

4.18.20 ATtiny25

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.21 ATtiny26

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

183BASCOM HARDWARE

© 2008 MCS Electronics

4.18.22 ATtiny44

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The data sheet does not specify that HWMUL is supported. The DAT file reflect this :

HWMUL=0 ; this chip does not have hardware multiplication

Some users reported that the HWMUL did work. Some batches might support the HW
MUL, but since we found chips that did not, the value is set to 0. You can change it at
your own risk.

4.18.23 ATtiny45

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

184 BASCOM-AVR

© 2008 MCS Electronics

4.18.24 ATtiny84

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The data sheet does not specify that HWMUL is supported. The DAT file reflect this :

HWMUL=0 ; this chip does not have hardware multiplication

Some users reported that the HWMUL did work. Some batches might support the HW
MUL, but since we found chips that did not, the value is set to 0. You can change it at
your own risk.

4.18.25 ATtiny85

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

185BASCOM HARDWARE

© 2008 MCS Electronics

4.18.26 ATtiny261

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.27 ATtiny461

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

186 BASCOM-AVR

© 2008 MCS Electronics

4.18.28 ATtiny861

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.29 ATtiny2313

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The tiny2313 has an internal oscillator that can run at various frequencies. The 4 MHz
seems not to work precise. when using the UART for serial communication you can
get wrong output. You can best use the 8 MHz internal oscillator , or tweak the UBRR
register. For example, UBRR=UBRR+1
That worked for 4 Mhz, at 19200 baud.

187BASCOM HARDWARE

© 2008 MCS Electronics

4.18.30 ATMEGA8

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.31 ATMEGA16

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

188 BASCOM-AVR

© 2008 MCS Electronics

4.18.32 ATMEGA32

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

189BASCOM HARDWARE

© 2008 MCS Electronics

4.18.33 ATMEGA48

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.34 ATMEGA88

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

190 BASCOM-AVR

© 2008 MCS Electronics

4.18.35 ATMEGA64

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.36 ATMEGA103

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

191BASCOM HARDWARE

© 2008 MCS Electronics

192 BASCOM-AVR

© 2008 MCS Electronics

4.18.37 ATMEGA128

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

When using XRAM and IDLE, the micro need the CONFIG XRAM after returing from
the power down mode.

193BASCOM HARDWARE

© 2008 MCS Electronics

4.18.38 ATMEGA161

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.39 ATMEGA162

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The M162 has a clock-16 divider enabled by default. See the M162.bas sample file

194 BASCOM-AVR

© 2008 MCS Electronics

4.18.40 ATMEGA163

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

The M163 by default uses the internal clock running at 1 MHz

When you have problems with timing set the right fuse bit A987= 0101. This will
solve this problem.

I have just found a small difference in PortB when using the Mega163 in place of a
8535. The difference is in regard to PortB.4 - PortB.7 when not used as a SPI

interface. The four upper bits of PortB are shared with the hardware SPI unit.

If the SPI is configured in SLAVE mode (DEFAULT) the MOSI , SCK , /SS

Are configured as inputs, Regardless of the DDRB setting !

The /SS (slave select) pin also has restrictions on it when using it as a general input.-
see data sheet ATmega163 - p57.

This sample allows you to use the upper nibble of PortB as outputs.

Portb = &B0000_0000

DDRB = &B1111_0000 'set upper bits for output.

Spcr = &B0001_0000 ' set SPI to Master and Disable.

If The SPCR register is not set for Master, you cannot set the pins for

Output.

195BASCOM HARDWARE

© 2008 MCS Electronics

4.18.41 ATMEGA164P

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

196 BASCOM-AVR

© 2008 MCS Electronics

4.18.42 ATMEGA165

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

197BASCOM HARDWARE

© 2008 MCS Electronics

4.18.43 ATMEGA168

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.44 ATMEGA169

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

198 BASCOM-AVR

© 2008 MCS Electronics

4.18.45 ATMEGA323

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

199BASCOM HARDWARE

© 2008 MCS Electronics

The JTAG interface is enabled by default. This means that portC.2-portC.5 pins can
not be used. Program the JTAG fuse bit to disable the JTAG interface.

4.18.46 ATMEGA324P

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

200 BASCOM-AVR

© 2008 MCS Electronics

4.18.47 ATMEGA325

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

201BASCOM HARDWARE

© 2008 MCS Electronics

4.18.48 ATMEGA328P

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

202 BASCOM-AVR

© 2008 MCS Electronics

4.18.49 ATMEGA329

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

4.18.50 ATMEGA406

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.
The image is from a preliminary data sheet. It is not clear yet if SCL and SDA have
pin names too.
This chip can only programmed parallel and with JTAG. Normal (serial) ISP
programming is not available.

203BASCOM HARDWARE

© 2008 MCS Electronics

4.18.51 ATMEGA603

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.
When you have a better image available, please send it to support@mcselec.com

204 BASCOM-AVR

© 2008 MCS Electronics

205BASCOM HARDWARE

© 2008 MCS Electronics

4.18.52 ATMEGA640

.

206 BASCOM-AVR

© 2008 MCS Electronics

4.18.53 ATMEGA644P

Notice that there are Mega644 and Mega644P chips.
P stand for PICO power. You should use the P-version for new designs.
These Pico version usual add some functionality such as a second UART.

207BASCOM HARDWARE

© 2008 MCS Electronics

4.18.54 ATMEGA645

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

208 BASCOM-AVR

© 2008 MCS Electronics

4.18.55 ATMEGA649

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

209BASCOM HARDWARE

© 2008 MCS Electronics

4.18.56 ATMEGA2560

210 BASCOM-AVR

© 2008 MCS Electronics

4.18.57 ATMEGA2561

211BASCOM HARDWARE

© 2008 MCS Electronics

4.18.58 ATMEGA8515

4.18.59 ATMEGA8535

This page is intended to show the outline of the chip and to provide additional
information that might not be clear from the data sheet.

212 BASCOM-AVR

© 2008 MCS Electronics

4.19 Reference Designs

4.19.1 EM4095 RFID Reader

Introduction
RFID technology is an exciting technology. The EM4095 chip allows us to create a
reader with little code or processor resources.
A complete KIT is available from the web shop at www.mcselec.com

This topic describes the reference design.
The data sheets you can download from:

EM4095 (chip) , EM4102 (transponder)

The circuit

As you can see from the data sheets, the EM4095 needs little external hardware. A
coil, capacitors that tune the coil for 125 KHz, are basically all that you need. IC1 is a
voltage regulator that regulates the input voltage to 5V. (you can operate it from a
9V battery). The capacitors stabilize the output voltage. The DEMOD output of the
EM4095 is connected to the microprocessor and the pin is used in input mode. The
MOD and SHD pins are connected to micro pins that are used in output mode.

The micro(mega88) has a small 32 KHz crystal so the soft clock can be used. There
are 3 switches that can be used for menu input, and there is a relay that can be used
to activate a door opener. Parallel on the relay there is a LED for a visible indication.
IC4 is a serial interface buffer so we can connect the PCB to our computer for logging
and programming. The Mega88 is delivered with a Boot loader and thus can be serial
programmed with the MCS Boot loader. That is why pin 4 of X6 (DTR) is connected
via IC4(pin 8-9) to the reset pin of the micro(pin 1).
Further there is a standard 10-pins ISP programmer connector for the USB-ISP or

http://www.mcselec.com/tiny/shop/8/171
http://www.mcselec.com/tiny/dwn/192/54
http://www.mcselec.com/tiny/dwn/193/54

213BASCOM HARDWARE

© 2008 MCS Electronics

STK200, and an LCD connector for an optional LCD display.

The PCB

Part list
Component Value

C1 470uF/25V

C2,C3,C5,C6,C9,CDEC,CAGND 100nF (104)

C4 100uF/16V

CRES1,CRES, CDV2 1nF(102)

CDV1 47pF

CDC2,CFCAP 10nF(103)

C11,C12,C13,C14 1uF/16V

RSER 68

R4,R6 10K

R5 470

R8 47

R3 47K

R9 1K-10K pot

IC1 7805

IC2 EM4095

IC3 ATMEGA88

IC4 MAX232

20 pin IC feet, 16 pin IC feet

X1,X2 2-pin header

X3 16 pin boxed header

X4 3-pin header

X5 10-pin boxed header

214 BASCOM-AVR

© 2008 MCS Electronics

X6 DB-9 female connector

T1 BC547

D1 1N4148

LED1 3 mm LED, red

K1 Relay, 5V

S1,S2,S3 switch

Q1 32768 Hz crystal

Antenna

M3x6 bolt and nut

4 rubber feet

Building the PCB
As usually we start with the components that have the lowest height. And normally
we would solder all passive components first, and insert/solder the active components
last. This to prevent damage to the active components(IC). But since the EM4095 is
only available in SMD, we need to solder this chip first. Make sure the chip is lined out
right and that pin 1 matches the small dot on the chip which is an indication for pin 1.
Then solder pin 1 and 16 so the chip can not be moved anymore. Now solder the
remaining pins. Use an iron with a small tip. When you use too much solder, and two
feet are soldered together do not panic. Just finish soldering and when ready, use
some copper braid to remove the solder between the 2 feet. This works best when
you lay the braid over the 2 pins, then push the solder iron to the braid so it will heat
up. Then after some seconds, add some solder which will get sucked into the braid.
This will in turn suck the other solder into the braid. While it does not seem logical to
add solder, it will conduct the heat better. But since the used SMD chip is relatively
large there should not be any problem.
Now mount and solder the following components :
· RSER (68 ohm)
· R3 (47K)
· R4,R6 (10 K)
· R5 (470)
· R8 (47 for LCD)
· D1 (diode 1N4148). The black line must match the line on the PCB(Kathode)
· C2,C3,C5,C6,C9,CDEC,CAGND (100 nF)
· CRES1,CRES , CDV2 (1nF)
· CDV1 (47pF)
· CDC2,CFCAP (10nF)
· 28 pins IC feet for the Mega88 and 16 pins IC feet for the MAX232
· Bend the wires of IC1 and mount IC1 with the bolt and nut
· Bend the wires of the crystal and mount Q1
· S1,S2,S3 (switches)
· LED1. The square pad matches the longest wire of the LED(Anode)
· R9 (potmeter for LCD contrast)
· T1(transistor BC547)
· Boxed header X5 and X3. Notice the gap in the middle which must match with the

PCB
· X6 (DB9-female connector)
· K1 (relay)
· C11,C12,C13,C14 (1uF/16V)
· C4 (100uF/16V)
· X1,X2 (2 pins screw connectors)
· X4 (3 pin screw connector)
· C1 (470 uF/25V)
· 4 rubber feet

215BASCOM HARDWARE

© 2008 MCS Electronics

Operation
Now the PCB is ready. Make sure there are no solder drops on the PCB. You can
measure with an Ohm-meter if there is a short circuit.
Measure pin 1 and pin 2 of IC1 (the voltage input) and pin 3 and pin 2 of IC1 (the
voltage output).
When everything is ok, insert the MAX232 and the MEGA88.
You can connect the battery cord to header X1. The red wire is the plus. Since the
circuit is not for beginners, there is no reverse polarity protection. While the 7805
does not mind a short circuit, the C1 elco might not like it.
Connect the battery and measure with a Volt meter if IC1 actual outputs 5V. If not,
check the input voltage, and for a possible shortcut.

Connect the antenna to connector X2. The PCB is now ready for use. When you have
the LCD display, connect it to the LCD header and adjust the variable resistor R9 so
you can see square blocks.

Since the chip has a boot loader, you can serial program the device. We made a
simple AN that can be used as a door opener. It has simple menu, and we can add
new tags. When a valid tag is held in front of the antenna, it will activate the relay for
2 seconds. The LED will be turned on as well.
Compile the program AN_READHITAG_EM4095.BAS and select the MCS Boot
Loader programmer. Connect a serial cable to X6 and press F4 to program.

You need a normal straight cable.

 When you did not used the MCS Bootloader before, check the COM port settings
and make sure the BAUD is set to 38400 as in the following screenshot:

216 BASCOM-AVR

© 2008 MCS Electronics

You also need to set 'RESET via DTR' on the 'MCS Loader' TAB.
Now the program will start and show some info on the LCD. Each time you hold a
RFID tag before the antenna/coil, the TAG ID will be shown.
When you press S3, you can store an RFID. Press S3, and then hold the TAG before
the coil. When there is room , or the tag is new, it will be stored. Otherwise it will be
ignored. The TAG ID is also stored in EEPROM.
Now when you hold the tag before the coil, the relay is activated for 2 seconds.
The AN is very simple and you can change and extend it easily.
One nice idea from Gerhard : use one TAG as a master tag to be able to add/remove
tags.

Security
To make the code more secure you could add a delay so that a valid tag must be
received twice, so after the valid TAG, wait 1 second, and then start a new
measurement and check if the TAG is valid again.
This will prevent where a bit generator could be used to generate all possible codes.
With 64 bit times a second, it would take ages before it would work.
The other hack would be to listen with a long range 125 KHz antenna, and recording
all bits. A long range scanner would be very hard to make. It would be easier to open
the door with a crowbar.
When you open your door with this device, make sure you have a backup option like
a key in case there is no power. Also, when the door is opened by a magnetic door
opener, make sure it has the right quality for the entrance you want to protect.

217BASCOM HARDWARE

© 2008 MCS Electronics

AN Code
'---
' (c) 1995-2008 MCS Electronics
' This sample will read a HITAG chip based on the EM4095 chip
' Consult EM4102 and EM4095 datasheets for more info
'---
' The EM4095 was implemented after an idea of Gerhard Günzel
' Gerhard provided the hardware and did research at the coil and capacitors.
' The EM4095 is much simpler to use than the HTRC110. It need less pins.
' A reference design with all parts is available from MCS
'---
$regfile = "M88def.dat"
$baud = 19200
$crystal = 8000000
$hwstack = 40
$swstack = 40
$framesize = 40

Declare Function Havetag(b As Byte) As Byte

'Make SHD and MOD low
_md Alias Portd.4
Config _md = Output
_md = 0

_shd Alias Portd.5
Config _shd = Output
_shd = 0

Relay Alias Portd.2
Config Relay = Output

S3 Alias Pinb.0
S2 Alias Pinb.2
S1 Alias Pinb.1
Portb = &B111 ' these are all input pins and we activate the pull up resistor

Config Clock = Soft 'we use a clock
Config Date = Dmy , Separator = -

218 BASCOM-AVR

© 2008 MCS Electronics

Enable Interrupts ' the clock and RFID code need the int
Date$ = "15-12-07" ' just a special date to start with
Time$ = "00:00:00"

'Config Lcd Sets The Portpins Of The Lcd
Config Lcdpin = Pin , Db4 = Portc.2 , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5 , E = Portc.1 , Rs = Portc.0
Config Lcd = 16 * 2 '16*2 type LCD screen
Cls
 Lcd " EM4095 sample"
Lowerline : Lcd "MCS Electronics"

Dim Tags(5) As Byte 'make sure the array is at least 5 bytes
Dim J As Byte , Idx As Byte
Dim Eramdum As Eram Byte ' do not use first position
Dim Etagcount As Eram Byte ' number of stored tags
Dim Etags(100) As Eram Byte 'room for 20 tags
Dim Stags(100) As Byte 'since we have enough SRAM store them in sram too
Dim Btags As Byte , Tmp1 As Byte , Tmp2 As Byte
Dim K As Byte , Tel As Byte , M As Byte

Config Hitag = 64 , Type = Em4095 , Demod = Pind.3 , Int = @int1
Print "EM4095 sample"

'you could use the PCINT option too, but you must mask all pins out so it will only respond to our pin
' Pcmsk2 = &B0000_0100
' On Pcint2 Checkints
' Enable Pcint2
On Int1 Checkints Nosave 'we use the INT1 pin all regs are saved in the lib
Config Int1 = Change 'we have to config so that on each pin change the routine will be called
Enable Interrupts 'as last we have to enable all interrupts

'read eeprom and store in sram
'when the program starts we read the EEPROM and store it in SRAM
For Idx = 1 To 100 'for all stored tags
 Stags(idx) = Etags(idx)
 Print Hex(stags(idx)) ; ",";
Next

Btags = Etagcount ' get number of stored tags
If Btags = 255 Then ' an empty cell is FF (255)
 Print "No tags stored yet"
 Btags = 0 : Etagcount = Btags ' reset and write to eeprom
Else ' we have some tags
 For J = 1 To Btags
 Tmp2 = J * 5 'end
 Tmp1 = Tmp2 - 4 'start
 Print "RFID ; " ; J ' just for debug
 For Idx = Tmp1 To Tmp2
 Print Hex(stags(idx)) ; ",";
 Next
 Print
 Next
End If

Do
 Print "Check..."
 Upperline : Lcd Time$; " Detect"
 If Readhitag(tags(1)) = 1 Then 'this will enable INT1
 Lowerline
 For J = 1 To 5
 Print Hex(tags(j)) ; ",";
 Lcd Hex(tags(j)) ; ","

219BASCOM HARDWARE

© 2008 MCS Electronics

 Next
 M = Havetag(tags(1)) 'check if we have this tag already
 If M > 0 Then
 Print "Valid TAG ;" ; M
 Relay = 1 'turn on relay
 Waitms 2000 'wait 2 secs
 Relay = 0 'relay off
 End If
 Print
 Else
 Print "Nothing"
 End If
 If S3 = 0 Then 'user pressed button 3
 Print "Button 3"
 Cls : Lcd "Add RFID"
 Do
 If Readhitag(tags(1)) = 1 Then 'this will enable INT1
 If Havetag(tags(1)) = 0 Then 'we do not have it yet
 If Btags < 20 Then 'will it fit?
 Incr Btags 'add one
 Etagcount = Btags
 Idx = Btags * 5 'offset
 Idx = Idx - 4
 Lowerline
 For J = 1 To 5
 Lcd Hex(tags(j)) ; ","
 Stags(idx) = Tags(j)
 Etags(idx) = Tags(j)
 Incr Idx
 Next
 Cls
 Lcd "TAG stored" : Waitms 1000
 End If
 End If
 Exit Do
 End If
 Loop
 End If
 If S2 = 0 Then
 Print "Button 2"
 End If
 If S1 = 0 Then
 Print "Button 1"
 End If

 Waitms 500
Loop

'check to see if a tag is stored already
'return 0 if not stored
'return value 1-20 if stored
Function Havetag(b As Byte) As Byte
 Print "Check if we have TAG : ";
 For K = 1 To 5
 Print Hex(b(k)) ; ","
 Next

 For K = 1 To 20
 Tmp2 = K * 5 'end addres
 Tmp1 = Tmp2 - 4 'start

220 BASCOM-AVR

© 2008 MCS Electronics

 Tel = 0
 For Idx = Tmp1 To Tmp2
 Incr Tel
 If Stags(idx) <> B(tel) Then 'if they do not match
 Exit For 'exit and try next
 End If
 Next

 If Tel = 5 Then 'if we did found 5 matching bytes we have a match
 Print "We have one"
 Havetag = K 'set index
 Exit Function
 End If
 Next
 Havetag = 0 'assume we have nothing yet

End Function

Checkints:
 Call _checkhitag 'in case you have used a PCINT, you could have other code here as well
Return

Tips and Tricks
The oscillator frequency must be 125 KHz. You can measure this with an oscilloscope.
It is possible that you need to remove a few windings of the antenna coil to get an
exact 125 KHz. This will result in a higher distance that you can use for the tags.

4.19.2 USB162 module

The USB162 from Atmel is great new chip with USB device support.
The only downside for most hobbyists will be that it is not available in DIP format.
MCS Electronics created a small converter board with normal pins with the size of a
28 pin DIP chip.

221BASCOM HARDWARE

© 2008 MCS Electronics

The USB module is available from the MCS Electronics online web shop.

http://www.mcselec.com

Part

V

223BASCOM Language Fundamentals

© 2008 MCS Electronics

5 BASCOM Language Fundamentals

5.1 Changes compared to BASCOM-8051

The design goal was to make BASCOM-AVR compatible with BASCOM-8051.

For the AVR compiler some statements had to be removed.
New statements were also added. And some statements were changed.

They need specific attention, but the changes to the syntax will be made available to
BASCOM-8051 too in the future.

Statements that were removed

STATEMEN
T

DESCRIPTION

$LARGE Not needed anymore.

$ROMSTART Code always starts at address 0 for the AVR. Added again in 1.11.6.2

$LCDHEX Use LCD Hex(var) instead.

$NOINIT Not needed anymore. Added in 1.11.6.2

$NOSP Not needed anymore

$NOBREAK Can't be used anymore because there is no object code that can be
used for it.

$OBJ Removed.

BREAK Can't be used anymore because there is no object code that can be
used for it.

PRIORITY AVR does no allow setting priority of interrupts

PRINTHEX You can use Print Hex(var) now

LCDHEX You can use Lcd Hex(var) now

Statements that were added

STATEMENT DESCRIPTION

FUNCTION You can define your own user FUNCTIONS.

LOCAL You can have LOCAL variables in SUB routines or FUNCTIONS.

^ New math statement. Var = 2 ^ 3 will return 2*2*2

SHIFT Because ROTATE was changed, I added the SHIFT statement.
SHIFT works just like ROTATE, but when shifted left, the LS BIT is
cleared and the carry doesn't go to the LS BIT.

LTRIM LTRIM, trims the leftmost spaces of a string.

RTRIM RTRIM, trims the rightmost spaces of a string.

TRIM TRIM, trims both the leftmost and rightmost spaces of a string.

Statements that behave differently

STATEMEN
T

DESCRIPTION

ROTATE Rotate now behaves like the ASM rotate, this means that the carry will
go to the most significant bit of a variable or the least significant bit of
a variable.

CONST String were added to the CONST statement. I also changed it to be
compatible with QB.

DECLARE BYVAL has been added since real subprograms are now supported.

224 BASCOM-AVR

© 2008 MCS Electronics

DIM You can now specify the location in memory of the variable.

Dim v as byte AT 100, will use memory location 100.

5.2 Language Fundamentals

Characters from the BASCOM character set are put together to form labels, keywords,
variables and operators.

These in turn are combined to form the statements that make up a program.

This chapter describes the character set and the format of BASCOM program lines. In
particular, it discusses:

· The specific characters in the character set and the special meanings of some
characters.

· The format of a line in a BASCOM program.
· Line labels.
· Program line length.

Character Set

The BASCOM BASIC character set consists of alphabetic characters, numeric
characters, and special characters.
The alphabetic characters in BASCOM are the uppercase letters (A-Z) and lowercase
letters (a-z) of the alphabet.

The BASCOM numeric characters are the digits 0-9.
The letters A-H can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM statements and
expressions:

Character Name

ENTER Terminates input of a line

Blank (or space)

' Single quotation mark (apostrophe)

* Asterisks (multiplication symbol)

+ Plus sign

, Comma

- Minus sign

. Period (decimal point)

/ Slash (division symbol) will be handled as \

: Colon

" Double quotation mark

; Semicolon

< Less than

= Equal sign (assignment symbol or relational operator)

> Greater than

\ Backslash (integer/word division symbol)

^ Exponent

225BASCOM Language Fundamentals

© 2008 MCS Electronics

The BASCOM program line
BASCOM program lines have the following syntax:

[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

Using Line Identifiers
BASCOM support one type of line-identifier; alphanumeric line labels:

An alphabetic line label may be any combination of from 1 to 32 letters and digits,
starting with a letter and ending with a colon.
BASCOM keywords are not permitted.

The following are valid alphanumeric line labels:

Alpha:
ScreenSUB:
Test3A:

Case is not significant. The following line labels are equivalent:

alpha:
Alpha:
ALPHA:

Line labels may begin in any column, as long as they are the first characters other
than blanks on the line.
Blanks are not allowed between an alphabetic label and the colon following it.
A line can have only one label. When there is a label on the line, no other identifiers
may be used on the same line. So the label is the sole identifier on a line.

BASCOM Statements
A BASCOM statement is either "executable" or " non-executable".
An executable statement advances the flow of a programs logic by telling the
program what to do next.
Non executable statement perform tasks such as allocating storage for variables,
declaring and defining variable types.

The following BASCOM statements are examples of non-executable statements:
· REM or (starts a comment)
· DIM

A "comment" is a non-executable statement used to clarify a programs operation and
purpose.
A comment is introduced by the REM statement or a single quote character(').
The following lines are equivalent:

PRINT " Quantity remaining" : REM Print report label.
PRINT " Quantity remaining" ' Print report label.

226 BASCOM-AVR

© 2008 MCS Electronics

More than one BASCOM statement can be placed on a line, but colons(:) must
separate statements, as illustrated below.

FOR I = 1 TO 5 : PRINT " Gday, mate." : NEXT I

BASCOM LineLength
If you enter your programs using the built-in editor, you are not limited to any line
length, although it is advised to shorten your lines to 80 characters for clarity.

Data Types
Every variable in BASCOM has a data type that determines what can be stored in the
variable. The next section summarizes the elementary data types.

Elementary Data Types

· Bit (1/8 byte). A bit can hold only the value 0 or 1. A group of 8 bits is called a
byte.

· Byte (1 byte). Bytes are stores as unsigned 8-bit binary numbers ranging in
value from 0 to 255.

· Integer (two bytes). Integers are stored as signed sixteen-bit binary numbers
ranging in value from -32,768 to +32,767.

· Word (two bytes). Words are stored as unsigned sixteen-bit binary numbers
ranging in value from 0 to 65535.

· Long (four bytes). Longs are stored as signed 32-bit binary numbers ranging in
value from -2147483648 to 2147483647.

· Single. Singles are stored as signed 32 bit binary numbers. Ranging in value from
1.5 x 10^–45 to 3.4 x 10^38

· Double. Doubles are stored as signed 64 bit binary numbers. Ranging in value
from 5.0 x 10^–324 to 1.7 x 10^308

· String (up to 254 bytes). Strings are stored as bytes and are terminated with a 0-
byte. A string dimensioned with a length of 10 bytes will occupy 11 bytes.

Variables can be stored internal (default) , external or in EEPROM.

Variables
A variable is a name that refers to an object--a particular number.
A numeric variable, can be assigned only a numeric value (either integer, byte, long,
single or bit).
The following list shows some examples of variable assignments:

· A constant value:
A = 5
C = 1.1

· The value of another numeric variable:
abc = def
k = g

· The value obtained by combining other variables, constants, and operators: Temp
= a + 5
Temp = C + 5

227BASCOM Language Fundamentals

© 2008 MCS Electronics

· The value obtained by calling a function:
Temp = Asc(S)

Variable Names
A BASCOM variable name may contain up to 32 characters.
The characters allowed in a variable name are letters and numbers.
The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words are
allowed.
For example, the following statement is illegal because AND is a reserved word.

AND = 8

However, the following statement is legal:

ToAND = 8

Reserved words include all BASCOM commands, statements, function names, internal
registers and operator names.
(see BASCOM Reserved Words , for a complete list of reserved words).

You can specify a hexadecimal or binary number with the prefix &H or &B.
a = &HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable, you must tell the compiler about it with the DIM
statement.
Dim b1 As Bit, I as Integer, k as Byte , s As String * 10

The STRING type needs an additional parameter to specify the length.

You can also use DEFINT , DEFBIT , DEFBYTE ,DEFWORD ,DEFLNG or
DEFSNG .

For example,DEFINT c tells the compiler that all variables that are not dimensioned
and that are beginning with the character c are of the Integer type.

Expressions and Operators
This chapter discusses how to combine, modify, compare, or get information about
expressions by using the operators available in BASCOM.

Anytime you do a calculation you are using expressions and operators.

This chapter describes how expressions are formed and concludes by describing the
following kind of operators:

· Arithmetic operators, used to perform calculations.
· Relational operators, used to compare numeric or string values.
· Logical operators, used to test conditions or manipulate individual bits.
· Functional operators, used to supplement simple operators.

246

535 535 535 535 535

535

228 BASCOM-AVR

© 2008 MCS Electronics

Expressions and Operators

An expression can be a numeric constant, a variable, or a single value obtained by
combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values.
The operators provided by BASCOM can be divided into four categories, as follows:

1. Arithmetic
2. Relational
3. Logical
4. Functional

Arithmetic
Arithmetic operators are +, - , * , \, / and ^.

· Integer
Integer division is denoted by the backslash (\).
Example: Z = X \ Y

· Modulo Arithmetic
Modulo arithmetic is denoted by the modulus operator MOD.
Modulo arithmetic provides the remainder, rather than the quotient, of an
integer division.

Example: X = 10 \ 4 : remainder = 10 MOD 4

· Overflow and division by zero
Division by zero, produces an error.
At the moment no message is produced, so you have to make sure yourself that
this won't happen.

Relational Operators
Relational operators are used to compare two values as shown in the table below.
The result can be used to make a decision regarding program flow.

Operator Relation
Tested

Expression

= Equality X = Y

<> Inequality X <> Y

< Less than X < Y

> Greater than X > Y

<= Less than or
equal to

X <= Y

>= Greater than or
equal to

X >= Y

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean operators.
There four operators in BASCOM are :

Operator Meaning

229BASCOM Language Fundamentals

© 2008 MCS Electronics

NOT Logical complement

AND Conjunction

OR Disjunction

XOR Exclusive or

It is possible to use logical operators to test bytes for a particular bit pattern.
For example the AND operator can be used to mask all but one of the bits of a status
byte, while OR can be used to merge two bytes to create a particular binary value.

Example
A = 63 And 19
PRINT A
A = 10 Or 9
PRINT A

Output
19
11

Floating point SINGLE (4 BYTE)(ASM code used is supplied by Jack Tidwell)
Single numbers conforming to the IEEE binary floating point standard.
An eight bit exponent and 24 bit mantissa are supported.
Using four bytes the format is shown below:

31 30________23 22______________________________0

s exponent mantissa

The exponent is biased by 128. Above 128 are positive exponents and below are
negative. The sign bit is 0 for positive numbers and 1 for negative. The mantissa is
stored in hidden bit normalized format so that 24 bits of precision can be obtained.

All mathematical operations are supported by the single.
You can also convert a single to an integer or word or vise versa:

Dim I as Integer, S as Single

S = 100.1 'assign the single
I = S 'will convert the single to an integer

Here is a fragment from the Microsoft knowledge base about FP:

Floating-point mathematics is a complex topic that confuses many programmers. The
tutorial below should help you recognize programming situations where floating-point
errors are likely to occur and how to avoid them. It should also allow you to recognize
cases that are caused by inherent floating-point math limitations as opposed to actual
compiler bugs.

230 BASCOM-AVR

© 2008 MCS Electronics

Decimal and Binary Number Systems
Normally, we count things in base 10. The base is completely arbitrary. The only
reason that people have traditionally used base 10 is that they have 10 fingers, which
have made handy counting tools.

The number 532.25 in decimal (base 10) means the following:

(5 * 10^2) + (3 * 10^1) + (2 * 10^0) + (2 * 10^-1) + (5 * 10^-2)

500 + 30 + 2 + 2/10 + 5/100

= 532.25

In the binary number system (base 2), each column represents a power of 2 instead
of 10. For example, the number 101.01 means the following:
(1 * 2^2) + (0 * 2^1) + (1 * 2^0) + (0 * 2^-1) + (1 * 2^-2)
4 + 0 + 1 + 0 + 1/4

= 5.25 Decimal

How Integers Are Represented in PCs

Because there is no fractional part to an integer, its machine representation is much
simpler than it is for floating-point values. Normal integers on personal computers
(PCs) are 2 bytes (16 bits) long with the most significant bit indicating the sign. Long
integers are 4 bytes long.

Positive values are straightforward binary numbers. For example:

1 Decimal = 1 Binary
2 Decimal = 10 Binary
22 Decimal = 10110 Binary, etc.

However, negative integers are represented using the two's complement scheme. To
get the two's complement representation for a negative number, take the binary
representation for the number's absolute value and then flip all the bits and add 1.
For example:

4 Decimal = 0000 0000 0000 0100

1111 1111 1111 1011 Flip the Bits

-4 = 1111 1111 1111 1100 Add 1

Note that adding any combination of two's complement numbers together

using ordinary binary arithmetic produces the correct result.

Floating-Point Complications
Every decimal integer can be exactly represented by a binary integer; however, this is

231BASCOM Language Fundamentals

© 2008 MCS Electronics

not true for fractional numbers. In fact, every number that is irrational in base 10 will
also be irrational in any system with a base smaller than 10.

For binary, in particular, only fractional numbers that can be represented in the form
p/q, where q is an integer power of 2, can be expressed exactly, with a finite number
of bits.

Even common decimal fractions, such as decimal 0.0001, cannot be represented
exactly in binary. (0.0001 is a repeating binary fraction with a period of 104 bits!)

This explains why a simple example, such as the following

SUM = 0
FOR I% = 1 TO 10000
 SUM = SUM + 0.0001
NEXT I%
PRINT SUM ' Theoretically = 1.0.

will PRINT 1.000054 as output. The small error in representing 0.0001
in binary propagates to the sum.

For the same reason, you should always be very cautious when making comparisons
on real numbers. The following example illustrates a common programming error:

item1# = 69.82#
item2# = 69.20# + 0.62#
IF item1# = item2# then print "Equality!"

This will NOT PRINT "Equality!" because 69.82 cannot be represented exactly in
binary, which causes the value that results from the assignment to be SLIGHTLY
different (in binary) than the value that is generated from the expression. In practice,
you should always code such comparisons in such a way as to allow for some
tolerance.

General Floating-Point Concepts
It is very important to realize that any binary floating-point system can represent
only a finite number of floating-point values in exact form. All other values must be
approximated by the closest represent able value. The IEEE standard specifies the
method for rounding values to the "closest" represent able value. BASCOM supports
the standard and rounds according to the IEEE rules.

Also, keep in mind that the numbers that can be represented in IEEE are spread out
over a very wide range. You can imagine them on a number line. There is a high
density of represent able numbers near 1.0 and -1.0 but fewer and fewer as you go
towards 0 or infinity.

The goal of the IEEE standard, which is designed for engineering calculations, is to
maximize accuracy (to get as close as possible to the actual number). Precision refers
to the number of digits that you can represent. The IEEE standard attempts to
balance the number of bits dedicated to the exponent with the number of bits used
for the fractional part of the number, to keep both accuracy and precision within
acceptable limits.

232 BASCOM-AVR

© 2008 MCS Electronics

IEEE Details
Floating-point numbers are represented in the following form, where
[exponent] is the binary exponent:

X = Fraction * 2^(exponent - bias)

[Fraction] is the normalized fractional part of the number, normalized because the
exponent is adjusted so that the leading bit is always a 1. This way, it does not have
to be stored, and you get one more bit of precision. This is why there is an implied
bit. You can think of this like scientific notation, where you manipulate the exponent
to have one digit to the left of the decimal point, except in binary, you can always
manipulate the exponent so that the first bit is a 1, since there are only 1s and 0s.

[bias] is the bias value used to avoid having to store negative exponents.

The bias for single-precision numbers is 127 and 1023 (decimal) for double-precision
numbers.

The values equal to all 0's and all 1's (binary) are reserved for representing special
cases. There are other special cases as well, that indicate various error conditions.

Single-Precision Examples
2 = 1 * 2^1 = 0100 0000 0000 0000 ... 0000 0000 = 4000 0000 hex
Note the sign bit is zero, and the stored exponent is 128, or

100 0000 0 in binary, which is 127 plus 1. The stored mantissa is (1.)
000 0000 ... 0000 0000, which has an implied leading 1 and binary point, so the
actual mantissa is 1.

-2 = -1 * 2^1 = 1100 0000 0000 0000 ... 0000 0000 = C000 0000 hex
Same as +2 except that the sign bit is set. This is true for all IEEE format floating-
point numbers.

4 = 1 * 2^2 = 0100 0000 1000 0000 ... 0000 0000 = 4080 0000 hex
Same mantissa, exponent increases by one (biased value is 129, or 100 0000 1 in
binary.

6 = 1.5 * 2^2 = 0100 0000 1100 0000 ... 0000 0000 = 40C0 0000 hex
Same exponent, mantissa is larger by half -- it's

(1.) 100 0000 ... 0000 0000, which, since this is a binary fraction, is 1-1/2 (the
values of the fractional digits are 1/2, 1/4, 1/8, etc.).

1 = 1 * 2^0 = 0011 1111 1000 0000 ... 0000 0000 = 3F80 0000 hex
Same exponent as other powers of 2, mantissa is one less than 2 at 127, or 011 1111
1 in binary.

.75 = 1.5 * 2^-1 = 0011 1111 0100 0000 ... 0000 0000 = 3F40 0000 hex

The biased exponent is 126, 011 1111 0 in binary, and the mantissa is (1.) 100
0000 ... 0000 0000, which is 1-1/2.

2.5 = 1.25 * 2^1 = 0100 0000 0010 0000 ... 0000 0000 = 4020 0000 hex

233BASCOM Language Fundamentals

© 2008 MCS Electronics

Exactly the same as 2 except that the bit which represents 1/4 is set in the mantissa.

0.1 = 1.6 * 2^-4 = 0011 1101 1100 1100 ... 1100 1101 = 3DCC CCCD hex

1/10 is a repeating fraction in binary. The mantissa is just shy of 1.6, and the biased
exponent says that 1.6 is to be divided by 16 (it is 011 1101 1 in binary, which is 123
n decimal). The true exponent is 123 - 127 = -4, which means that the factor by
which to multiply is 2**-4 = 1/16. Note that the stored mantissa is rounded up in the
last bit. This is an attempt to represent the un-representable number as accurately as
possible. (The reason that 1/10 and 1/100 are not exactly representable in binary is
similar to the way that 1/3 is not exactly representable in decimal.)

0 = 1.0 * 2^-128 = all zeros -- a special case.

Other Common Floating-Point Errors
The following are common floating-point errors:

1. Round-off error
This error results when all of the bits in a binary number cannot be used in a
calculation.
Example: Adding 0.0001 to 0.9900 (Single Precision)
Decimal 0.0001 will be represented as:
(1.)10100011011011100010111 * 2^(-14+Bias) (13 Leading 0s in Binary!)

0.9900 will be represented as:
(1.)11111010111000010100011 * 2^(-1+Bias)

Now to actually add these numbers, the decimal (binary) points must be aligned. For
this they must be Unnormalized. Here is the resulting addition:

.000000000000011010001101 * 2^0 <- Only 11 of 23 Bits retained
+.111111010111000010100011 * 2^0

.111111010111011100110000 * 2^0

This is called a round-off error because some computers round when shifting for
addition. Others simply truncate. Round-off errors are important to consider
whenever you are adding or multiplying two very different values.

2. Subtracting two almost equal values

.1235
-.1234

.0001

This will be normalized. Note that although the original numbers each had four
significant digits, the result has only one significant digit.

3. Overflow and underflow
This occurs when the result is too large or too small to be represented by the data
type.

234 BASCOM-AVR

© 2008 MCS Electronics

4. Quantizing error
This occurs with those numbers that cannot be represented in exact form by the
floating-point standard.

Rounding
When a Long is assigned to a single, the number is rounded according to the rules of
the IEEE committee.

For explanation: 1.500000 is exact the middle between 1.00000 and 2.000000. If
x.500000 is always rounded up, than there is trend for higher values than the
average of all numbers. So their rule says, half time to round up and half time to
round down, if value behind LSB is exact ..500000000.

The rule is, round this .500000000000 to next even number, that means if LSB is 1
(half time) to round up, so the LSB is going to 0 (=even), if LSB is 0 (other half time)
to round down, that means no rounding.

This rounding method is best since the absolute error is 0.

You can override the default IEEE rounding method by specifying the $LIB
LONG2FLOAT.LBX library which rounds up to the next number. This is the method
used up to 1.11.7.4 of the compiler.

Double
The double is essential the same as a single. Except the double consist of 8 bytes
instead of 4. The exponent is 11 bits leaving 52 bits for the mantissa.

Arrays
An array is a set of sequentially indexed elements having the same type. Each
element of an array has a unique index number that identifies it. Changes made to an
element of an array do not affect the other elements.

The index must be a numeric constant, a byte, an integer, word or long.
The maximum number of elements is 65535.
The first element of an array is always one. This means that elements are 1-based.

Arrays can be used on each place where a 'normal' variable is expected.

Example:

'create an array named a, with 10 elements (1 to 10)
Dim A(10) As Byte
'create an integer
Dim C As Integer
'now fill the array
For C = 1 To 10
'assign array element
A(c)= C

235BASCOM Language Fundamentals

© 2008 MCS Electronics

' print it
Print A(c)
Next
'you can add an offset to the index too
C = 0
A(c + 1)= 100
Print A(c + 1)
End

Strings
A string is used to store text. A string must be dimensioned with the length specified.

DIM S as STRING * 5

Will create a string that can store a text with a maximum length of 5 bytes.
The space used is 6 bytes because a string is terminated with a null byte.

To assign the string:
s = "abcd"

To insert special characters into the string :
s= "AB{027}cd"

The {ascii} will insert the ASCII value into the string.

The number of digits must be 3. s = "{27} will assign "{27}" to the string instead of
escape character 27!

Casting
In BASCOM-AVR when you perform operations on variables they all must be of the
same data type.
long = long1 * long2 ' for example

The assigned variables data type determines what kind of math is performed.
For example when you assign a long, long math will be used.

If you try to store the result of a LONG into a byte, only the LSB of the LONG will be
stored into the BYTE.
Byte = LONG

When LONG = 256 , it will not fit into a BYTE. The result will be 256 AND 255 = 0.

Of course you are free to use different data types. The correct result is only
guaranteed when you are using data types of the same kind or that result always can
fit into the target data type.

When you use strings, the same rules apply. But there is one exception:

Dim b as Byte

b = 123 ' ok this is normal

b = "A" ' b = 65

236 BASCOM-AVR

© 2008 MCS Electronics

When the target is a byte and the source variable is a string constant denoted by "",
the ASCII value will be stored in the byte. This works also for tests :

IF b = "A" then ' when b = 65

END IF

This is different compared to QB/VB where you can not assign a string to a byte
variable.

SINGLE CONVERSION
When you want to convert a SINGLE into a byte, word, integer or long the compiler
will automatic convert the values when the source string is of the SINGLE data type.

integer = single

You can also convert a byte, word, integer or long into a SINGLE by assigning this
variable to a SINGLE.

single = long

5.3 Mixing ASM and BASIC

BASCOM allows you to mix BASIC with assembly.
This can be very useful in some situations when you need full control of the generated
code.

Almost all assembly mnemonics are recognized by the compiler. The exceptions are :
SUB, SWAP, CALL and OUT. These are BASIC reserved words and have priority over
the ASM mnemonics. To use these mnemonics precede them with the ! - sign.

For example :

Dim a As Byte At &H60 'A is stored at location &H60
Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
!SWAP R1 'swap nibbles

As you can see the SWAP mnemonic is preceded by a ! sign.

Another option is to use the assembler block directives:

$ASM
Ldi R27 , $00 'Load R27 with MSB of address
Ldi R26 , $60 'Load R26 with LSB of address
Ld R1, X 'load memory location $60 into R1
SWAP R1 'swap nibbles
$END ASM

A special assembler helper function is provided to load the address into the register X
or Z. Y can may not be used because it is used as the soft stack pointer.

Dim A As Byte 'reserve space
LOADADR a, X 'load address of variable named A into register pair X

This has the same effect as :

237BASCOM Language Fundamentals

© 2008 MCS Electronics

Ldi R26 , $60 'for example !
Ldi R27, $00 'for example !

Some registers are used by BASCOM
R4 and R5 are used to point to the stack frame or the temp data storage
R6 is used to store some bit variables:
R6 bit 0 = flag for integer/word conversion
R6 bit 1 = temp bit space used for swapping bits
R6 bit 2 = error bit (ERR variable)
R6 bit 3 = show/noshow flag when using INPUT statement
R8 and R9 are used as a data pointer for the READ statement.

All other registers are used depending on the used statements.

To Load the address of a variable you must enclose them in brackets.
Dim B As Bit
Lds R16, {B} 'will replace {B} with the address of variable B

To refer to the bit number you must precede the variable name by BIT.

Sbrs R16 , BIT.B 'notice the point!

Since this was the first dimensioned bit the bit number is 7. Bits are stored in bytes
and the first dimensioned bit goes in the LS bit.

To load an address of a label you must use :

LDI ZL, Low(lbl * 1)
LDI ZH , High(lbl * 1)

Where ZL = R30 and may be R24, R26, R28 or R30

And ZH = R31 and may be R25, R27, R29 or R31.

These are so called register pairs that form a pointer.

When you want to use the LPM instruction to retrieve data you must multiply the
address with 2 since the AVR object code consist of words.
LDI ZL, Low(lbl * 2)
LDI ZH , High(lbl * 2)
LPM ; get data into R0
Lbl:

Atmel mnemonics must be used to program in assembly.
You can download the pdf from www.atmel.com that shows how the different
mnemonics are used.

Some points of attention :
* All instructions that use a constant as a parameter only work on the upper 16
registers (r16-r31)
So LDI R15,12 WILL NOT WORK

* The instruction SBR register, K

238 BASCOM-AVR

© 2008 MCS Electronics

will work with K from 0-255. So you can set multiple bits!

The instruction SBI port, K will work with K from 0-7 and will set only ONE bit in a IO-
port register.

The same applies to the CBR and CBI instructions.

You can use constants too:

.equ myval = (10+2)/4
ldi r24,myval+2 '5
ldi r24,asc("A")+1 ; load with 66

Or in BASIC with CONST :

CONST Myval = (10+2) / 4
Ldi r24,myval

How to make your own libraries and call them from BASIC?
The files for this sample can be found as libdemo.bas in the SAMPLES dir and as
mylib.lib in the LIB dir.

First determine the used parameters and their type.
Also consider if they are passed by reference or by value

For example the sub test has two parameters:
x which is passed by value (copy of the variable)
y which is passed by reference(address of the variable)

In both cases the address of the variable is put on the soft stack which is indexed by
the Y pointer.

The first parameter (or a copy) is put on the soft stack first
To refer to the address you must use:

ldd r26 , y + 0
ldd r27 , y + 1

This loads the address into pointer X
The second parameter will also be put on the soft stack so :
The reference for the x variable will be changed :

To refer to the address of x you must use:
ldd r26 , y + 2
ldd r27 , y + 3

To refer to the last parameter y you must use
ldd r26 , y + 0
ldd r27 , y + 1

239BASCOM Language Fundamentals

© 2008 MCS Electronics

Write the sub routine as you are used too but include the name within brackets []

[test]
test:
ldd r26,y+2 ; load address of x
ldd r27,y+3
ld r24,x ; get value into r24
inc r24 ; value + 1
st x,r24 ; put back
ldd r26,y+0 ; address of y
ldd r27,y+1
st x,r24 ; store
ret ; ready
[end]

To write a function goes the same way.
A function returns a result so a function has one additional parameter.
It is generated automatic and it has the name of the function.
This way you can assign the result to the function name

For example:

Declare Function Test(byval x as byte , y as byte) as byte
A virtual variable will be created with the name of the function in this case test.
It will be pushed on the soft stack with the Y-pointer.

To reference to the result or name of the function (test) the address will be:
y + 0 and y + 1
The first variable x will bring that to y + 2 and y + 3

And the third variable will cause that 3 parameters are saved on the soft stack

To reference to test you must use :
ldd r26 , y + 4
ldd r27 , y + 5

To reference variable x
ldd r26 , y + 2
ldd r27 , y + 3

And to reference variable y

ldd r26 , y + 0
ldd r27 , y + 1

When you use exit sub or exit function you also need to provide an additional label. It
starts with sub_ and must be completed with the function / sub routine name. In our
example:

sub_test:

LOCALS
When you use local variables thing become more complicated.

240 BASCOM-AVR

© 2008 MCS Electronics

Each local variable address will be put on the soft stack too

When you use 1 local variable its address will become

ldd r26, y+0
ldd r27 , y + 1

All other parameters must be increased with 2 so the reference to y variable changes
from

ldd r26 , y + 0 to ldd r26 , y + 2
ldd r27 , y + 1 to ldd r27 , y + 3

And of course also for the other variables.

When you have more local variables just add 2 for each.

Finally you save the file as a .lib file
Use the library manager to compile it into the lbx format.
The declare sub / function must be in the program where you use the sub / function.

The following is a copy of the libdemo.bas file :

'define the used library

$lib "mylib.lib"

'also define the used routines

$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X As Byte , Y As Byte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

When you use ports in your library you must use .equ to specify the address:
.equ EEDR=$1d
In R24, EEDR

This way the library manager knows the address of the port during compile time.

As an alternative precede the mnemonic with a * so the code will not be compiled
into the lib. The address of the register will be resolved at run time in that case.

This chapter is not intended to teach you ASM programming. But when you find a

241BASCOM Language Fundamentals

© 2008 MCS Electronics

topic is missing to interface BASCOM with ASM send me an email.

Translation
In version 1.11.7.5 of the compiler some mnemonics are translated when there is a
need for.

For example, SBIC will work only on normal PORT registers. This because the address
may not be greater then 5 bits as 3 bits are used for the pin number(0-7).

SBIC worked well in the old AVR chips(AT90Sxxxx) but in the Mega128 where PORTG
is on a high address, it will not work.

You always needs a normal register when you want to manipulate the bits of an
external register.

For example :
LDS r23, PORTG ; get value of PORTG register
SBR r23,128 ; set bit 7
STS PORTG, R23

The mnemonics that are translated by the compiler are : IN, OUT, SBIC, SBIS, SBI
and CBI.

The compiler will use register R23 for this. So make sure it is not used.

Special instructions
ADR Label ; will create a word with the address of the label name
ADR2 Label ; will create a word with the address of the label name, multiplied by 2 to
get the byte address since word addresses are used. This is convenient when loading
the Z-pointer to use (E)LPM.

5.4 Assembler mnemonics

BASCOM supports the mnemonics as defined by Atmel.

The Assembler accepts mnemonic instructions from the instruction set.

A summary of the instruction set mnemonics and their parameters is given here. For
a detailed description of the Instruction set, refer to the AVR Data Book.

Mnemonics Operand
s

Description Operation Flags Cloc
k

ARITHMETIC
AND LOGIC
INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd = Rd + Rr Z,C,N,V,
H

1

ADC Rd, Rr Add with Carry Rd = Rd + Rr + C Z,C,N,V,
H

1

SUB Rd, Rr Subtract without Carry Rd = Rd – Rr Z,C,N,V,
H

1

SUBI Rd, K Subtract Immediate Rd = Rd – K Z,C,N,V,
H

1

242 BASCOM-AVR

© 2008 MCS Electronics

SBC Rd, Rr Subtract with Carry Rd = Rd - Rr - C Z,C,N,V,
H

1

SBCI Rd, K Subtract Immediate
with Carry

Rd = Rd - K - C Z,C,N,V,
H

1

AND Rd, Rr Logical AND Rd = Rd · Rr Z,N,V 1

ANDI Rd, K Logical AND with
Immediate

Rd = Rd · K Z,N,V 1

OR Rd, Rr Logical OR Rd = Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with
Immediate

Rd = Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd = Rd Å Rr Z,N,V 1

COM Rd Ones Complement Rd = $FF - Rd Z,C,N,V 1

NEG Rd Twos Complement Rd = $00 - Rd Z,C,N,V,
H

1

SBR Rd,K Set Bit(s) in Register Rd = Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd = Rd · ($FFh -
K)

Z,N,V 1

INC Rd Increment Rd = Rd + 1 Z,N,V 1

DEC Rd Decrement Rd = Rd - 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd = Rd · Rd Z,N,V 1

CLR Rd Clear Register Rd = Rd Å Rd Z,N,V 1

SER Rd Set Register Rd = $FF None 1

ADIW

Adiw r24, K6

Rdl, K6 Add Immediate to
Word

Rdh:Rdl = Rdh:
Rdl + K

Z,C,N,V,
S

2

SBIW

Sbiw R24,K6

Rdl, K6 Subtract Immediate
from Word

Rdh:Rdl = Rdh:
Rdl - K

Z,C,N,V,
S

2

MUL Rd,Rr Multiply Unsigned R1, R0 = Rd * Rr C 2 *

BRANCH
INSTRUCTIONS

RJMP K Relative Jump PC = PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC = Z None 2

JMP K Jump PC = k None 3

RCALL K Relative Call
Subroutine

PC = PC + k + 1 None 3

ICALL Indirect Call to (Z) PC = Z None 3

CALL K Call Subroutine PC = k None 4

RET Subroutine Return PC = STACK None 4

RETI Interrupt Return PC = STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC =
PC + 2 or 3

None 1 / 2

CP Rd,Rr Compare Rd - Rr Z,C,N,V,
H,

1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,
H

1

CPI Rd,K Compare with
Immediate

Rd - K Z,C,N,V,
H

1

SBRC Rr, b Skip if Bit in Register
Cleared

If (Rr(b)=0) PC =
PC + 2 or 3

None 1 / 2

SBRS Rr, b Skip if Bit in Register If (Rr(b)=1) PC = None 1 / 2

243BASCOM Language Fundamentals

© 2008 MCS Electronics

Set PC + 2 or 3

SBIC P, b Skip if Bit in I/O
Register Cleared

If(I/O(P,b)=0) PC
= PC + 2 or 3

None 2 / 3

SBIS P, b Skip if Bit in I/O
Register Set

If(I/O(P,b)=1) PC
= PC + 2 or 3

None 2 / 3

BRBS s, k Branch if Status Flag
Set

if (SREG(s) = 1)
then PC=PC+k +
1

None 1 / 2

BRBC s, k Branch if Status Flag
Cleared

if (SREG(s) = 0)
then PC=PC+k +
1

None 1 / 2

BREQ K Branch if Equal if (Z = 1) then PC
= PC + k + 1

None 1 / 2

BRNE K Branch if Not Equal if (Z = 0) then PC
= PC + k + 1

None 1 / 2

BRCS K Branch if Carry Set if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRCC K Branch if Carry
Cleared

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRSH K Branch if Same or
Higher

if (C = 0) then PC
= PC + k + 1

None 1 / 2

BRLO K Branch if Lower if (C = 1) then PC
= PC + k + 1

None 1 / 2

BRMI K Branch if Minus if (N = 1) then PC
= PC + k + 1

None 1 / 2

BRPL K Branch if Plus if (N = 0) then PC
= PC + k + 1

None 1 / 2

BRGE K Branch if Greater or
Equal, Signed

if (N V= 0) then
PC = PC+ k + 1

None 1 / 2

BRLT K Branch if Less Than,
Signed

if (N V= 1) then
PC = PC + k + 1

None 1 / 2

BRHS K Branch if Half Carry
Flag Set

if (H = 1) then PC
= PC + k + 1

None 1 / 2

BRHC K Branch if Half Carry
Flag Cleared

if (H = 0) then PC
= PC + k + 1

None 1 / 2

BRTS K Branch if T Flag Set if (T = 1) then PC
= PC + k + 1

None 1 / 2

BRTC K Branch if T Flag
Cleared

if (T = 0) then PC
= PC + k + 1

None 1 / 2

BRVS K Branch if Overflow
Flag is Set

if (V = 1) then PC
= PC + k + 1

None 1 / 2

BRVC K Branch if Overflow
Flag is Cleared

if (V = 0) then PC
= PC + k + 1

None 1 / 2

BRIE K Branch if Interrupt
Enabled

if (I = 1) then PC
= PC + k + 1

None 1 / 2

BRID K Branch if Interrupt
Disabled

if (I = 0) then PC
= PC + k + 1

None 1 / 2

DATA
TRANSFER
INSTRUCTIONS

MOV Rd, Rr Copy Register Rd = Rr None 1

LDI Rd, K Load Immediate Rd = K None 1

244 BASCOM-AVR

© 2008 MCS Electronics

LDS Rd, k Load Direct Rd = (k) None 2

LD Rd, X Load Indirect Rd = (X) None 2

LD Rd, X+ Load Indirect and
Post-Increment

Rd = (X), X =
X + 1

None 2

LD Rd, -X Load Indirect and Pre-
Decrement

X = X - 1, Rd =
(X)

None 2

LD Rd, Y Load Indirect Rd = (Y) None 2

LD Rd, Y+ Load Indirect and
Post-Increment

Rd = (Y), Y = Y +
1

None 2

LD Rd, -Y Load Indirect and Pre-
Decrement

Y = Y - 1, Rd =
(Y)

None 2

LDD Rd,Y+q Load Indirect with
Displacement

Rd = (Y + q) None 2

LD Rd, Z Load Indirect Rd = (Z) None 2

LD Rd, Z+ Load Indirect and
Post-Increment

Rd = (Z), Z =
Z+1

None 2

LD Rd, -Z Load Indirect and Pre-
Decrement

Z = Z - 1, Rd =
(Z)

None 2

LDD Rd, Z+q Load Indirect with
Displacement

Rd = (Z + q) None 2

STS k, Rr Store Direct (k) = Rr None 2

ST X, Rr Store Indirect (X) = Rr None 2

ST X+, Rr Store Indirect and
Post-Increment

(X) = Rr, X = X +
1

None 2

ST -X, Rr Store Indirect and Pre-
Decrement

X = X - 1, (X) =
Rr

None 2

ST Y, Rr Store Indirect (Y) = Rr None 2

ST Y+, Rr Store Indirect and
Post-Increment

(Y) = Rr, Y = Y +
1

None 2

ST -Y, Rr Store Indirect and Pre-
Decrement

Y = Y - 1, (Y) =
Rr

None 2

STD Y+q,Rr Store Indirect with
Displacement

(Y + q) = Rr None 2

ST Z, Rr Store Indirect (Z) = Rr None 2

ST Z+, Rr Store Indirect and
Post-Increment

(Z) = Rr, Z = Z +
1

None 2

ST -Z, Rr Store Indirect and Pre-
Decrement

Z = Z - 1, (Z) =
Rr

None 2

STD Z+q,Rr Store Indirect with
Displacement

(Z + q) = Rr None 2

LPM Load Program Memory R0 =(Z) None 3

IN Rd, P In Port Rd = P None 1

OUT P, Rr Out Port P = Rr None 1

PUSH Rr Push Register on Stack STACK = Rr None 2

POP Rd Pop Register from
Stack

Rd = STACK None 2

BIT AND BIT-
TEST
INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1) =Rd(n),
Rd(0)= 0,C=Rd

Z,C,N,V,
H

1

245BASCOM Language Fundamentals

© 2008 MCS Electronics

(7)

LSR Rd Logical Shift Right Rd(n) = Rd(n+1),
Rd(7) =0, C=Rd
(0)

Z,C,N,V 1

ROL Rd Rotate Left Through
Carry

Rd(0) =C, Rd
(n+1) =Rd(n),
C=Rd(7)

Z,C,N,V,
H

1

ROR Rd Rotate Right Through
Carry

Rd(7) =C,Rd(n)
=Rd(n+1),C¬Rd
(0)

Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) = Rd(n+1),
n=0..6

Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) « Rd
(7..4)

None 1

BSET S Flag Set SREG(s) = 1 SREG(s) 1

BCLR S Flag Clear SREG(s) = 0 SREG(s) 1

SBI P, b Set Bit in I/O Register I/O(P, b) = 1 None 2

CBI P, b Clear Bit in I/O
Register

I/O(P, b) = 0 None 2

BST Rr, b Bit Store from Register
to T

T = Rr(b) T 1

BLD Rd, b Bit load from T to
Register

Rd(b) = T None 1

SEC Set Carry C = 1 C 1

CLC Clear Carry C = 0 C 1

SEN Set Negative Flag N = 1 N 1

CLN Clear Negative Flag N = 0 N 1

SEZ Set Zero Flag Z = 1 Z 1

CLZ Clear Zero Flag Z = 0 Z 1

SEI Global Interrupt
Enable

I = 1 I 1

CLI Global Interrupt
Disable

I = 0 I 1

SES Set Signed Test Flag S = 1 S 1

CLS Clear Signed Test Flag S = 0 S 1

SEV Set Twos Complement
Overflow

V = 1 V 1

CLV Clear Twos
Complement Overflow

V = 0 V 1

SET Set T in SREG T = 1 T 1

CLT Clear T in SREG T = 0 T 1

SHE Set Half Carry Flag in
SREG

H = 1 H 1

CLH Clear Half Carry Flag
in SREG

H = 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

*) Not available in base-line microcontrollers

The Assembler is not case sensitive.

246 BASCOM-AVR

© 2008 MCS Electronics

The operands have the following forms:

Rd: R0-R31 or R16-R31 (depending on instruction)
Rr: R0-R31
b: Constant (0-7)
s: Constant (0-7)
P: Constant (0-31/63)
K: Constant (0-255)
k: Constant, value range depending on instruction.
q: Constant (0-63)

Rdl: R24, R26, R28, R30. For ADIW and SBIW instructions

5.5 Reserved Words

The following table shows the reserved BASCOM statements or characters.

^
!
;
$BAUD , $BAUD1 , $BOOT , $CRYSTAL ,$DATA ,$DBG ,$DEFAULT , $END , $EEPROM ,
$EXTERNAL , $INCLUDE , $LCD , $LCDRS , $LCDPUTCTRL , $LCDPUTDATA , $LCDVFO
, $LIB ,$MAP ,$REGFILE ,$SERIALINPUT ,$SERIALINPUT1, $SERIALINPUT2LCD ,
$SERIALOUTPUT , $SERIALOUTPUT1 ,
$TINY ,$WAITSTATE ,$XRAMSIZE , $XRAMSTART

1WRESET ,1WREAD ,1WWRITE

ACK ,ABS ,ALIAS ,AND ,ACOS ,AS , ASC , ASIN , AT , ATN, ATN2

BAUD, BCD , BIN , BIN2GRAY , BINVAL , BIT , BITWAIT , BLINK , BOOLEAN , BYTE ,
BYVAL

CALL , CAPTURE1 , CASE , CHECKSUM , CHR , CIRCLE , CLS , CLOSE , COMPARE1x ,
CONFIG , CONST , COS , COSH , COUNTER , COUNTERx ,
CPEEK , CPEEKH , CRC8 , CRC16 , CRC32 , CRYSTAL , CURSOR

DATA, DATE$, DBG , DEBOUNCE , DECR , DECLARE , DEFBIT , DEFBYTE , DEFLNG ,
DEFWORD , DEG2RAD , DEGSNG , DEFLCDCHAR, DEFINT ,
DEFWORD , DELAY , DIM , DISABLE , DISKSIZE , DISKFREESIZE , DISPLAY , DO ,
DOUBLE, DOWNTO , DTMFOUT

ELSE, ELSEIF, ENABLE, END, EOF, ERAM, ERASE, ERR, EXIT, EXP, EXTERNAL, FIX,
FLUSH, FOR, FOURTH, FOURTHLINE, FREEFILE, FUNCTION

GATE, GET, GETADC, GETKBD, GETATKBD , GETRC5, GLCDDATA , GLCDCMD, GOSUB,
GOTO, GRAY2BIN

HEXVAL,HIGH, HOME

I2CINIT, I2CRECEIVE, I2CSEND, I2CSTART, I2CSTOP, I2CRBYTE, I2CWBYTE, IDLE, IF
, INCR , INKEY , INP , INPUT , INPUTBIN , INPUTHEX ,
INT, INT0, INT1, INTEGER, INTERNAL, INSTR, IS, ISCHARWAITING

LCASE, LCD, LCDAT, LEFT, LEFT, LEN, LINE, LOAD, LOADLABEL, LOC , LOF , LOCAL,
LOCATE, LOG , LOG10 , LONG, LOOKUP, LOOKUPSTR,
LOOP, LTRIM, LOOKDOWN, LOW, LOWER, LOWERLINE

247BASCOM Language Fundamentals

© 2008 MCS Electronics

MAKEBCD, MAKEDEC, MAKEINT, MID, MIN, MAX, MOD, MODE

NACK, NEXT, NOBLINK, NOSAVE, NOT

OFF, ON, OR, OUT, OUTPUT

PEEK, POKE, PORTx, POWER, POWERDOWN, PRINT, PRINTBIN, PULSEOUT, PUT,
PWM1x, RAD2DEG, RC5SEND, RC6SEND, READ, READEEPROM
REM, RESET, RESTORE, RETURN, RIGHT, RIGHT, ROTATE, ROUND, RTRIM

SEEK, SELECT, SERIAL, SET, SERIN , SEROUT, SETFONT, SGN, SHIFT, SHIFTLCD,
SHIFTCURSOR,SHIFTIN , SHIFTOUT , SHOWPIC, SHOWPICE,
SIN, SINH , SONYSEND , SOUND , SPACE, SPC , SPIINIT , SPIIN , SPIMOVE ,
SPIOUT , START , STEP , STR , STRING , STOP , SUB , SWAP , SQR

TAN , TANH , THEN , TIME$, THIRD , THIRDLINE , TIMERx , TO , TRIM

UCASE, UNTIL , UPPER , UPPERLINE

VAL, VARPTR

WAIT, WAITKEY, WAITMS , WAITUS , WATCHDOG , WRITEEEPROM , WEND , WHILE ,
WORD
XOR, XRAM

5.6 Error Codes

The following table lists errors that can occur.

Error Description

1 Unknown statement

2 Unknown structure EXIT statement

3 WHILE expected

4 No more space for IRAM BIT

5 No more space for BIT

6 . expected in filename

7 IF THEN expected

8 BASIC source file not found

9 Maximum 128 aliases allowed

10 Unknown LCD type

11 INPUT, OUTPUT, 0 or 1 expected

12 Unknown CONFIG parameter

13 CONST already specified

14 Only IRAM bytes supported

15 Wrong data type

16 Unknown Definition

17 9 parameters expected

18 BIT only allowed with IRAM or SRAM

19 STRING length expected (DIM S AS STRING * 12 ,for example)

20 Unknown DATA TYPE

21 Out of IRAM space

22 Out of SRAM space

23 Out of XRAM space

248 BASCOM-AVR

© 2008 MCS Electronics

24 Out of EPROM space

25 Variable already dimensioned

26 AS expected

27 parameter expected

28 IF THEN expected

29 SELECT CASE expected

30 BIT's are GLOBAL and can not be erased

31 Invalid data type

32 Variable not dimensioned

33 GLOBAL variable can not be ERASED

34 Invalid number of parameters

35 3 parameters expected

36 THEN expected

37 Invalid comparison operator

38 Operation not possible on BITS

39 FOR expected

40 Variable can not be used with RESET

41 Variable can not be used with SET

42 Numeric parameter expected

43 File not found

44 2 variables expected

45 DO expected

46 Assignment error

47 UNTIL expected

50 Value doesn't fit into INTEGER

51 Value doesn't fit into WORD

52 Value doesn't fit into LONG

60 Duplicate label

61 Label not found

62 SUB or FUNCTION expected first

63 Integer or Long expected for ABS()

64 , expected

65 device was not OPEN

66 device already OPENED

68 channel expected

70 BAUD rate not possible

71 Different parameter type passed then declared

72 Getclass error. This is an internal error.

73 Printing this FUNCTION not yet supported

74 3 parameters expected

80 Code does not fit into target chip

81 Use HEX(var) instead of PRINTHEX

82 Use HEX(var) instead of LCDHEX

85 Unknown interrupt source

86 Invalid parameter for TIMER configuration

87 ALIAS already used

88 0 or 1 expected

89 Out of range : must be 1-4

249BASCOM Language Fundamentals

© 2008 MCS Electronics

90 Address out of bounds

91 INPUT, OUTPUT, BINARY, or RANDOM expected

92 LEFT or RIGHT expected

93 Variable not dimensioned

94 Too many bits specified

95 Falling or rising expected for edge

96 Pre scale value must be 1,8,64,256 or 1024

97 SUB or FUNCTION must be DECLARED first

98 SET or RESET expected

99 TYPE expected

100 No array support for IRAM variables

101 Can't find HW-register

102 Error in internal routine

103 = expected

104 LoadReg error

105 StoreBit error

106 Unknown register

107 LoadnumValue error

108 Unknown directive in device file

109 = expected in include file for .EQU

110 Include file not found

111 SUB or FUNCTION not DECLARED

112 SUB/FUNCTION name expected

113 SUB/FUNCTION already DECLARED

114 LOCAL only allowed in SUB or FUNCTION

115 #channel expected

116 Invalid register file

117 Unknown interrupt

126 NEXT expected.

129 (or) missing.

200 .DEF not found

201 Low Pointer register expected

202 .EQU not found, probably using functions that are not supported by the
selected chip

203 Error in LD or LDD statement

204 Error in ST or STD statement

205 } expected

206 Library file not found

207 Library file already registered

210 Bit definition not found

211 External routine not found

212 LOW LEVEL, RISING or FALLING expected

213 String expected for assignment

214 Size of XRAM string 0

215 Unknown ASM mnemonic

216 CONST not defined

217 No arrays allowed with BIT/BOOLEAN data type

218 Register must be in range from R16-R31

250 BASCOM-AVR

© 2008 MCS Electronics

219 INT0-INT3 are always low level triggered in the MEGA

220 Forward jump out of range

221 Backward jump out of range

222 Illegal character

223 * expected

224 Index out of range

225 () may not be used with constants

226 Numeric of string constant expected

227 SRAM start greater than SRAM end

228 DATA line must be placed after the END statement

229 End Sub or End Function expected

230 You can not write to a PIN register

231 TO expected

232 Not supported for the selected micro

233 READ only works for normal DATA lines, not for EPROM data

234 ') block comment expected first

235 '(block comment expected first

236 Value does not fit into byte

238 Variable is not dimensioned as an array

239 Invalid code sequence because of AVR hardware bug

240 END FUNCTION expected

241 END SUB expected

242 Source variable does not match the target variable

243 Bit index out of range for supplied data type

244 Do not use the Y pointer

245 No arrays supported with IRAM variable

246 No more room for .DEF definitions

247 . expected

248 BYVAL should be used in declaration

249 ISR already defined

250 GOSUB expected

251 Label must be named SECTIC

252 Integer or Word expected

253 ERAM variable can not be used

254 Variable expected

255 Z or Z+ expected

256 Single expected

257 "" expected

258 SRAM string expected

259 - not allowed for a byte

260 Value larger than string length

261 Array expected

262 ON or OFF expected

263 Array index out of range

264 Use ECHO OFF and ECHO ON instead

265 offset expected in LDD or STD like Z+1

266 TIMER0, TIMER1 or TIMER2 expected

267 Numeric constant expected

251BASCOM Language Fundamentals

© 2008 MCS Electronics

268 Param must be in range from 0-3

269 END SELECT expected

270 Address already occupied

322 Data type not supported with statement

323 Label too long

324 Chip not supported by I2C slave library

325 Pre-scale value must be 1,8,32,128,256 or 1024

326 #ENDIF expected

327 Maximum size is 255

328 Not valid for SW UART

329 FileDateTime can only be assigned to a variable

330 Maximum value for OUT is &H3F

332 $END ASM expected

334 ') blockcomment end expected

335 Use before DIM statements

336 Could not set specified CLOCK value

999 DEMO/BETA only supports 4096 bytes of code

9999 I hope you do not see this one.

Other error codes are internal ones. Please report them when you get them.

5.7 Newbie problems

When you are using the AVR without knowledge of the architecture you can
experience some problems.

-I can not set a pin high or low
-I can not read the input on a pin

The AVR has 3 registers for each port. A port normally consists of 8 pins. A port is
named with a letter from A-F. All parts have PORTB.

When you want to set a single pin high or low you can use the SET and RESET
statements. But before you use them the AVR chip must know in which direction you
are going to use the pins.

Therefore there is a register named DDRx for each port. In our sample it is named
DDRB. When you write a 0 to the bit position of the pin you can use the pin as an
input. When you write a 1 you can use it as output.

After the direction bit is set you must use either the PORTx register to set a logic level
or the PINx register to READ a pin level.

Yes the third register is the PINx register. In our sample, PINB.

For example :
DDRB = &B1111_0000 ' upper nibble is output, lower nibble is input
SET PORTB.7 'will set the MS bit to +5V
RESET PORTB.7 'will set MS bit to 0 V

To read a pin :
Print PINB.0 'will read LS bit and send it to the RS-232

252 BASCOM-AVR

© 2008 MCS Electronics

You may also read from PORTx but it will return the value that was last written to it.

To read or write whole bytes use :
PORTB = 0 'write 0 to register making all pins low
PRINT PINB 'print input on pins

I want to write a special character but they are not printed correct:

Well this is not a newbie problem but I put it here so you could find it.
Some ASCII characters above 127 are interpreted wrong depending on country
settings. To print the right value use : PRINT "Test{123}?"

The {xxx} will be replaced with the correct ASCII character.

You must use 3 digits otherwise the compiler will think you want to print {12} for
example. This should be {012}

My application was working but with a new micro it is slow and print funny

Most new micro’s have an internal oscillator that is enabled by default. As it runs on 1
or 4 or 8 MHz, this might be slower or faster then your external crystal. This results in
slow operation.

As the baud rate is derived from the clock, it will also result in wrong baud rates.

Solution : change frequency with $crystal so the internal clock will be used.
Or change the fuse bits so the external xtal will be used.

Some bits on Port C are not working
Some chips have a JTAG interface. Disable it with the proper fuse bit .

5.8 Tips and tricks

This section describes tips and tricks received from users.

Kyle Kronyak : Using all the RAM from an external RAM chip.

I have found a way to use the 607 bytes of external SRAM that are normally not
available when using hardware SRAM support with BASCOM-AVR. It's actually quite
simple. Basically the user just has to disconnect A15 from /CE on the SRAM module,
and tie /CE to ground. This makes the chip enabled all the time. Addresses 1-32768
will then be available! The reason is because normally when going above 32768, the
A15 pin would go high, disabling the chip. When A15 is not connected to /CE, the chip
is always enabled, and allows the address number to "roll over". Therefore address
32162 is actually 0, 32163 is actually 1, 32164 is actually 2, etc. I have only tested
this on a 32k SRAM chip. It definitely won't work on a 64k chip, and I believe it
already works on any chip below 32k without modification of the circuit.

Programming problems

- When you have unreliable results, use a shielded LPT cable

253BASCOM Language Fundamentals

© 2008 MCS Electronics

- The AVR chips have a bug, if the erase is not complete. It tend's to hang at some
point. Sometimes although the system reports erased but blank check report "not
empty". As per Atmel Data Errata You must drop the vcc by 0.5V (a diode 1N4148 in
Series) if the erase is not happening. (Such Chip's are unreliable and hence can be
used only if you are sure). This can happen after you have programmed the chip
many times.

5.9 ASCII chart

 Decimal Octal Hex Binary Value
 ------- ----- --- ------ -----
 000 000 000 00000000 NUL (Null char.)
 001 001 001 00000001 SOH (Start of Header)
 002 002 002 00000010 STX (Start of Text)
 003 003 003 00000011 ETX (End of Text)
 004 004 004 00000100 EOT (End of Transmission)
 005 005 005 00000101 ENQ (Enquiry)
 006 006 006 00000110 ACK (Acknowledgment)
 007 007 007 00000111 BEL (Bell)
 008 010 008 00001000 BS (Backspace)
 009 011 009 00001001 HT (Horizontal Tab)
 010 012 00A 00001010 LF (Line Feed)
 011 013 00B 00001011 VT (Vertical Tab)
 012 014 00C 00001100 FF (Form Feed)
 013 015 00D 00001101 CR (Carriage Return)
 014 016 00E 00001110 SO (Shift Out)
 015 017 00F 00001111 SI (Shift In)
 016 020 010 00010000 DLE (Data Link Escape)
 017 021 011 00010001 DC1 (XON) (Device Control 1)
 018 022 012 00010010 DC2 (Device Control 2)
 019 023 013 00010011 DC3 (XOFF)(Device Control 3)
 020 024 014 00010100 DC4 (Device Control 4)
 021 025 015 00010101 NAK (Negative Acknowledgement)
 022 026 016 00010110 SYN (Synchronous Idle)
 023 027 017 00010111 ETB (End of Trans. Block)
 024 030 018 00011000 CAN (Cancel)
 025 031 019 00011001 EM (End of Medium)
 026 032 01A 00011010 SUB (Substitute)
 027 033 01B 00011011 ESC (Escape)
 028 034 01C 00011100 FS (File Separator)
 029 035 01D 00011101 GS (Group Separator)
 030 036 01E 00011110 RS (Request to Send)(Record Separator)
 031 037 01F 00011111 US (Unit Separator)
 032 040 020 00100000 SP (Space)
 033 041 021 00100001 ! (exclamation mark)
 034 042 022 00100010 " (double quote)
 035 043 023 00100011 # (number sign)
 036 044 024 00100100 $ (dollar sign)
 037 045 025 00100101 % (percent)
 038 046 026 00100110 & (ampersand)
 039 047 027 00100111 ' (single quote)
 040 050 028 00101000 ((left/opening parenthesis)
 041 051 029 00101001) (right/closing parenthesis)
 042 052 02A 00101010 * (asterisk)
 043 053 02B 00101011 + (plus)
 044 054 02C 00101100 , (comma)
 045 055 02D 00101101 - (minus or dash)

254 BASCOM-AVR

© 2008 MCS Electronics

 046 056 02E 00101110 . (dot)
 047 057 02F 00101111 / (forward slash)
 048 060 030 00110000 0
 049 061 031 00110001 1
 050 062 032 00110010 2
 051 063 033 00110011 3
 052 064 034 00110100 4
 053 065 035 00110101 5
 054 066 036 00110110 6
 055 067 037 00110111 7
 056 070 038 00111000 8
 057 071 039 00111001 9
 058 072 03A 00111010 : (colon)
 059 073 03B 00111011 ; (semi-colon)
 060 074 03C 00111100 < (less than)
 061 075 03D 00111101 = (equal sign)
 062 076 03E 00111110 > (greater than)
 063 077 03F 00111111 ? (question mark)
 064 100 040 01000000 @ (AT symbol)
 065 101 041 01000001 A
 066 102 042 01000010 B
 067 103 043 01000011 C
 068 104 044 01000100 D
 069 105 045 01000101 E
 070 106 046 01000110 F
 071 107 047 01000111 G
 072 110 048 01001000 H
 073 111 049 01001001 I
 074 112 04A 01001010 J
 075 113 04B 01001011 K
 076 114 04C 01001100 L
 077 115 04D 01001101 M
 078 116 04E 01001110 N
 079 117 04F 01001111 O
 080 120 050 01010000 P
 081 121 051 01010001 Q
 082 122 052 01010010 R
 083 123 053 01010011 S
 084 124 054 01010100 T
 085 125 055 01010101 U
 086 126 056 01010110 V
 087 127 057 01010111 W
 088 130 058 01011000 X
 089 131 059 01011001 Y
 090 132 05A 01011010 Z
 091 133 05B 01011011 [(left/opening bracket)
 092 134 05C 01011100 \ (back slash)
 093 135 05D 01011101] (right/closing bracket)
 094 136 05E 01011110 ^ (caret/circumflex)
 095 137 05F 01011111 _ (underscore)
 096 140 060 01100000 `
 097 141 061 01100001 a
 098 142 062 01100010 b
 099 143 063 01100011 c
 100 144 064 01100100 d
 101 145 065 01100101 e
 102 146 066 01100110 f
 103 147 067 01100111 g

255BASCOM Language Fundamentals

© 2008 MCS Electronics

 104 150 068 01101000 h
 105 151 069 01101001 i
 106 152 06A 01101010 j
 107 153 06B 01101011 k
 108 154 06C 01101100 l
 109 155 06D 01101101 m
 110 156 06E 01101110 n
 111 157 06F 01101111 o
 112 160 070 01110000 p
 113 161 071 01110001 q
 114 162 072 01110010 r
 115 163 073 01110011 s
 116 164 074 01110100 t
 117 165 075 01110101 u
 118 166 076 01110110 v
 119 167 077 01110111 w
 120 170 078 01111000 x
 121 171 079 01111001 y
 122 172 07A 01111010 z
 123 173 07B 01111011 { (left/opening brace)
 124 174 07C 01111100 | (vertical bar)
 125 175 07D 01111101 } (right/closing brace)
 126 176 07E 01111110 ~ (tilde)
 127 177 07F 01111111 DEL (delete)

Part

VI

257BASCOM Language Reference

© 2008 MCS Electronics

6 BASCOM Language Reference

6.1 $ASM

Action
Start of inline assembly code block.

Syntax
$ASM

Remarks
Use $ASM together with $END ASM to insert a block of assembler code in your BASIC
code. You can also precede each line with the ! sign.
Most ASM mnemonics can be used without the preceding ! too.

See also the chapter Mixing BASIC and Assembly and assembler mnemonics

Example
Dim C As Byte

Loadadr C , X 'load address of variable C into register X

$asm
 Ldi R24,1 ; load register R24 with the constant 1
 St X,R24 ; store 1 into variable c
$end Asm
Print C
End

6.2 $BAUD

Action
Instruct the compiler to override the baud rate setting from the options menu.

Syntax
$BAUD = var

Remarks
Var The baud rate that you want to use. This must be a

numeric constant.

The baud rate is selectable from the Compiler Settings . It is stored in a
configuration file. The $BAUD directive overrides the setting from the Compiler
Settings.

In the generated report, you can view which baud rate is actually generated. The
generated baud rate does depend on the used micro and crystal.

When you simulate a program you will not notice any problems when the baud rate is
not set to the value you expected. In real hardware a wrong baud rate can give weird

236 241

89

258 BASCOM-AVR

© 2008 MCS Electronics

results on the terminal emulator screen. For best results use a crystal that is a
multiple of the baud rate.

In the simulator you need to select the UART0-TAB to view the output of the UART0,
or to send data to this UART.

See also
$CRYSTAL , BAUD

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Print "Hello"

'Now change the baud rate in a program
Baud = 9600
Print "Did you change the terminal emulator baud rate too?"
End

6.3 $BAUD1

Action
Instruct the compiler to set the baud rate for the second hardware UART.

Syntax
$BAUD1 = var

Remarks
Var The baud rate that you want to use. This must be a

numeric constant.

In the generated report, you can view which baud rate is actually generated.

When you simulate a program you will not notice any problems when the baud rate is
not set to the value you expected. In real hardware a wrong baud rate can give weird
results on the terminal emulator screen. For best results use a crystal that is a
multiple of the baud rate.

Some AVR chips have 2 UARTS. For example the Mega161, Mega162, Mega103 and
Mega128. There are several other's and some new chips even have 4 UARTS.

In the simulator you need to select the UART1-TAB to view the output of the UART1,
or to send data to this UART.

See also
$CRYSTAL , BAUD , $BAUD

262 343

262 343 257

259BASCOM Language Reference

© 2008 MCS Electronics

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega162
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates BAUD1 directive and BAUD1
statement

'---

$regfile = "M162def.dat"
$baud1 = 2400
$crystal= 14000000 ' 14 MHz crystal

Open "COM2:" For BINARY As #1

Print #1 , "Hello"
'Now change the baud rate in a program
Baud1 = 9600 '
Print #1 , "Did you change the terminal emulator baud rate too?"
Close #1
End

6.4 $BGF

Action
Includes a BASCOM Graphic File.

Syntax
$BGF "file"

Remarks
file The file name of the BGF file to include.

Use SHOWPIC to display the BGF file. $BGF only task is to store the picture into the
compressed BASCOM Graphics Format(BGF).

See also
SHOWPIC , PSET , CONFIG GRAPHLCD

Example
'---
' (c) 1995-2005 MCS Electronics
' T6963C graphic display support demo
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
'2 GND GND
'3 +5V +5V
'4 -9V -9V potmeter
'5 /WR PORTC.0

749 682 416

260 BASCOM-AVR

© 2008 MCS Electronics

'6 /RD PORTC.1
'7 /CE PORTC.2
'8 C/D PORTC.3
'9 NC not
'10 RESET PORTC.4conneted
'11-18 D0-D7 PA
'19 FS PORTC.5
'20 NC not connected

$crystal = 8000000

'First we define that we use a graphic LCD

Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,
Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2
'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor Off

Wait 1
'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30

Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some other text on line 2
Locate 2 , 1 : Lcd "T6963c support"
Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"

Wait 2

Cls Text
' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it
on
For X = 0 To 140
 Pset X , 20 , 255 ' set the
pixel
Next

Wait 2

'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data

261BASCOM Language Reference

© 2008 MCS Electronics

Showpic 0 , 0 , Plaatje

Wait 2
Cls Text ' clear the
text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

6.5 $BOOT

Action
Instruct the compiler to include boot loader support.

Syntax
$BOOT = address

Remarks
address The boot loader address.

Some new AVR chips have a special boot section in the upper memory of the flash.
By setting some fuse bits you can select the code size of the boot section.
The code size also determines the address of the boot loader.

With the boot loader you can reprogram the chip when a certain condition occurs.
The sample checks a pin to see if a new program must be loaded.
When the pin is low there is a jump to the boot address.

The boot code must always be located at the end of your program.
It must be written in ASM since the boot loader may not access the application flash
rom. This because otherwise you could overwrite your running code!

The example is written for the M163. You can use the Upload file option of the
terminal emulator to upload a new hex file. The terminal emulator must have the
same baud rate as the chip. Under Options, Monitor, set the right upload speed and
set a monitor delay of 20. Writing the flash take time so after every line a delay must
be added while uploading a new file.

 The $BOOT directive is replaced by $LOADER. $LOADER works much simpler.
$BOOT is however still supported.

See also
$LOADER 285

262 BASCOM-AVR

© 2008 MCS Electronics

Example
See BOOT.BAS from the samples dir. But better look at the $LOADER directive.

6.6 $CRYSTAL

Action
Instruct the compiler to override the crystal frequency options setting.

Syntax
$CRYSTAL = var

Remarks
var A numeric constant with the Frequency of the crystal.

The frequency is selectable from the Compiler Settings . It is stored in a
configuration file. The $CRYSTAL directive overrides this setting.
It is best to use the $CRYSTAL directive as the used crystal frequency is visible in
your program that way.

 The $CRYSTAL directive only informs the compiler about the used frequency. It
does not set any fuse bit. The frequency must be know by the compiler for a number
of reasons. First when you use serial communications, and you specify $BAUD , the
compiler can calculate the proper settings for the UBR register. And second there are
a number of routines like WAITMS , that use the execution time of a loop to
generate a delay. When you specify $CRYSTAL = 1000000 (1 MHz) but in reality,
connect a 4 MHz XTAL, you will see that everything will work 4 times as quick.

Most new AVR chips have an internal oscillator that is enabled by default. Check the
data sheet for the default value.

See also
$BAUD , BAUD , CONFIG CLOCKDIV

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Print "Hello world"
End

6.7 $DATA

Action
Instruct the compiler to store the data in the DATA lines following the $DATA
directive, in code memory.

89

257

811

257 343 390

263BASCOM Language Reference

© 2008 MCS Electronics

Syntax
$DATA

Remarks
The AVR has built-in EEPROM. With the WRITEEEPROM and READEEPROM statements,
you can write to and read from the EEPROM.
To store information in the EEPROM, you can add DATA lines to your program that
hold the data that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to program
the EEPROM.

The compiler must know which DATA must go into the code memory and which into
the EEPROM memory and therefore two compiler directives were added.

$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive must
be stored in the EEP file.
To switch back to the default behavior of the DATA lines, you must use the $DATA
directive.

The READ statement that is used to read the DATA info may only be used with normal
DATA lines. It does not work with DATA stored in EEPROM.

 Do not confuse $DATA directive with the DATA statement.

So while normal DATA lines will store the specified data into the code memory of the
micro which is called the flash memory, the $EEPROM and $DATA will cause the data
to be stored into the EEPROM. The EEP file is a binary file.

See also
$EEPROM , READEEPROM , WRITEEEPROM , DATA

ASM
NONE

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates $DATA directive

'---

$regfile = "2313def.dat"
$baud = 19200
$crystal = 4000000 ' 4 MHz
crystal

Dim B As Byte
Readeeprom B , 0 'now B will

267 699 815 501

264 BASCOM-AVR

© 2008 MCS Electronics

be 1
End

Dta:
$eeprom
Data 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
$data
End

6.8 $DBG

Action
Enables debugging output to the hardware UART.

Syntax
$DBG

Remarks
Calculating the hardware, software and frame space can be a difficult task.
With $DBG the compiler will insert characters for the various spaces.

To the Frame space 'F' will be written. When you have a frame size of 4, FFFF will be
written.
To the Hardware space 'H' will be written. If you have a hardware stack space of 8,
HHHHHHHH will be written to this space.
To the software space 'S' will be written. If you have a software stack space of 6,
SSSSSS will be written.
The idea is that when a character is overwritten, it is being used. So by watching
these spaces you can determine if the space is used or not.
With the DBG statement a record is written to the HW UART. The record must be
logged to a file so it can be analyzed by the stack analyzer.

Make the following steps to determine the proper values:

· Make the frame space 40, the soft stack 20 and the HW stack 50
· Add $DBG to the top of your program
· Add a DBG statement to every Subroutine or Function
· Open the terminal emulator and open a new log file. By default it will have the

name of your current program with the .log extension
· Run your program and notice that it will dump information to the terminal

emulator
· When your program has executed all sub modules or options you have build in,

turn off the file logging and turn off the program
· Choose the Tools Stack analyzer option
· A window will be shown with the data from the log file
· Press the Advise button that will determine the needed space. Make sure that

there is at least one H, S and F in the data. Otherwise it means that all the data is
overwritten and that you need to increase the size.

· Press the Use button to use the advised settings.

As an alternative you can watch the space in the simulator and determine if the
characters are overwritten or not.

265BASCOM Language Reference

© 2008 MCS Electronics

The DBG statement will assign an internal variable named ___SUBROUTINE
Because the name of a SUB or Function may be 32 long, this variable uses 33 bytes!

___SUBROUTINE will be assigned with the name of the current SUB or FUNCTION.

When you first run a SUB named Test1234 it will be assigned with Test1234
When the next DBG statement is in a SUB named Test, it will be assigned with Test.
The 234 will still be there so it will be shown in the log file.

Every DBG record will be shown as a row.
The columns are:

Column Description

Sub Name of the sub or function from where the DBG was
used

FS Used frame space

SS Used software stack space

HS Used hardware stack space

Frame space Frame space

Soft stack Soft stack space

HW stack Hardware stack space

The Frame space is used to store temp and local variables.
It also stores the variables that are passed to subs/functions by value.
Because PRINT , INPUT and the FP num<>String conversion routines require a buffer,
the compiler always is using 24 bytes of frame space.

When the advise is to use 2 bytes of frame space, the setting will be 24+2=26.

For example when you use : print var, var need to be converted into a string before it
can be printed or shown with LCD.

266 BASCOM-AVR

© 2008 MCS Electronics

An alternative for the buffer would be to setup a temp buffer and free it once finished.
This gives more code overhead.
In older version of BASCOM the start of the frame was used for the buffer but that
gave conflicts when variables were printed from an ISR.

See also
DBG

6.9 $DEFAULT

Action
Set the default for data types dimensioning to the specified type.

Syntax
$DEFAULT = var

Remarks
Var SRAM, XRAM, ERAM

Each variable that is dimensioned will be stored into SRAM, the internal memory of
the chip. You can override it by specifying the data type.
Dim B As XRAM Byte , will store the data into external memory.

When you want all your variables to be stored in XRAM for example, you can use the
statement : $DEFAULT XRAM
Each Dim statement will place the variable in XRAM in that case.

To switch back to the default behavior, use $END $DEFAULT

See also
NONE

ASM
NONE

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

$default Xram
Dim A As Byte , B As Byte , C As Byte
'a,b and c will be stored into XRAM

$default Sram
Dim D As Byte
'D will be stored in internal memory, SRAM

525

267BASCOM Language Reference

© 2008 MCS Electronics

6.10 $EEPLEAVE

Action
Instructs the compiler not to recreate or erase the EEP file.

Syntax
$EEPLEAVE

Remarks
When you want to store data in the EEPROM, and you use an external tool to create
the EEP file, you can use the $EEPLEAVE directive.
Normally the EEP file will be created or erased, but this directive will not touch any
existing EEP file.
Otherwise you would erase an existing EEP file, created with another tool.

See also
$EEPROMHEX

Example
NONE

6.11 $EEPROM

Action
Instruct the compiler to store the data in the DATA lines following the $EEPROM
directive in an EEP file.

Syntax
$EEPROM

Remarks
The AVR has built-in EEPROM. With the WRITEEEPROM and READEEPROM statements,
you can write to and read from the EEPROM.
To store information in the EEPROM, you can add DATA lines to your program that
hold the data that must be stored in the EEPROM.
A separate file is generated with the EEP extension. This file can be used to program
the EEPROM.

The compiler must know which DATA must go into the code memory and which into
the EEPROM memory and therefore two compiler directives were added.

$EEPROM and $DATA.

$EEPROM tells the compiler that the DATA lines following the compiler directive must
be stored in the EEP file.
To switch back to the default behavior of the DATA lines, you must use the $DATA
directive.

The READ statement that is used to read the DATA info may only be used with normal

268

268 BASCOM-AVR

© 2008 MCS Electronics

DATA lines. It does not work with DATA stored in EEPROM.

 Do not confuse $DATA directive with the DATA statement.

So while normal DATA lines will store the specified data into the code memory of the
micro which is called the flash memory, the $EEPROM and $DATA will cause the
data to be stored into the EEPROM. The EEP file is a binary file. The $EEPROMHEX
directive can be used to create Intel HEX records in the EEP file

See also
$EEPROM , READEEPROM , WRITEEEPROM , DATA , $EEPROMHEX

ASM
NONE

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates $DATA directive

'---

$regfile = "2313def.dat"
$baud = 19200
$crystal = 4000000 ' 4 MHz
crystal

Dim B As Byte
Readeeprom B , 0 'now B will
be 1
End

Dta:
$eeprom
Data 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8
$data
End

6.12 $EEPROMHEX

Action
Instruct the compiler to store the data in the EEP file in Intel HEX format instead of
binary format.

Syntax
$EEPROMHEX

267

268

267 699 815 501 268

269BASCOM Language Reference

© 2008 MCS Electronics

Remarks
The AVR has build in EEPROM. With the WRITEEEPROM and READEEPROM
statements, you can write and read to the EEPROM.

To store information in the EEPROM, you can add DATA lines to your program that
hold the data that must be stored in the EEPROM. $EEPROM must be used to create a
EEP file that holds the data.

The EEP file is by default a binary file. When you use the STK500 you need an Intel
HEX file. Use $EEPROMHEX to create an Intel Hex EEP file.

 $EEPROMHEX must be used together with $EEPROM.

See also
$EEPROMLEAVE

Example
$eeprom'the following DATA lines data will go to the EEP file
Data 200 , 100,50
$data

This would create an EEP file of 3 bytes. With the values 200,100 and 50.
Add $eepromhex in order to create an Intel Hex file.

This is how the EEP file content looks when using $eepromhex

:0A00000001020304050A141E283251
:00000001FF

6.13 $EXTERNAL

Action
Instruct the compiler to include ASM routines from a library.

Syntax
$EXTERNAL Myroutine [, myroutine2]

Remarks
You can place ASM routines in a library file. With the $EXTERNAL directive you tell the
compiler which routines must be included in your program.

See also
$LIB

Example
$regfile = "m48def.dat"
$crystal = 4000000

267

283

270 BASCOM-AVR

© 2008 MCS Electronics

$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'In order to let this work you must put the mylib.lib file in the LIB
dir
'And compile it to a LBX
'---
--
'define the used library
$lib"mylib.lbx"
'you can also use the original ASM :
'$LIB "mylib.LIB"

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X Asbyte , Y Asbyte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

6.14 $FRAMESIZE

Action
Sets the available space for the frame.

Syntax
$FRAMESIZE = var

Remarks
Var A numeric decimal value.

While you can configure the Frame Size in Options, Compiler, Chip, it is good practice
to put the value into your code. This way you do no need the cfg(configuration) file.

The $FRAMESIZE directive overrides the value from the IDE Options.

It is important that the $FRAMESIZE directive occurs in your main project file. It may
not be included in an $include file as only the main file is parsed for $FRAMESIZE

See also
$SWSTACK , $HWSTACK306 271

271BASCOM Language Reference

© 2008 MCS Electronics

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

6.15 $HWSTACK

Action
Sets the available space for the Hardware stack.

Syntax
$HWSTACK = var

Remarks
Var A numeric decimal value.

While you can configure the HW Stack in Options, Compiler, Chip, it is good practice
to put the value into your code. This way you do no need the cfg(configuration) file.

The $HWSTACK directive overrides the value from the IDE Options.

It is important that the $HWSTACK directive occurs in your main project file. It may
not be included in an $include file as only the main file is parsed for $HWSTACK.

The Hardware stack is room in RAM that is needed by your program. When you use
GOSUB label, the microprocessor pushes the return address on the hardware stack
and will use 2 bytes for that. When you use RETURN, the HW stack is popped back
and the program can continue at the proper address. When you nest GOSUB, CALL or
functions, you will use more stack space. Most statements use HW stack because a
machine language routine is called.

See also
$SWSTACK , $FRAMESIZE306 270

272 BASCOM-AVR

© 2008 MCS Electronics

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

6.16 $INC

Action
Includes a binary file in the program at the current position.

Syntax
$INC label , size | nosize , "file"

Remarks
Label The name of the label you can use to refer to the data.

Nosize Specify either nosize or size. When you use size, the size of the data
will be included. This way you know how many bytes you can retrieve.

File Name of the file which must be included.

Use RESTORE to get a pointer to the data. And use READ, to read in the data.

The $INC statement is an alternative for the DATA statement.
While DATA works ok for little data, it is harder to use on large sets of data.

See Also
RESTORE , DATA , READ

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

709 501 697

273BASCOM Language Reference

© 2008 MCS Electronics

Dim Size As Word , W As Word , B As Byte

Restore L1 ' set
pointer to label
Read Size ' get size
of the data

Print Size ; " bytes stored at label L1"
For W = 1 To Size
 Read B : Print Chr(b);
Next

End

'include some data here
$inc L1 , Size , "c:\test.bas"
'when you get an error, insert a file you have on your system

6.17 $INCLUDE

Action
Includes an ASCII file in the program at the current position.

Syntax
$INCLUDE "file"

Remarks
File Name of the ASCII file, which must contain valid BASCOM statements.

This option can be used if you make use of the same routines in many
programs. You can write modules and include them into your program.
If there are changes to make you only have to change the module file, not all
your BASCOM programs.
You can only include ASCII files!

Use $INC when you want to include binary files.

See Also
$INC

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'--
Print "INCLUDE.BAS"
'Note that the file 123.bas contains an error
$include "123.bas" 'include file that prints
Hello
Print "Back in INCLUDE.BAS"

272

274 BASCOM-AVR

© 2008 MCS Electronics

End

6.18 $INITMICRO

Action
Calls a user routine at startup to perform important initialization functions such as
setting ports.

Syntax
$INITMICRO

Remarks
This directive will call a label named _INIT_MICRO just after the most
important initialization is performed. You can put the _INIT_MICRO routine
into your program, or you can put it in a library. Advantage of a library is
that it is the same for all programs, and advantage of storing the code into
your program is that you can change it for every program.

It is important that you end the routine with a RETURN as the label is called and
expects a return.
The $initmicro can be used to set a port direction or value as it performs before the
memory is cleared which can take some mS.
The best solution for a defined logic level at startup remains the usage of pull up/pull
down resistors.

See Also
NONE

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

$initmicro

Print Version() 'show date
and time of compilation

Print Portb
Do
 nop
Loop
End

'do not write a complete application in this routine.
'only perform needed init functions
_init_micro:
 Config Portb = Output
 Portb = 3
Return

275BASCOM Language Reference

© 2008 MCS Electronics

6.19 $LCD

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data
bus.

Syntax
$LCD = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display and

the RS line of the LCD display.

The db0-db7 lines of the LCD must be connected to the data lines D0-
D7. (or is 4 bit mode, connect only D4-D7)
The RS line of the LCD can be configured with the LCDRS statement.

On systems with external RAM, it makes more sense to attach the LCD
to the data bus. With an address decoder, you can select the LCD
display.

Do not confuse $LCD with the LCD statement.
The compiler will create a constant named ___LCD_ADR which you could use in an
alternative LCD library.

See also
$LCDRS , CONFIG LCD

Example
'--
' (c) 1995-2005 MCS Electronics
'--
' file: LCD.BAS
' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'--

'note : tested in bus mode with 4-bit on the STK200
'LCD - STK200
'-------------------
'D4 D4
'D5 D5
'D6 D6
'D7 D7
'WR WR
'E E
'RS RS
'+5V +5V
'GND GND
'V0 V0
' D0-D3 are not connected since 4 bit bus mode is used!

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6

280 430

276 BASCOM-AVR

© 2008 MCS Electronics

Rem with the config lcdpin statement you can override the compiler
settings

$regfile = "8515def.dat"
$lcd = &HC000
$lcdrs = &H8000
Config Lcdbus = 4

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen
'other options are 16 * 2 , 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a

277BASCOM Language Reference

© 2008 MCS Electronics

moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.20 $LCDPUTCTRL

Action
Specifies that LCD control output must be redirected.

Syntax
$LCDPUTCTRL = label

Remarks

278 BASCOM-AVR

© 2008 MCS Electronics

Label The name of the assembler routine that must be called when a control
byte is printed with the LCD statement. The character must be placed in
register R24.

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTDATA

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'dimension used variables
Dim S As String* 10
Dim W As Long

'inform the compiler which routine must be called to get serial
'characters
$lcdputdata= Myoutput
$lcdputctrl= Myoutputctrl
'make a never ending loop
Do
 Lcd "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all
registers
 'your code here
 Popall 'restore
registers
Return

MyoutputCtrl:
 Pushall 'save all
registers
 'your code here
 Popall 'restore
registers
Return

279

279BASCOM Language Reference

© 2008 MCS Electronics

6.21 $LCDPUTDATA

Action
Specifies that LCD data output must be redirected.

Syntax
$LCDPUTDATA = label

Remarks
Label The name of the assembler routine that must be called when a character is

printed with the LCD statement. The character must be placed in R24.

With the redirection of the LCD statement, you can use your own routines.

See also
$LCDPUTCTRL

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'dimension used variables
Dim S As String* 10
Dim W As Long

'inform the compiler which routine must be called to get serial
'characters
$lcdputdata= Myoutput
$lcdputctrl= Myoutputctrl
'make a never ending loop
Do
 Lcd "test"
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and 'restore
'all registers so we can use all BASIC statements
'$LCDPUTDATA requires that the character is passed in R24

Myoutput:
 Pushall 'save all
registers
 'your code here
 Popall 'restore
registers
Return

MyoutputCtrl:
 Pushall 'save all

277

280 BASCOM-AVR

© 2008 MCS Electronics

registers
 'your code here
 Popall 'restore
registers
Return

6.22 $LCDRS

Action
Instruct the compiler to generate code for 8-bit LCD displays attached to the data
bus.

Syntax
$LCDRS = [&H]address

Remarks
Address The address where must be written to, to enable the LCD display.

The db0-db7 lines of the LCD must be connected to the data lines D0-D7.
(or is 4 bit mode, connect only D4-D7)

On systems with external RAM, it makes more sense to attach the LCD to
the data bus. With an address decoder, you can select the LCD display.

The compiler will create a constant named ___LCDRS_ADR which you could use in an
alternative LCD library.

See also
$LCD , CONFIG LCDBUS

Example
'--
' (c) 1995-2005 MCS Electronics
'--
' file: LCD.BAS
' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'--

'note : tested in bus mode with 4-bit on the STK200
'LCD - STK200
'-------------------
'D4 D4
'D5 D5
'D6 D6
'D7 D7
'WR WR
'E E
'RS RS
'+5V +5V
'GND GND
'V0 V0
' D0-D3 are not connected since 4 bit bus mode is used!

275 430

281BASCOM Language Reference

© 2008 MCS Electronics

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Rem with the config lcdpin statement you can override the compiler
settings

$regfile = "8515def.dat"
$lcd = &HC000
$lcdrs = &H8000
Config Lcdbus = 4

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen
'other options are 16 * 2 , 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the

282 BASCOM-AVR

© 2008 MCS Electronics

text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.23 $LCDVFO

Action
Instruct the compiler to generate very short Enable pulse for VFO displays.

Syntax
$LCDVFO

283BASCOM Language Reference

© 2008 MCS Electronics

Remarks
VFO based displays need a very short Enable pulse. Normal LCD displays need a
longer pulse. To support VFO displays this compiler directive has been added.

The display need to be instruction compatible with normal HD44780 based text
displays.
Noritake is the biggest manufacturer of VFO displays.

The $LCDVFO directive is intended to be used in combination with the LCD routines.

ASM
NONE

See also
NONE

Example
NONE

6.24 $LIB

Action
Informs the compiler about the used libraries.

Syntax
$LIB "libname1" [, "libname2"]

Remarks
Libname1 is the name of the library that holds ASM routines that are used by your
program. More filenames can be specified by separating the names by a comma.

The specified libraries will be searched when you specify the routines to use with
the $EXTERNAL directive.

The search order is the same as the order you specify the library names.

The MCS.LBX will be searched last and is always included so you don't need to specify
it with the $LIB directive.

Because the MCS.LBX is searched last you can include duplicate routines in your own
library. These routines will be used instead of the ones from the default MCS.LBX
library. This is a good way when you want to enhance the MCS.LBX routines. Just
copy the MCS.LIB to a new file and make the changes in this new file. When we make
changes to the library your changes will be preserved.

Creating your own LIB file

A library file is a simple ASCII file. It can be created with the BASCOM editor, notepad
or any other ASCII editor.

284 BASCOM-AVR

© 2008 MCS Electronics

When you use BASCOM, make sure that the LIB extension is added to the Options,
Environment, Editor, "No reformat extension".
This will prevent the editor to reformat the LIB file when you open it.

The file must include the following header information. It is not used yet but will be
later.
copyright = Your name
www = optional location where people can find the latest source
email = your email address
comment = AVR compiler library
libversion = the version of the library in the format : 1.00
date = date of last modification
statement = A statement with copyright and usage information

The routine must start with the name in brackets and must end with the [END].

The following ASM routine example is from the MYLIB.LIB library.

[test]
Test:
ldd r26,y+2 ; load address of X
ldd r27,y+3
ld r24,x ; get value into r24
Inc r24 ; value + 1
St x,r24 ; put back
ldd r26,y+0 ; address of Y
ldd r27,y+1
st x,r24 ; store
ret ; ready
[END]

After you have saved your library in the LIB subdirectory you must compile it with
the LIB Manager . Or you can include it with the LIB extension in which case you
don’t have to compile it.

About the assembler.
When you reference constants that are declared in your basic program you need to
put a star(*) before the line.

'basic program
CONST myconst = 7

'asm lib
* sbi portb, myconst

By adding the *, the line will be compiled when the basic program is compiled. It will
not be changed into object code in the LBX file.
When you use constants you need to use valid BASIC constants:

Ldi r24,12
Ldi r24, 1+1
Ldi r24, &B001
Ldi r24,0b001

78

285BASCOM Language Reference

© 2008 MCS Electronics

Ldi r24,&HFF
Ldi r24,$FF
Ldi r24,0xFF

Other syntax is NOT supported.

See also
$EXTERNAL

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'In order to let this work you must put the mylib.lib file in the LIB
dir
'And compile it to a LBX
'---
--
'define the used library
$lib"mylib.lbx"
'you can also use the original ASM :
'$LIB "mylib.LIB"

'also define the used routines
$external Test

'this is needed so the parameters will be placed correct on the stack
Declare Sub Test(byval X Asbyte , Y Asbyte)

'reserve some space
Dim Z As Byte

'call our own sub routine
Call Test(1 , Z)

'z will be 2 in the used example
End

6.25 $LOADER

Action
Instruct the compiler to create a boot loader at the specified address.

Syntax
$LOADER = address

Remarks
address The address where the boot loader is located. You can find this address

in the data sheet.

269

286 BASCOM-AVR

© 2008 MCS Electronics

Most AVR chips have a so called boot section. Normally a chip will start at address 0
when it resets. This is also called the reset vector.
Chips that have a boot section, split the flash memory in two parts. The boot section
is a small part of the normal flash and by setting a fuse bit you select that the chip
runs code at the boot sector when it resets instead of the normal reset vector.
Some chips also have fuse bits to select the size of the boot loader.

The MCS boot loader sample is a serial boot loader that uses the serial port. It uses
the X-modem checksum protocol to receive the data. Most terminal emulators can
send X-modem checksum.

The sample is written so it supports all chips with a boot section. You need to do the
following :

· identify the $regfile directive for your chip
· un-remark the line and the line with the CONST that is used for conditional

compilation
· remark all other $regfile lines and CONST lines.
· compile the file
· program the chip
· set the fuse bit so reset is pointed to the boot loader
· set the fuse bit so the boot size is 1024 words
· select the MCS Boot loader programmer.

The boot loader is written to work at a baud rate of 57600. This works for most chips
that use the internal oscillator. But it is best to check it first with a simple program.
When you use a crystal you might even use a higher speed.
Do not forget that the MCS boot loader must be set to the same baud rate as the boot
loader program.

Now make a new test program and compile it. Press F4 to start the MCS boot loader.
You now need to reset the chip so that it will start the boot loader section. The boot
loader will send a byte with value of 123 and the Bascom boot loader receives this
and thus starts the loader process.

There will be a stand alone boot loader available too. And the sample will be extended
to support other AVR chips with boot section too.

 There is a $BOOT directive too. It is advised to use $LOADER as it allows you to
write the boot loader in BASIC.

You can not use interrupts in your boot loader program as the interrupts will point
to the reset vector which is located in the lower section of the flash. When you start
to writing pages, you overwrite this part.

See also
$BOOT , $LOADERSIZE

Example
'--
' (c) 1995-2005, MCS
' Bootloader.bas
' This sample demonstrates how you can write your own bootloader
' in BASCOM BASIC
'---

261 291

287BASCOM Language Reference

© 2008 MCS Electronics

'This sample will be extended to support other chips with bootloader
'The loader is supported from the IDE

'$regfile = "m88def.dat"
'Const Loader = 88

'$regfile = "m32def.dat"
'Const Loaderchip = 32

'$regfile = "m88def.dat"
'Const Loaderchip = 88

$regfile = "m162def.dat"
Const Loaderchip = 162

#if Loaderchip = 88 'Mega88
 $loader = $c00 'this
address you can find in the datasheet
 'the loader address is the same as the boot vector address
 Const Maxwordbit = 5
 Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
#endif
#if Loaderchip = 32 ' Mega32
 $loader = $3c00 ' 1024 words
 Const Maxwordbit = 6 'Z6 is
maximum bit '
 Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
#endif
#if Loaderchip = 8 ' Mega8
 $loader = $c00 ' 1024 words
 Const Maxwordbit = 5 'Z5 is
maximum bit '
 Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
#endif
#if Loaderchip = 161 ' Mega161
 $loader = $1e00 ' 1024 words
 Const Maxwordbit = 6 'Z5 is
maximum bit '
#endif
#if Loaderchip = 162 ' Mega162
 $loader = $1c00 ' 1024 words
 Const Maxwordbit = 6 'Z5 is
maximum bit '
 Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
#endif

Const Maxword =(2 ^ Maxwordbit) * 2 '128
Const Maxwordshift = Maxwordbit + 1

$crystal = 8000000
'$crystal = 14745600
$baud = 57600 'this loader
uses serial com
'It is VERY IMPORTANT that the baud rate matches the one of the boot
loader

288 BASCOM-AVR

© 2008 MCS Electronics

'do not try to use buffered com as we can not use interrupts

'Dim the used variables
Dim Bstatus As Byte , Bretries As Byte , Bblock As Byte , Bblocklocal As
 Byte
Dim Bcsum1 As Byte , Bcsum2 As Byte , Buf(128) As Byte , Csum As Byte
Dim J As Byte , Spmcrval As Byte ' self
program command byte value

Dim Z As Word 'this is the
Z pointer word
Dim Vl As Byte , Vh As Byte ' these
bytes are used for the data values
Dim Wrd As Byte , Page As Byte 'these vars
contain the page and word address
'Mega 88 : 32 words, 128 pages

Disable Interrupts 'we do not
use ints

Waitms 1000 'wait 1 sec
'We start with receiving a file. The PC must send this binary file

'some constants used in serial com
Const Nak = &H15
Const Ack = &H06
Const Can = &H18

'we use some leds as indication in this sample , you might want to
remove it
Config Portb = Output
Portb = 255 'the stk200
has inverted logic for the leds

'$timeout = 1000000 'we use a
timeout
$timeout = 1000000 'we use a
timeout

'Do
 Bstatus = Waitkey() 'wait for
the loader to send a byte
 Print Chr(bstatus);
 If Bstatus = 123 Then 'did we
received value 123 ?
 Goto Loader
 End If
'Loop

For J = 1 To 10 'this is a
simple indication that we start the normal reset vector
 Toggle Portb : Waitms 100
Next

Goto _reset 'goto the
normal reset vector at address 0

'this is the loader routine. It is a Xmodem-checksum reception routine
Loader:

289BASCOM Language Reference

© 2008 MCS Electronics

For J = 1 To 3 'this is a
simple indication that we start the normal reset vector
 Toggle Portb : Waitms 500
Next

Spmcrval = 3 : Gosub Do_spm ' erase the
first page
Spmcrval = 17 : Gosub Do_spm ' re-enable
page

Bretries = 10 'number of
retries
Do
 Csum = 0 'checksum is
0 when we start
 Print Chr(nak); ' firt time
send a nack
 Do
 Bstatus = Waitkey() 'wait for
statuse byte
 Select Case Bstatus
 Case 1: ' start of
heading, PC is ready to send
 Incr Bblocklocal 'increase
local block count
 Csum = 1 'checksum is
1
 Bblock = Waitkey() : Csum = Csum + Bblock 'get block
 Bcsum1 = Waitkey() : Csum = Csum + Bcsum1 'get
checksum first byte
 For J = 1 To 128 'get 128
bytes
 Buf(j) = Waitkey() : Csum = Csum + Buf(j)
 Next
 Bcsum2 = Waitkey() 'get second
checksum byte
 If Bblocklocal = Bblock Then 'are the
blocks the same?
 If Bcsum2 = Csum Then 'is the
checksum the same?
 Gosub Writepage 'yes go
write the page
 Print Chr(ack); 'acknowledge
 Else 'no match so
send nak
 Print Chr(nak);
 End If
 Else
 Print Chr(nak); 'blocks do
not match
 End If
 Case 4: ' end of
transmission , file is transmitted
 Print Chr(ack); ' send ack
and ready

 Portb.3 = 0 ' simple
indication that we are finished and ok
 Goto _reset ' start new
program
 Case &H18: ' PC aborts
transmission
 Goto _reset ' ready

290 BASCOM-AVR

© 2008 MCS Electronics

 Case Else
 Exit Do ' no valid
data
 End Select
 Loop
 If Bretries > 0 Then 'attempte
left?
 Waitms 1000
 Decr Bretries 'decrease
attempts
 Else
 Goto _reset 'reset chip
 End If
Loop

'write one or more pages
Writepage:
 For J = 1 To 128 Step 2 'we write 2
bytes into a page
 Vl = Buf(j) : Vh = Buf(j + 1) 'get Low and
High bytes
 lds r0, {vl} 'store them
into r0 and r1 registers
 lds r1, {vh}
 Spmcrval = 1 : Gosub Do_spm 'write value
into page at word address
 Wrd = Wrd + 2 ' word
address increases with 2 because LS bit of Z is not used
 If Wrd = Maxword Then ' page is
full
 Wrd = 0 'Z pointer
needs wrd to be 0
 Spmcrval = 5 : Gosub Do_spm 'write page
 Page = Page + 1 'next page
 Spmcrval = 3 : Gosub Do_spm ' erase
next page
 Spmcrval = 17 : Gosub Do_spm ' re-enable
page
 End If
 Next
 Toggle Portb.2 : Waitms 10 : Toggle Portb.2 'indication
that we write
Return

Do_spm:
 Bitwait Spmcsr.selfprgen , Reset ' check for
previous SPM complete
 Bitwait Eecr.eepe , Reset 'wait for
eeprom

 Z = Page 'make equal
to page
 Shift Z , Left , Maxwordshift 'shift to
proper place
 Z = Z + Wrd 'add word
 lds r30,{Z}
 lds r31,{Z+1}

 Spmcsr = Spmcrval 'assign
register

291BASCOM Language Reference

© 2008 MCS Electronics

 spm 'this is an
asm instruction
 nop
 nop
Return

'How you need to use this program:
'1- compile this program
'2- program into chip with sample elctronics programmer
'3- select MCS Bootloader from programmers
'4- compile a new program for example M88.bas
'5- press F4 and reset your micro
' the program will now be uploaded into the chip with Xmodem Checksum
' you can write your own loader. And we will release a command line
loader in the future

6.26 $LOADERSIZE

Action
Instruct the compiler that a boot loader is used so it will not overwrite the boot space.

Syntax
$LOADERSIZE = size

Remarks
size The amount of space that is used by the boot loader.

When you use a boot loader it will use space from the available flash memory. The
compiler does not know if you use a boot loader or not. When your program exceeds
the available space and runs into the boot sector space, it will overwrite the boot
loader.
The $loadersize directive will take the boot loader size into account so you will get an
error when the target file gets too big.

When you select the MCS boot loader as programmer the IDE also will take into
account the specified boot loader size.
The directive can be used when you have a different programmer selected. For
example an external programmer that does not know about the boot size.

See also
$LOADER

ASM
NONE

Example
NONE

285

292 BASCOM-AVR

© 2008 MCS Electronics

6.27 $MAP

Action
Will generate label info in the report.

Syntax
$MAP

Remarks
The $MAP directive will put an entry for each line number with the address into the
report file. This info can be used for debugging purposes with other tools.

See also
NONE

ASM
NONE

Example
$MAP

The report file will not contain the following section :

Code map
--
Line Address(hex)
--
1 0
9 36
26 39
30 3B
31 3E
32 48
33 4B
36 50
37 56
42 5B
43 6C
44 7D
45 80
46 81

6.28 $NOCOMPILE

Action
Instruct the compiler not to compile the file.

Syntax

293BASCOM Language Reference

© 2008 MCS Electronics

$NOCOMPILE

Remarks
This looks like an odd directive. Since you can split your program in multiple files,
and you can create configuration files, you might open a file and try to compile it.
Only normal project files can be compiled and you will get a number of errors and
also unwanted files like error, report, etc.
To prevent that you compile a file that is intended to be included, you can insert
the $NOCOMPILE directive.
Then the file will only be compiled when it is called from your main file, or other
include file.

A file that is opened as thus the main file, and which includes the $NOCOMP directive,
can not be compiled.
The IDE will see it as a successful compilation. This is important for the Batch
Compiler.

See also
Batch Compiler

Example
$NOCOMPILE

6.29 $NOINIT

Action
Instruct the compiler to generate code without initialization code.

Syntax
$NOINIT

Remarks
$NOINIT is only needed in rare situations. It will instruct the compiler not to add
initialization code. But that means that you need to write your own code then.
$NOINIT was added in order to support boot loaders. But the new $LOADER directive
can better be used as it does not require special ASM knowledge.

See also
$LOADER

Example
NONE

81

285

294 BASCOM-AVR

© 2008 MCS Electronics

6.30 $NORAMCLEAR

Action
Instruct the compiler to not generate initial RAM clear code.

Syntax
$NORAMCLEAR

Remarks
Normally the SRAM is cleared in the initialization code. When you don't want the
SRAM to be cleared(set to 0) you can use this directive.

Because all variables are automatically set to 0 or ""(strings) without
the $NORAMCLEAR, using $NORAMCLEAR will set the variables to an unknown value.
That is, the variables will probably set to FF but you cannot count on it.

When you have a battery back upped circuit, you do not want to clear the RAM at
start up. So that would be a situation when you could use $NORAMCLEAR.

See also
$NOINIT

6.31 $PROG

Action
Directive to auto program the lock and fuse bits.

Syntax
$PROG LB, FB , FBH , FBX

Remarks
While the lock and fuse bits make the AVR customizable, the settings for your project
can give some problems.
The $PROG directive will create a file with the project name and the PRG extension.

Every time you program the chip, it will check the lock and fuse bit settings and will
change them if needed.
So in a new chip, the lock and fuse bits will be set automatically. A chip that has been
programmed with the desired settings will not be changed.

The programmer has an option to create the PRG file from the current chip settings.

The LB, FH, FBH and FBX values are stored in hexadecimal format in the PRJ file.
You may use any notation as long as it is a numeric constant.

Some chips might not have a setting for FBH or FBX, or you might not want to set all
values. In that case, do NOT specify the value. For example:

$PROG &H20 ,,,

293

295BASCOM Language Reference

© 2008 MCS Electronics

This will only write the Lockbit settings.

$PROG ,,&H30,

This will only write the FBH settings.

LB Lockbit settings

FB Fusebit settings

FBH Fusebit High settings

FBX Extended Fusebit settings

Sometimes the data sheet refers to the Fusebit as the Fusebit Low settings.

The $PROG setting is only supported by the AVRISP, STK200/300, Sample Electronics
and Universal MCS Programmer Interface. The USB-ISP programmer also supports
the $PROG directive.

 When you select the wrong Fuse bit, you could lock your chip. For example
when you choose the wrong oscillator option, it could mean that the micro expects an
external crystal oscillator. But when you connect a simple crystal, it will not work.
In these cases where you can not communicate with the micro anymore, the advise is
to apply a clock signal to X1 input of the micro.
You can then select the proper fuse bits again.
When you set the Lock bits, you can not read the chip content anymore. Only after
erasing the chip, it could be reprogrammed again.

 Once the lock bits and fuse bits are set, it is best to remark the $PROG directive.
This because it takes more time to read and compare the bits every time.

See also
Programmers , $PROG

6.32 $PROGRAMMER

Action
Will set the programmer from the source code.

Syntax
$PROGRAMMER = number

Remarks
Number A numeric constant that identifies the programmer.

The $PROGRAMMER directive will set the programmer just before it starts
programming. When you press F4 to program a chip, the selected programmer will be
made active. This is convenient when you have different project open and use
different programmers.
But it can also lead to frustration as you might think that you have the 'STK200'
selected, and the directive will set it to USB-ISP.

The following values can be used :

99 294

296 BASCOM-AVR

© 2008 MCS Electronics

Value Programmer

0 AVR-ISP programmer(old AN 910)

1 STK200/STK300

2 PG302

3 External programmer

4 Sample Electronics

5 Eddie Mc Mullen

6 KITSRUS K122

7 STK500

8 Universal MCS Interface

9 STK500 extended

10 Lawicel Bootloader

11 MCS USB

12 USB-ISP I

13 MCS Bootloader

14 Proggy

15 FLIP

See also
$PROG

ASM
NONE

Example
$REGFILE

6.33 $REGFILE

Action
Instruct the compiler to use the specified register file instead of the selected dat file.

Syntax
$REGFILE = "name"

Remarks
Name The name of the register file. The register files are stored in the

BASCOM-AVR application directory and they all have the DAT extension.

The register file holds information about the chip such as the internal
registers and interrupt addresses.
The register file info is derived from atmel definition files.

The $REGFILE statement overrides the setting from the Options, Compiler, Chip
menu.
The settings are stored in a <project>.CFG file.

294

297BASCOM Language Reference

© 2008 MCS Electronics

The $REGFILE directive must be the first statement in your program. It may not be
put into an included file since only the main source file is checked for the $REGFILE
directive.

 It is good practice to use the $REGFILE directive. It has the advantage that you
can see at the source which chip it was written for. The $REGFILE directive is also
needed when the PinOut viewer or the PDF viewer is used.

The register files contain the hardware register names from the micro. They also
contain the bit names. These are constants that you may use in your program. But
the names can not be used to dim a variable for example.

Example :
DIM PORTA As Byte
This will not work as PORTA is a register constant.

See also
$SWSTACK , $HWSTACK , $FRAMESIZE

ASM
NONE

Example
$REGFILE = "8515DEF.DAT"

6.34 $RESOURCE

Action
Instruct the compiler to use a special resource file for multi language support.

Syntax
$RESOURCE [DUMP] "lang1" [, "lang2"]
$RESOURCE ON | OFF

Remarks
lang1 This is the name of the first and default language. You can add a

maximum of 8 languages. The names will be used in the resource
editor. But they are only intended as a reference. The resource names
will not end up in your application. They are used for the column names
in the resource editor.

lang2 The second language. You can add multiple languages separated by a
comma. The language must be specified within double quotes.

ON This will turn on the languages resource handling. In some cases you
need to turn the language handling ON or OFF which is explained later

OFF This will turn OFF the language handling

DUMP This mode will create a <project>.BCS file which contains all used
string constants

51 55

306 271 270

298 BASCOM-AVR

© 2008 MCS Electronics

Some applications require that the interface is available in multiple languages. You
write your application the same way as you always do.
When it is ready, you can add the $RESOURCE directive to make the application
suited for multiple languages.
The $RESOURCE option will generate a BYTE variable named LANGUAGE. You can
change the value in your application. The compiler will take care that the proper
string is shown.
But first you need to translate the strings into the languages of your choice.
For this purpose you can use the Resource Editor. The Resource Editor can import
a BCS file (BASCOM String file) which contains the languages and the strings.
You can then add a string for all languages.
So first make sure your application works. Then compile using the $RESOURCE DUMP
option.

When you test the languages.bas sample the content will look like this :
"English" , "Dutch" , "German" , "Italian"
"Multi language test"
"This"
" is a test"
"Name "
"Hello "

As you can see, the first line contains the languages. The other lines only contain a
string. Each string is only stored once in BASCOM. So even while "Mark" can have
multiple meanings, it will only end up once in the BCS file.
After you have translated the strings, the content of the BCR (BASCOM Resource) file
will look like :

"English","Dutch","German","Italian"
"This","Dit","Dies","Questo"
"Name ","Naam","Name","Nome"
"Multi language test","Meertalen test","","Test multilingua"
"Hello ","Hallo","Hallo","Ciao"
" is a test"," is een test","ist ein test","è un test"
"mark","Mark","Marcus","Marco"

You may edit this file yourself, using Notepad or you can use the Resource Editor.
Untranslated strings will be stored as "". Untranslated strings will be shown in the
original language !

Now recompile your project and the compiler will handle every string it will find in the
resource file (BCR) in a special way. Strings that are not found in the BCR file, are not
processed and handled like normal. For example when you have a PRINT "check this
out" , and you did not put that in the BCR file, it will show the same no matter which
value the LANGUAGE variable has.

But for each string found in the BCR file, the compiler will show the string depending
on the LANGUAGE variable. When one of the languages is not translated, it will show
as the original language.
When LANGUAGE is 0, it will show the first string (the string from the first column).
When languages is 1, it will show the string from the second column, and so on.
You must take care that the LANGUAGE variables has a valid value.

So by switching/changing 1 variable, you can change the language in the entire
application. Strings are used for PRINT, LCD and other commands. It will work on
every string that is in the BCR file. But that also brings us to the next option.

Image this code :

85

299BASCOM Language Reference

© 2008 MCS Electronics

 If S = "mark" Then
 Print "we can not change names"
 End If

As you can see, we use a string. The code will fail if the string is translated (and is
different in each language). You can simply remove the this string from the Resource
file. But when you also need the word "mark" in the interface, you have a problem.
For this purpose you can turn off the resource handling using $RESOURCE OFF
The compiler will then not process the code following the directive with the special
resource handling.
And when you are done, you can turn the resource handling on again
using $RESOURCE ON.

See also
Resource Editor

Example
'--
' language.bas
' (c) 1995-2008 , MCS Electronics
'This example will only work with the resource add on
'resources are only needed for multi language applications
'By changing the LANGUAGE variable all strings used will be shown in the proper language
'--
$regfile = "m88def.dat"
$crystal = 8000000
$baud = 19200

'a few steps are needed to create a multi language application
'STEP 1, make your program as usual
'STEP 2, generate a file with all string resources using the $RESOURCE DUMP directive
'$resource Dump , "English" , "Dutch" , "German" , "Italian" 'we will use 4 languages
'STEP 3, compile and you will find a file with the BCS extesion
'STEP 4, use Tools, Resource Editor and inport the resources
'STEP 5, add languages, translate the original strings
'STEP 6, compile your program this time with specifying the languages without the DUMP option

$resource "English" , "Dutch" , "German" , "Italian"
'this must be done before you use any other resource !
'in this sample 4 languages are used
'this because all resources found are looked up in the BCR file(BasCom Resource)
Dim S As String * 20
Dim B As Byte

Print "Multi language test"
Do
 Print "This" ;
 S = " is a test" : Print S
 Input "Name " , S
 Print "Hello " ; S

 'now something to look out for !
 'all string data not found in the BCR file is not resourced. so there is no problem with the following:
 If S = "mark" Then
 Print "we can not change names"

85

300 BASCOM-AVR

© 2008 MCS Electronics

 End If

 'but if you want to have "mark" resourced for another sentence you have a problem.
 'the solution is to turn off resourcing
 $resource Off
 Print "mark"
 If S = "mark" Then
 Print "we can not change names"
 End If
 $resource On

 Language = Language + 1
 If Language > 3 Then Language = 0
Loop

6.35 $ROMSTART

Action
Instruct the compiler to generate a hex file that starts at the specified address.

Syntax
$ROMSTART = address

Remarks
Address The address where the code must start. By default the first address is

0.

The bin file will still begin at address 0.

The $ROMFILE could be used to locate code at a different address for example for a
boot loader.

It is best to use the new $LOADER directive to add boot loader support.

See also
$LOADER

ASM
NONE

Example
$ROMSTART = &H4000

6.36 $SERIALINPUT

Action
Specifies that serial input must be redirected.

Syntax
$SERIALINPUT = label

285

301BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Label The name of the assembler routine that must be called when a character

is needed by the INPUT routine. The character must be returned in R24.

With the redirection of the INPUT command, you can use your own input routines.

This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is received.

By default when you use INPUT or INKEY(), the compiler will expect data from the
COM port. When you want to use a keyboard or remote control as the input device
you can write a custom routine that puts the data into register R24 once it needs this
data.

See also
$SERIALOUTPUT

Example
'---

'name : $serialinput.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates $SERIALINPUT redirection of
serial input
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat"

'define used crystal
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'dimension used variables
Dim S As String * 10
Dim W As Long

'inform the compiler which routine must be called to get serial
characters
$serialinput = Myinput

'make a never ending loop
Do
 'ask for name
 Input "name " , S
 Print S
 'error is set on time out

304

302 BASCOM-AVR

© 2008 MCS Electronics

 Print "Error " ; Err
Loop

End

'custom character handling routine
'instead of saving and restoring only the used registers
'and write full ASM code, we use Pushall and PopAll to save and restore
'all registers so we can use all BASIC statements
'$SERIALINPUT requires that the character is passed back in R24
Myinput:
 Pushall 'save all
registers
 W = 0 'reset
counter
Myinput1:
 Incr W 'increase
counter
 Sbis USR, 7 ' Wait for
character
 Rjmp myinput2 'no charac
waiting so check again
 Popall 'we got
something
 Err = 0 'reset error
 In _temp1, UDR ' Read
character from UART
 Return 'end of
routine
Myinput2:
 If W > 1000000 Then 'with 4 MHz
ca 10 sec delay
 rjmp Myinput_exit 'waited too
long
 Else
 Goto Myinput1 'try again
 End If
Myinput_exit:
 Popall 'restore
registers
 Err = 1 'set error
variable
 ldi R24, 13 'fake enter
so INPUT will end
Return

6.37 $SERIALINPUT1

Action
Specifies that serial input of the second UART must be redirected.

Syntax
$SERIALINPUT1 = label

Remarks
Label The name of the assembler routine that must be called when a character

is needed from the INPUT routine. The character must be returned in R24.

With the redirection of the INPUT command, you can use your own input routines.

303BASCOM Language Reference

© 2008 MCS Electronics

This way you can use other devices as input devices.
Note that the INPUT statement is terminated when a RETURN code (13) is received.

By default when you use INPUT or INKEY(), the compiler will expect data from the
COM2 port. When you want to use a keyboard or remote control as the input device
you can write a custom routine that puts the data into register R24 once it asks for
this data.

See also
$SERIALOUTPUT1 , $SERIALINPUT , $SERIALOUTPUT

Example
See the $SERIALINPUT sample

6.38 $SERIALINPUT2LCD

Action
This compiler directive will redirect all serial input to the LCD display instead of echo-
ing to the serial port.

Syntax
$SERIALINPUT2LCD

Remarks
You can also write your own custom input or output driver with the $SERIALINPUT
and $SERIALOUTPUT statements, but the $SERIALINPUT2LCD is handy when you
use a LCD display. By adding only this directive, you can view all output form routines
such as PRINT, PRINTBIN, on the LCD display.

See also
$SERIALINPUT , $SERIALOUTPUT , $SERIALINPUT1 , $SERIALOUTPUT1

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Config Lcdpin = Pin , Db4 = Portb.4 , Db5 = Portb.5 , Db6 = Portb.6 ,
Db7 = Portb.7 , E = Portc.7 , Rs = Portc.6

$serialinput2lcd
Dim V As Byte
Do
 Cls
 Input "Number " , V 'this will
go to the LCD display
Loop

304 300 304

300

300

304

300 304 302 304

304 BASCOM-AVR

© 2008 MCS Electronics

6.39 $SERIALOUTPUT

Action
Specifies that serial output must be redirected.

Syntax
$SERIALOUTPUT = label

Remarks
Label The name of the assembler routine that must be called when a character

is send to the serial buffer (UDR).

The character is placed into R24.

With the redirection of the PRINT and other serial output related commands, you can
use your own routines.
This way you can use other devices as output devices.

See also
$SERIALINPUT , $SERIALINPUT2LCD , $SERIALINPUT1 , $SERIALOUTPUT1

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

$serialoutput = Myoutput
'your program goes here
Do
 Print "Hello"
Loop
End

myoutput:
'perform the needed actions here
'the data arrives in R24
'just set the output to PORTB
 !outportb,r24
ret

6.40 $SERIALOUTPUT1

Action
Specifies that serial output of the second UART must be redirected.

Syntax
$SERIALOUTPUT1 = label

300 303 302

304

305BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Label The name of the assembler routine that must be called when a character is

send to the serial buffer (UDR1).

The character is placed into R24.

With the redirection of the PRINT and other serial output related commands, you can
use your own routines.
This way you can use other devices as output devices.

See also
$SERIALINPUT1 , $SERIALINPUT , $SERIALINPUT2LCD , $SERIALOUTPUT

Example
See the $SERIALOUTPUT example

6.41 $SIM

Action
Instructs the compiler to generate empty wait loops for the WAIT and WAITMS
statements. This to allow faster simulation.

Syntax
$SIM

Remarks
Simulation of a WAIT statement can take a long time especially when memory view
windows are opened.
The $SIM compiler directive instructs the compiler to not generate code for WAITMS
and WAIT. This will of course allows faster simulation.

When your application is ready you must remark the $SIM directive or otherwise the
WAIT and WAITMS statements will not work as expected.
When you forget to remove the $SIM option and you try to program a chip you will
receive a warning that $SIM was used.

See also
NONE

ASM
NONE

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

302 300 303 304

304

306 BASCOM-AVR

© 2008 MCS Electronics

$sim
Do
 Wait 1
 Print "Hello"
Loop

6.42 $SWSTACK

Action
Sets the available space for the software stack.

Syntax
$SWSTACK = var

Remarks
Var A numeric decimal value.

While you can configure the SW Stack in Options, Compiler, Chip, it is good practice
to put the value into your code. This way you do no need the cfg(configuration) file.

The $SWSTACK directive overrides the value from the IDE Options.

 It is important that the $SWSTACK directive occurs in your main project file. It
may not be included in an $include file as only the main file is parsed for $SWSTACK

See also
$HWSTACK , $FRAMESIZE

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

271 270

307BASCOM Language Reference

© 2008 MCS Electronics

6.43 $TIMEOUT

Action
Enable timeout on the hardware UART 0 and UART1.

Syntax
$TIMEOUT = value

Remarks
Value A constant that fits into a LONG , indicating how much time must be waited

before the waiting is terminated.

All RS-232 serial statements and functions(except INKEY) that use the HW UART, will
halt the program until a character is received. Only with buffered serial input you can
process your main program while the buffer received data on the background.

 $TIMEOUT is an alternative for normal serial reception. It is not intended to be
used with buffered serial reception.

When you assign a constant to $TIMEOUT, you actual assign a value to the internal
created value named ___TIMEOUT.

This value will be decremented in the routine that waits for serial data. When it
reaches zero, it will terminate.

So the bigger the value, the longer the wait time before the timeout occurs. The
timeout is not in seconds or microseconds, it is a relative number. Only the speed of
the oscillator has effect on the duration. And the value of the number of course.

When the time out is reached, a zero/null will be returned to the calling routine.
Waitkey() will return 0 when used with a byte. When you use INPUT with a string, the
timeout will be set for every character. So when 5 characters are expected, and they
arrive just before the timeout value is reached, it may take a long time until the code
is executed.

When the timeout occurs on the first character, it will return much faster.

When you already sent data, this data will be returned. For example, "123" was sent
but a RETURN was never sent, INPUT will return "123". While without the $TIMEOUT,
INPUT will not return until a RETURN is received.

When you activate $TIMEOUT, and your micro has two UARTS(Mega128 for
example) it will be active for both UART0 and UART1.

See Also
INPUT , WAITKEY

Example
'---

'name : timeout.bas

622 810

308 BASCOM-AVR

© 2008 MCS Electronics

'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of the $timeout option
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'most serial communication functions and routines wait until a character
'or end of line is received.
'This blocks execution of your program. SOmething you can change by
using buffered input
'There is also another option : using a timeout
'$timeout Does Not Work With Buffered Serial Input

Dim Sname As String * 10
Dim B As Byte
Do
 $timeout = 1000000
 Input "Name : " , Sname
 Print "Hello " ; Sname

 $timeout = 5000000
 Input "Name : " , Sname
 Print "Hello " ; Sname
Loop

'you can re-configure $timeout

6.44 $TINY

Action
Instruct the compiler to generate initialize code without setting up the stacks.

Syntax
$TINY

Remarks
The tiny11 for example is a powerful chip. It only does not have SRAM. BASCOM
depends on SRAM for the hardware stack and software stack.
When you like to program in ASM you can use BASCOM with the $TINY directive.

Some BASCOM statements will also already work but the biggest part will not work.
A future version will support a subset of the BASCOM statements and function to be
used with the chips without SRAM.

309BASCOM Language Reference

© 2008 MCS Electronics

Note that the generated code is not yet optimized for the tiny parts. Some used ASM
statements for example will not work because the chip does not support it.

See also
NONE

ASM
NONE

Example
'---

'name : tiny15.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrate using ATtiny15
'micro : Tiny15
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "at15def.dat" ' specify
the used micro
$crystal = 1000000 ' used
crystal frequency

$tiny
$noramclear
Dim A As Iram Byte
Dim B As Iram Byte
A = 100 : B = 5
A = A + B
nop

6.45 $WAITSTATE

Action
Compiler directive to activate external SRAM and to insert a WAIT STATE for a slower
ALE signal.

CONFIG XRAM should be used instead.

Syntax
$WAITSTATE

Remarks
The $WAITSTATE can be used to override the Compiler Chip Options setting.
Wait states are needed for slow external components that can not handle the fast ALE
signal from the AVR chip.

482

310 BASCOM-AVR

© 2008 MCS Electronics

See also
$XA , CONFIG XRAM

Example
$WAITSTATE

6.46 $XA

Action
Compiler directive to activate external memory access.

CONFIG XRAM should be used instead.

Syntax
$XA

Remarks
The $XA directive can be used to override the Compiler Chip Options setting.
This way you can store the setting in your program code. It is strongly advised to do
this.

See also
$WAITSTATE , CONFIG XRAM

Example

$XA

6.47 $XRAMSIZE

Action
Specifies the size of the external RAM memory.

Syntax
$XRAMSIZE = [&H] size

Remarks
Size A constant with the size of the external RAM memory chip.

The size of the chip can be selected from the Options Compiler Chip menu.
The $XRAMSIZE overrides this setting. It is important that $XRAMSTART
precedes $XRAMSIZE

See also
$XRAMSTART

310 482

482

309 482

87

311

311BASCOM Language Reference

© 2008 MCS Electronics

Example
'---

'name : m128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrate using $XRAM directive
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 1000000 ' used
crystal frequency
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$xramstart = &H1000

$xramsize = &H1000
Dim X As X

6.48 $XRAMSTART

Action
Specifies the location of the external RAM memory.

Syntax
$XRAMSTART = [&H]address

Remarks
Address The (hex)-address where the data is stored.

Or the lowest address that enables the RAM chip.
You can use this option when you want to run your code in systems
with external RAM memory. Address must be a constant.

By default the extended RAM will start after the internal memory so the lower
addresses of the external RAM can't be used to store information.

When you want to protect an area of the chip, you can specify a higher address for
the compiler to store the data. For example, you can specify &H400. The first
dimensioned variable will be placed in address &H400 and not in &H260.

It is important that when you use $XRAMSTART and $XRAMSIZE that $XRAMSTART
comes before $XRAMSIZE.

312 BASCOM-AVR

© 2008 MCS Electronics

See also
$XRAMSIZE

Example
'---

'name : m128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrate using $XRAM directive
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 1000000 ' used
crystal frequency
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$xramstart = &H1000

$xramsize = &H1000
Dim X As X

6.49 1WIRECOUNT

Action
This statement reads the number of 1wire devices attached to the bus.

Syntax
var2 = 1WIRECOUNT()
var2 = 1WIRECOUNT(port , pin)

Remarks
var2 A WORD variable that is assigned with the number of devices on the

bus.

port The PIN port name like PINB or PIND.

pin The pin number of the port. In the range from 0-7. May be a numeric
constant or variable.

The variable must be of the type word or integer.
You can use the 1wirecount() function to know how many times the 1wsearchNext()
function should be called to get all the Id's on the bus.

The 1wirecount function will take 4 bytes of SRAM.

___1w_bitstorage , Byte used for bit storage :
lastdeviceflag bit 0

310

313BASCOM Language Reference

© 2008 MCS Electronics

id_bit bit 1
cmp_id_bit bit 2
search_dir bit 3
___1wid_bit_number, Byte
___1wlast_zero, Byte
___1wlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.

_1wire_Count : (calls _1WIRE, _1WIRE_SEARCH_FIRST , _1WIRE_SEARCH_NEXT)

Parameters passed : R24 : pin number, R30 : port , Y+0,Y+1 : 2 bytes of soft stack,
X : pointer to the frame space

Returns Y+0 and Y+1 with the value of the count. This is assigned to the target
variable.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST , 1WSEARCHNEXT ,
Using the 1wire protocol

Example
'---

'name : 1wireSearch.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wsearch
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte

326 314 317 319 321

157

314 BASCOM-AVR

© 2008 MCS Electronics

'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID's on the
bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8 'print the
number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a word/integer
'So the result variable must be of the type word or integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can provide the port
and pin number as anoption
'W = 1wirecount(pinb , 1) 'for
example look at pin PINB.1
End

6.50 1WRESET

Action
This statement brings the 1wire pin to the correct state, and sends a reset to the bus.

315BASCOM Language Reference

© 2008 MCS Electronics

Syntax
1WRESET
1WRESET , PORT , PIN

Remarks
1WRESET Reset the 1WIRE bus. The error variable ERR will return 1 if an error

occurred

Port The register name of the input port. Like PINB, PIND.

Pin The pin number to use. In the range from 0-7. May be a numeric
constant or variable.

The global variable ERR is set when an error occurs.
There is also support for multi 1-wire devices on different pins.

To use this you must specify the port and pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the
old syntax. And the pin can be configured from the compiler options or with the
CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :

1WRESET port , pin
1WWRITE var/constant ,bytes] , port, pin
var = 1WREAD(bytes) , for the configured 1 wire pin
var = 1WREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD , 1WWRITE

Example
'---

'name : 1wire.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wreset, 1wwrite and 1wread()
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use

317 326

316 BASCOM-AVR

© 2008 MCS Electronics

40 for the frame space

'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the
device
 Print Err 'print error
1 if error
 1wwrite &H33 'read ROM
command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into
array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8
bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print
output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array
to see that it works
Next

1wreset Pinb , 2 'use this
port and pin for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that
now the number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8
bytes from portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3

317BASCOM Language Reference

© 2008 MCS Electronics

 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next
End

6.51 1WREAD

Action
This statement reads data from the 1wire bus into a variable.

Syntax
var2 = 1WREAD([bytes])
var2 = 1WREAD(bytes , port , pin)

Remarks
var2 Reads a byte from the bus and places it into variable var2.

Optional the number of bytes to read can be specified.

Port The PIN port name like PINB or PIND.

Pin The pin number of the port. In the range from 0-7. Maybe a numeric
constant or variable.

Multi 1-wire devices on different pins are supported.
To use this you must specify the port pin that is used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the
old syntax. And the pin can be configured from the compiler options or with the
CONFIG 1WIRE statement .

The syntax for additional 1-wire devices is :
1WRESET port, pin
1WWRITE var/constant , bytes, port, pin
var = 1WREAD(bytes, port, pin) for reading multiple bytes

See also
1WWRITE , 1WRESET

Example
'---

'name : 1wire.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wreset, 1wwrite and 1wread()
'micro : Mega48
'suited for demo : yes

377

326 314

318 BASCOM-AVR

© 2008 MCS Electronics

'commercial addon needed : no
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the
device
 Print Err 'print error
1 if error
 1wwrite &H33 'read ROM
command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into
array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8
bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print
output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array
to see that it works
Next

1wreset Pinb , 2 'use this
port and pin for the second device

319BASCOM Language Reference

© 2008 MCS Electronics

1wwrite &H33 , 1 , Pinb , 2 'note that
now the number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8
bytes from portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next
End

6.52 1WSEARCHFIRST

Action
This statement reads the first ID from the 1wire bus into a variable(array).

Syntax
var2 = 1WSEARCHFIRST()
var2 = 1WSEARCHFIRST(port , pin)

Remarks
var2 A variable or array that should be at least 8 bytes long that will be

assigned with the 8 byte ID from the first 1wire device on the bus.

port The PIN port name like PINB or PIND.

pin The pin number of the port. In the range from 0-7. Maybe a numeric
constant or variable.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use successive
function calls to the 1wSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a null may
be returned as a value and the null is also used as a string terminator.

I would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.
___1w_bitstorage , Byte used for bit storage :
lastdeviceflag bit 0
id_bit bit 1
cmp_id_bit bit 2
search_dir bit 3
___1wid_bit_number, Byte

321

320 BASCOM-AVR

© 2008 MCS Electronics

___1wlast_zero, Byte
___1wlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.
_1wire_Search_First : (calls _1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)
Parameters passed : R24 : pin number, R30 : port , X : address of target array
Returns nothing.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHNEXT , 1WIRECOUNT

Example
'---

'name : 1wireSearch.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wsearch
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID's on the
bus
Dim I As Byte , W As Word

326 314 317 321 312

321BASCOM Language Reference

© 2008 MCS Electronics

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8 'print the
number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a word/integer
'So the result variable must be of the type word or integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can provide the port
and pin number as anoption
'W = 1wirecount(pinb , 1) 'for
example look at pin PINB.1
End

6.53 1WSEARCHNEXT

Action
This statement reads the next ID from the 1wire bus into a variable(array).

Syntax
var2 = 1WSEARCHNEXT()
var2 = 1WSEARCHNEXT(port , pin)

Remarks
var2 A variable or array that should be at least 8 bytes long that will be

assigned with the 8 byte ID from the next 1wire device on the bus.

322 BASCOM-AVR

© 2008 MCS Electronics

Port The PIN port name like PINB or PIND.

Pin The pin number of the port. In the range from 0-7. May be a numeric
constant or variable.

The 1wireSearchFirst() function must be called once to initiate the ID retrieval
process. After the 1wireSearchFirst() function is used you should use successive
function calls to the 1wireSearchNext function to retrieve other ID's on the bus.

A string can not be assigned to get the values from the bus. This because a null may
be returned as a value and the null is also used as a string terminator.

I would advice to use a byte array as shown in the example.

The 1wirecount function will take 4 bytes of SRAM.

___1w_bitstorage , Byte used for bit storage :
lastdeviceflag bit 0
id_bit bit 1
cmp_id_bit bit 2
search_dir bit 3
___1wid_bit_number, Byte
___1wlast_zero, Byte
___1wlast_discrepancy , Byte

ASM
The following asm routines are called from mcs.lib.

_1wire_Search_Next : (calls _1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)
Parameters passed : R24 : pin number, R30 : port , X : address of target array
Returns nothing.

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST , 1WIRECOUNT

Example
'---

'name : 1wireSearch.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wsearch
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack

326 314 317 319 312

323BASCOM Language Reference

© 2008 MCS Electronics

$framesize = 40 'default use
40 for the frame space

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted

'The following internal bytes are used by the scan routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID's on the
bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8 'print the
number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a word/integer
'So the result variable must be of the type word or integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist

324 BASCOM-AVR

© 2008 MCS Electronics

' optinal call it with pinnumber line 1wverify reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can provide the port
and pin number as anoption
'W = 1wirecount(pinb , 1) 'for
example look at pin PINB.1
End

6.54 1WVERIFY

Action
This verifies if an ID is available on the 1wire bus.

Syntax
1WVERIFY ar(1)

Remarks
Ar(1) A byte array that holds the ID to verify.

Returns ERR set to 0 when the ID is found on the bus otherwise it will be 1.

ASM
The following asm routines are called from mcs.lib.
_1wire_Search_Next : (calls _1WIRE, _ADJUST_PIN , _ADJUST_BIT_ADDRESS)

See also
1WWRITE , 1WRESET , 1WREAD , 1WSEARCHFIRST , 1WIRECOUNT

Example
'---

'name : 1wireSearch.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wsearch
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted

326 314 317 319 312

325BASCOM Language Reference

© 2008 MCS Electronics

'The following internal bytes are used by the scan routines
'___1w_bitstorage , Byte used for bit storage :
' lastdeviceflag bit 0
' id_bit bit 1
' cmp_id_bit bit 2
' search_dir bit 3
'___1wid_bit_number, Byte
'___1wlast_zero, Byte
'___1wlast_discrepancy , Byte
'___1wire_data , string * 7 (8 bytes)

'[DIM variables used]
'we need some space from at least 8 bytes to store the ID
Dim Reg_no(8) As Byte

'we need a loop counter and a word/integer for counting the ID's on the
bus
Dim I As Byte , W As Word

'Now search for the first device on the bus
Reg_no(1) = 1wsearchfirst()

For I = 1 To 8 'print the
number
 Print Hex(reg_no(i));
Next
Print

Do
 'Now search for other devices
 Reg_no(1) = 1wsearchnext()
 For I = 1 To 8
 Print Hex(reg_no(i));
 Next
 Print
Loop Until Err = 1

'When ERR = 1 is returned it means that no device is found anymore
'You could also count the number of devices
W = 1wirecount()
'It is IMPORTANT that the 1wirecount function returns a word/integer
'So the result variable must be of the type word or integer
'But you may assign it to a byte or long too of course
Print W

'as a bonus the next routine :
' first fill the array with an existing number
Reg_no(1) = 1wsearchfirst()
' unremark next line to chance a byte to test the ERR flag
'Reg_no(1) = 2
'now verify if the number exists
1wverify Reg_no(1)
Print Err
'err =1 when the ID passed n reg_no() does NOT exist
' optinal call it with pinnumber line 1wverify reg_no(1),pinb,1

'As for the other 1wire statements/functions, you can provide the port
and pin number as anoption
'W = 1wirecount(pinb , 1) 'for
example look at pin PINB.1

326 BASCOM-AVR

© 2008 MCS Electronics

End

6.55 1WWRITE

Action
This statement writes a variable to the 1wire bus.

Syntax
1WWRITE var1
1WWRITE var1, bytes
1WWRITE var1 , bytes , port , pin

Remarks
var1 Sends the value of var1 to the bus. The number of bytes can be specified

too but this is optional.

bytes The number of bytes to write. Must be specified when port and pin are
used.

port The name of the PORT PINx register like PINB or PIND.

pin The pin number in the range from 0-7. May be a numeric constant or
variable.

Multiple 1-wire devices on different pins are supported.
To use this you must specify the port and pin that are used for the communication.

The 1wreset, 1wwrite and 1wread statements will work together when used with the
old syntax. And the pin can be configured from the compiler options or with the
CONFIG 1WIRE statement.

The syntax for additional 1-wire devices is :
1WRESET port , pin
1WWRITE var/constant, bytes, port , pin
var = 1WREAD(bytes, port, pin) ,for reading multiple bytes

See also
1WREAD , 1WRESET

Example
'---

'name : 1wire.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wreset, 1wwrite and 1wread()
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'---

377

317 314

327BASCOM Language Reference

© 2008 MCS Electronics

$regfile = "m48def.dat"
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the
device
 Print Err 'print error
1 if error
 1wwrite &H33 'read ROM
command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into
array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8
bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print
output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array
to see that it works
Next

1wreset Pinb , 2 'use this
port and pin for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that
now the number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8

328 BASCOM-AVR

© 2008 MCS Electronics

bytes from portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next
End

6.56 ABS

Action
Returns the absolute value of a numeric signed variable.

Syntax
var = ABS(var2)

Remarks
Var Variable that is assigned with the absolute value of var2.

Var2 The source variable to retrieve the absolute value from.

var : Integer , Long, Single or Double.
var2 : Integer, Long, Single or Double.

 The absolute value of a number is always positive.

See also
NONE

ASM
Calls: _abs16 for an Integer and _abs32 for a Long
Input: R16-R17 for an Integer and R16-R19 for a Long
Output:R16-R17 for an Integer and R16-R19 for a Long

Calls _Fltabsmem for a single from the fp_trig library.

Example
Dim a as Integer, c as Integer
a =-1000
c = Abs(a)
Print c

329BASCOM Language Reference

© 2008 MCS Electronics

End

6.57 ACOS

Action
Returns the arccosine of a single in radians.

Syntax
var = ACOS(x)

Remarks
Var A floating point variable such as single or double, that is assigned with

the ACOS of variable x.

X The float to get the ACOS of. Input is valid from –1 to +1 and returns
p to 0.

If Input is < -1 than p and input is > 1 than 0 will returned.

If Input is cause of rounding effect in float-operations a little bit over 1 or -1, the
value for 1.0 (-1.0) will be returned. This is the reason to give the value of the limit-
point back, if Input is beyond limit. Generally the user have to take care, that Input
to this function lies within –1 to +1.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , COS , SIN , TAN , ATN , ASIN , ATN2

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
x= 0.5 : S = Acos(x)
Print S
End

690 537 485 751 782 339 338 340

330 BASCOM-AVR

© 2008 MCS Electronics

6.58 ADR , ADR2

Action
Create label address.

Syntax
ADR label
ADR2 label

Remarks
label The name of a label.

The AVR uses WORD addresses. ADR will create the word address. To find a byte in
memory, you need to multiply by 2. For this purpose ADR2 is available. It will create
the address of the label multiplied by 2.

Using ADR2 you can use tables. The sample program demonstrates this together with
some more advanced ASM code.

The sample includes ADR2.LIB. This lib contains a special version of
_MoveConst2String .
The normal routine in MCS.LIB will stop printing once a null byte (zero) is
encountered that indicates the end of a string.
But for the sample program, we may not change the address, so the address is
restored when the null byte is found.

See Also
NONE

Example
'===
' This is an example of how to create an interactive menu system supporting
' sub-menus and support routines using the !ADR and !ADR2 statements
'===

$regfile = "M644def.dat"
$crystal = 8000000

$hwstack = 64 ' specify the hardware stack depth
$swstack = 64 ' specify the software stack depth
$framesize = 64 ' specify the framesize (local stack depth)

$lib "adr2.lib"

'---

Dim Menupointer As Word
Dim Actionpointer As Word

Dim Entries As Byte
Dim Dummy As Byte
Dim Message As String * 32

331BASCOM Language Reference

© 2008 MCS Electronics

Dim Local1 As Byte
Dim Local_loop1 As Byte

Const Menu_id = &HAA ' sub-menu ID byte
Const Routine_id = &H55 ' service routine ID byte

'---

 Restore Main_menu ' point to the start of the 'main' menu
 sts {MenuPointer}, R8 ' }
 sts {MenuPointer + 1}, R9 ' } store the pointer to the start of the menu

Display_new_menu:

 lds R8, {MenuPointer} ' }
 lds R9, {MenuPointer + 1} ' } restore the pointer to the start of the menu

 Read Entries ' get the number of entries in the menu including the title
 Print
 For Local_loop1 = 1 To Entries
 Read Message ' read the message
 Print Message ' send it to the console
 Next

 Read Dataptr ' get the pointer to the menu's action table
 sts {ActionPointer}, R8 ' }
 sts {ActionPointer + 1}, R9 ' } store the pointer to the start of the menu's action list

 Input "Entry ? " , Local1 ' ask the user which menu entry
 If Local1 = 0 Then ' is it valid ?
 Goto Display_new_menu ' if not, re-display the menu
 End If
 If Local1 => Entries Then ' is it valid ?
 Goto Display_new_menu ' if not, re-display the menu
 End If

 lds R8,{ActionPointer} ' }
 lds R9,{ActionPointer + 1} ' } restore the pointer to the menu's action list

 If Local1 <> 1 Then
 For Local_loop1 = 2 To Local1 '
 ldI R30,4 ' }
 clr R1 ' }
 add R8,R30 ' }
 adc R9,R1 ' }
 Next ' } calculate the location of the selected entry's function ID
 End If

 Read Local1 ' get the menu entry's function ID
 Read Dummy ' to handle the uP expecting WORDS in DATA statements

 If Local1 = Menu_id Then ' did the user select an entry that points to another menu ?
 Read Dataptr
 sts {MenuPointer}, R8 ' }
 sts {MenuPointer + 1}, R9 ' } store the start of the menu
 Goto Display_new_menu
 End If

 Read Dataptr ' get the address of this entry's support routine
 movw R30,R8
 icall ' pass control to the entry's support routine

 Goto Display_new_menu ' re-display the last menu displayed

332 BASCOM-AVR

© 2008 MCS Electronics

'---
' Test support routines
'---

Hello_message:

 Print
 Print "You asked to print 'Hello'" ' confirmation that Menu Entry 3 was selected
 Return

2nd_menu_1st_entry_routine:

 Print
 Print "You selected Entry 1 of the 2nd menu" ' confirmation that Menu Entry 1 was selected
 Return

2nd_menu_2nd_entry_routine:

 Print
 Print "You selected Entry 2 of the 2nd menu" ' confirmation that Menu Entry 2 was selected
 Return

3rd_menu_1st_entry_routine:

 Print
 Print "You selected Entry 1 of the 3rd menu" ' confirmation that Menu Entry 1 was selected
 Return

3rd_menu_2nd_entry_routine:

 Print
 Print "You selected Entry 2 of the 3rd menu" ' confirmation the Menu Entry 2 was selected
 Return

 End

'===
' Data Statements
'===

$data

'---
' Main Menu
'---

Main_menu:

 Data 4 ' number of entries in the menu including title

 Data "MAIN MENU" ' } menu title
 Data "1. Go to Menu 2" ' } 1st menu entry
 Data "2. Go to Menu 3" ' } 2nd menu entry
 Data "3. Print 'Hello' message" ' } 3rd menu entry

 Adr2 Mainmenu_supporttable ' point to this menu support table

'---

Mainmenu_supporttable:

 Data Menu_id ' identify this menu entry as a menu
 Adr2 Second_menu ' address of next menu

333BASCOM Language Reference

© 2008 MCS Electronics

 Data Menu_id ' identify this menu entry as a menu
 Adr2 Third_menu ' address of next menu

 Data Routine_id ' identify this menu entry as support routine
 Adr Hello_message ' address of the support routine

'---
' Second Menu
'---

Second_menu:

 Data 4 ' number of entries in the menu

 Data "SECOND MENU" ' } menu title
 Data "1. 2nd Menu Entry #1" ' } 1st menu entry
 Data "2. 2nd Menu Entry #2" ' } 2nd menu entry
 Data "3. Go to previous menu" ' } 3rd menu entry

 Adr2 Secondmenu_supporttable ' point to this menu support table

'---

Secondmenu_supporttable:

 Data Routine_id ' identify this menu entry as a support routine
 Adr 2nd_menu_1st_entry_routine ' support routine for 1st menu entry

 Data Routine_id ' identify this menu entry as a support routine
 Adr 2nd_menu_2nd_entry_routine ' support routine for 2nd menu entry

 Data Menu_id ' identify this menu entry as a menu
 Adr2 Main_menu ' support routine for 3rd menu entry

'---
' Third Menu
'---

Third_menu:

 Data 4 ' number of entries in the menu

 Data "THIRD MENU" ' } menu title
 Data "1. 3rd Menu Entry #1" ' } 1st menu entry
 Data "2. 3rd Menu Entry #2" ' } 2nd menu entry
 Data "3. Go to previous menu" ' } 3rd menu entry

 Adr2 Thirdmenu_supporttable ' point to this menu support table

'---

Thirdmenu_supporttable:

 Data Routine_id ' identify this menu entry as a support routine
 Adr 3rd_menu_1st_entry_routine ' support routine for 1st menu entry

 Data Routine_id ' identify this menu entry as a support routine
 Adr 3rd_menu_2nd_entry_routine ' support routine for 2nd menu entry

 Data Menu_id ' identify this menu entry as a menu
 Adr2 Main_menu ' support routine for 3rd menu entry

334 BASCOM-AVR

© 2008 MCS Electronics

6.59 ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newvar ALIAS oldvar

Remarks
oldvar Name of the variable such as PORTB.1

newvar New name of the variable such as direction

Aliasing port pins can give the pin names a more meaningful name. For example,
when your program uses 4 different pins to control 4 different relays, you could name
them portb.1, portb.2, portb.3 and portb.4.
But it would be more convenient to refer to them as relais1, relais2, relais3 and
realais4.

When you later on change your PCB and decide that relays 4 must be connected to
portD.4 instead of portb.4, you only need to change the ALIAS line, and not your
whole program.

See also
CONST

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates ALIAS

'---

$regfile = "m48def.dat"
$crystal = 4000000 ' 4 MHz
crystal

Const On = 1
Const Off = 0

Config Portb = Output
Relais1 Alias Portb.1
Relais2 Alias Portb.2
Relais3 Alias Portd.5
Relais4 Alias Portd.2

Set Relais1
Relais2 = 0
Relais3 = On
Relais4 = Off

483

335BASCOM Language Reference

© 2008 MCS Electronics

End

6.60 ASC

Action
Assigns a numeric variable with the ASCII value of the first character of a string.

Syntax
var = ASC(string)

Remarks
Var Target numeric variable that is assigned.

String String variable or constant from which to retrieve the ASCII value.

Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

ASCII stands for American Standard Code for Information Interchange. Computers
can only understand numbers, so an ASCII code is the numerical representation of a
character such as 'a' or '@' or an action of some sort. ASCII was developed a long
time ago and now the non-printing characters are rarely used for their original
purpose. Below is the ASCII character table and this includes descriptions of the first
32 non-printing characters. ASCII was actually designed for use with teletypes and so
the descriptions are somewhat obscure. If someone says they want your CV however
in ASCII format, all this means is they want 'plain' text with no formatting such as
tabs, bold or underscoring - the raw format that any computer can understand. This
is usually so they can easily import the file into their own applications without issues.
Notepad.exe creates ASCII text, or in MS Word you can save a file as 'text only'

336 BASCOM-AVR

© 2008 MCS Electronics

Extended ASCII
As people gradually required computers to understand additional characters and non-
printing characters the ASCII set became restrictive. As with most technology, it took
a while to get a single standard for these extra characters and hence there are few
varying 'extended' sets. The most popular is presented below.

337BASCOM Language Reference

© 2008 MCS Electronics

See also
CHR

ASM
NONE

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default

361

338 BASCOM-AVR

© 2008 MCS Electronics

use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim A As Byte , S As String * 10
s ="ABC"
A = Asc(s)
Print A 'will print
65
End

6.61 ASIN

Action
Returns the arcsine of a single in radians.

Syntax
var = ASIN(x)

Remarks
Var A float variable such as single or double that is assigned with the

ASIN of variable x.

X The float to get the ASIN of. Input is valid from –1 to +1 and
returns -p/2 to +p/2.

If Input is < -1 than -p/2 and input is > 1 than p/2 will returned.

If Input is cause of rounding effect in single-operations a little bit over 1 or -1, the
value for 1.0 (-1.0) will be returned. This is the reason to give the value of the limit-
point back, if Input is beyond limit. Generally the user have to take care, that Input
to this function lies within –1 to +1.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , COS , SIN , TAN , ATN , ACOS , ATN2

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack

690 537 485 751 782 339 329 340

339BASCOM Language Reference

© 2008 MCS Electronics

$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
X = 0.5 : S = Asin(x)
Print S '0.523595867

End

6.62 ATN

Action
Returns the Arctangent of a single in radians.

Syntax
var = ATN(single)

Remarks
Var A float variable that is assigned with the arctangent of variable

single.

Single The float variable to get the arctangent of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , COS , SIN , TAN , ATN2

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
S = Atn(1) * 4
Print S ' prints 3.141593 PI
End

690 537 485 751 782 340

340 BASCOM-AVR

© 2008 MCS Electronics

6.63 ATN2

Action
ATN2 is a four-quadrant arc-tangent.
While the ATN-function returns from -p/2 (-90°) to p/2 (90°), the ATN2 function
returns the whole range of a circle from -p (-180°) to +p (180°). The result depends
on the ratio of Y/X and the signs of X and Y.

Syntax
var = ATN2(y, x)

Remarks
Var A single variable that is assigned with the ATN2 of variable single.

X The single variable with the distance in x-direction.

Y The single variable with the distance in y-direction

Quadrant Sign Y Sign X ATN2

I + + 0 to p/2

II + - p/2 to p

III - - -p/2 to -p

IV - + 0 to –p/2

If you go with the ratio Y/X into ATN you will get same result for X greater zero (right
side in coordinate system) as with ATN2. ATN2 uses X and Y and can give information
of the angle of the point over 360° in the coordinates system.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , COS , SIN , TAN , ATN

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency

690 537 485 751 782 339

341BASCOM Language Reference

© 2008 MCS Electronics

$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
X = 0.5 : S = 1.1
S = Atn2(s , X)
Print S ' prints 1.144164676

End

6.64 BASE64DEC

Action
Converts Base-64 data into the original data.

Syntax
Result = BASE64DEC(source)

Remarks
Result A string variable that is assigned with the un-coded string.

Source The source string that is coded with base-64.

Base-64 is not an encryption protocol. It sends data in 7-bit ASCII data format. MIME,
web servers, and other Internet servers and clients use Base-64 coding.

The provided Base64Dec() function is a decoding function. It was written to add
authentication to the web server sample.
When the web server asks for authentication, the client will send the user and
password unencrypted, but base-64 coded to the web server.
Base-64 coded strings are always in pairs of 4 bytes. These 4 bytes represent 3 bytes.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN , BASE64ENC

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

456 600 752 756

787 788 372 755

342

342 BASCOM-AVR

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space
$lib "tcpip.lbx"
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As String * 15 , Z As String * 15

S = "bWFyazptYXJr"
Z = Base64dec(s)
Print Z 'mark:mark

End

6.65 BASE64ENC

Action
Converts a string into the Base-64 representation.

Syntax
Result = BASE64ENC(source)

Remarks
Result A string variable that is assigned with the coded string.

Source The source string that must be code with base-64.

Base-64 is not an encryption protocol. It sends data in 7-bit ASCII data format. MIME,
web servers, and other Internet servers and clients use Base-64 coding.

The provided Base64Enc() function is an encoding function. You need it when you
want to send attachments with POP3 for example.
The target string will use 1 additional byte for every 3 bytes.
So make sure the target string is dimensioned longer then the original string.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN , BASE64DEC

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack

456 600 752 756

787 788 372 755

341

343BASCOM Language Reference

© 2008 MCS Electronics

$framesize = 40 ' default
use 40 for the frame space
$lib "tcpip.lbx"
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As String * 15 , Z As String * 15

S = "bWFyazptYXJr"
Z = Base64dec(s)
Print Z 'mark:mark
s = Base64Enc(z)
Print s
End

6.66 BAUD

Action
Changes the baud rate for the hardware UART.

Syntax
BAUD = var
BAUD #x , const

Remarks
Var The baud rate that you want to use.

X The channel number of the software UART.

Const A numeric constant for the baud rate that you want to use.

 Do not confuse the BAUD statement with the $BAUD compiler directive.

And do not confuse $CRYSTAL and CRYSTAL

$BAUD overrides the compiler setting for the baud rate and BAUD will change the
current baud rate.
So $BAUD is a global project setting in your source code while BAUD will change the
baud rate during run time.
You could use BAUD to change the baud rate during run time after the user changes a
setting.

BAUD = ... will work on the hardware UART.

BAUD #x, yyyy will work on the software UART.

See also
$CRYSTAL , $BAUD , BAUD1

ASM
NONE

257

262 497

262 257 344

344 BASCOM-AVR

© 2008 MCS Electronics

Example
$regfile = "m48def.dat"
$crystal = 4000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Print "Hello"

'Now change the baud rate in a program
Baud = 9600
Print "Did you change the terminal emulator baud rate too?"
End

6.67 BAUD1

Action
Changes the baud rate for the second hardware UART.

Syntax
BAUD1 = var
BAUD1 #x , const

Remarks
Var The baud rate that you want to use.

X The channel number of the software UART.

Const A numeric constant for the baud rate that you want to use.

Do not confuse the BAUD1 statement with the $BAUD1 compiler directive.

And do not confuse $CRYSTAL and CRYSTAL

$BAUD1 overrides the compiler setting for the baud rate and BAUD1 will change the
current baud rate.
BAUD1 = ... will work on the hardware UART.
BAUD #x, yyyy will work on the software UART.

See also
$CRYSTAL , $BAUD , $BAUD1 , BAUD

ASM
NONE

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega162
'suited for demo : yes

262 497

262 257 258 343

345BASCOM Language Reference

© 2008 MCS Electronics

'commercial addon needed : no
'purpose : demonstrates BAUD1 directive and BAUD1
statement

'---

$regfile = "M162def.dat"
$baud1 = 2400
$crystal= 14000000 ' 14 MHz crystal

Open "COM2:" For BINARY As #1

Print #1 , "Hello"
'Now change the baud rate in a program
Baud1 = 9600 '
Print #1 , "Did you change the terminal emulator baud rate too?"
Close #1
End

6.68 BCD

Action
Converts a variable stored in BCD format into a string.

Syntax
PRINT BCD(var)
LCD BCD(var)

Remarks
Var Numeric variable to convert.

When you want to use an I2C clock device which stores its values in BCD format you
can use this function to print the value correctly.
BCD() displays values with a leading zero.

The BCD() function is intended for the PRINT/LCD statements.
Use the MAKEBCD function to convert variables from decimal to BCD.
Use the MAKEDEC function to convert variables from BCD to decimal.

See also
MAKEDEC , MAKEBCD

ASM
Calls: _BcdStr
Input: X hold address of variable
Output: R0 with number of bytes, frame with data.

Example
'---

'name : bcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of split and combine BCD Bytes

655 654

346 BASCOM-AVR

© 2008 MCS Electronics

'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'===
========
' Set up Variables
'===
========
Dim A As Byte 'Setup A Variable
Dim B As Byte 'Setup B Variable
Dim C As Byte 'Setup C Variable

A = &H89
'===
========
' Main
'===
========
Main:
Print "Combined : " ; Hex(a) 'Print A

'---

B = A And &B1111_0000 'Mask To Get Only
High Nibble Of Byte
Shift B , Right , 4 'Shift High
Nibble To Low Nibble Position , Store As B

C = A And &B0000_1111 'Mask To Get Only
Low Nibble Of Byte , Store As C

Print "Split : " ; B ; " " ; C 'Print B (High
Nibble) , C(low Nibble)

'---

Shift B , Left , 4 'Shift Data From
Low Nibble Into High Nibble Position

A = B + C 'Add B (High
Nibble) And C(low Nibble) Together

Print "Re-Combined: " ; Hex(a) 'Print A (re -
combined Byte)
End 'End Program

347BASCOM Language Reference

© 2008 MCS Electronics

6.69 BIN

Action
Convert a numeric variable into the binary string representation.

Syntax
Var = Bin(source)

Remarks
Var The target string that will be assigned with the binary

representation of the variable source.

Source The numeric variable that will be converted.

The BIN() function can be used to display the state of a port.
When the variable source has the value &B10100011 the string named var will be
assigned with "10100011".
It can be easily printed to the serial port.

See also
HEX , STR , VAL , HEXVAL , BINVAL

ASM
NONE

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim B As Byte
' assign value to B
B = 45

Dim S As String * 10
'convert to string
S = Bin(b)

'assign value to portb
Portb = 33

604 775 806 605 348

348 BASCOM-AVR

© 2008 MCS Electronics

Print Bin(portb)

'of course it also works for other numerics
End

6.70 BINVAL

Action
Converts a string representation of a binary number into a number.

Syntax
var = Binval(s)

Remarks
Var A numeric variable that is assigned with the value of s.

S Variable of the string type. Should contain only 0 and 1 digits.

See also
STR , HEXVAL , HEX , BIN , VAL

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As String * 8
S = "11001100"

Dim B As Byte
' assign value to B
B = Binval(s)

Print B
End

775 605 604 347 806

349BASCOM Language Reference

© 2008 MCS Electronics

6.71 BIN2GRAY

Action
Returns the Gray-code of a variable.

Syntax
var1 = Bin2gray(var2)

Remarks
var1 Variable that will be assigned with the Gray code.

var2 A variable that will be converted.

Gray code is used for rotary encoders. Bin2gray() works with byte , integer, word and
long variables.
The data type of the variable that will be assigned determines if a byte, word or long
conversion will be done.

See also
GRAY2BIN , ENCODER

ASM
Depending on the data type of the target variable the following routine will be called
from mcs.lbx:
_grey2Bin for bytes , _grey2bin2 for integer/word and _grey2bin4 for longs.

Example
'---

'name : graycode.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show the Bin2Gray and Gray2Bin functions
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'Bin2Gray() converts a byte,integer,word or long into grey code.
'Gray2Bin() converts a gray code into a binary value

603 563

350 BASCOM-AVR

© 2008 MCS Electronics

Dim B As Byte ' could be
word,integer or long too

Print "BIN" ; Spc(8) ; "GREY"
For B = 0 To 15
 Print B ; Spc(10) ; Bin2gray(b)
Next

Print "GREY" ; Spc(8) ; "BIN"
For B = 0 To 15
 Print B ; Spc(10) ; Gray2bin(b)
Next

End

6.72 BITWAIT

Action
Wait until a bit is set or reset.

Syntax
BITWAIT x , SET/RESET

Remarks
X Bit variable or internal register like PORTB.x , where x ranges from 0-7.

When using bit variables make sure that they are set/reset by software otherwise
your program will stay in a loop.

When you use internal registers that can be set/reset by hardware such as PINB.0
this doesn't apply since this state can change as a result from for example a key
press.

See also
NONE

ASM
Calls: NONE
Input: NONE
Output: NONE

Code : shown for address 0-31

label1:
Sbic PINB.0,label2
Rjmp label1
Label2:

Example
$regfile = "m48def.dat" ' specify the used micro

351BASCOM Language Reference

© 2008 MCS Electronics

$crystal = 8000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 32 ' default use 32 for the hardware stack
$swstack = 10 ' default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0

Dim A As Bit
Bitwait A , Set 'wait until bit a is set
'the above will never contine because it is not set i software
'it could be set in an ISR routine

Bitwait Pinb.7 , Reset 'wait until bit 7 of Port B is 0.
End

6.73 BITS

Action
Set all specified bits to 1.

Syntax
Var = Bits(b1 [,bn])

Remarks
Var The BYTE/PORT variable that is assigned with the constant.

B1 , bn A list of bit numbers that must be set to 1.

While it is simple to assign a value to a byte, and there is special Boolean notation &B
for assigning bits, the Bits() function makes it simple to assign a few bits.

B = &B1000001 : how many zero’s are there?

This would make it more readable : B = Bits(0, 6)

You can read from the code that bit 0 and bit 6 are set to 1.
It does not save code space as the effect is the same.
It can only be used on bytes and port registers.

Valid bits are in range from 0 to 7.

See Also
NBITS

Example
'---

'name : bits-nbits.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo for Bits() AND Nbits()
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible

663

352 BASCOM-AVR

© 2008 MCS Electronics

'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B As Byte

'while you can use &B notation for setting bits, like B = &B1000_0111
'there is also an alternative by specifying the bits to set
B = Bits(0 , 1 , 2 , 7) 'set only
bit 0,1,2 and 7
Print B

'and while bits() will set all bits specified to 1, there is also Nbits
()
'the N is for NOT. Nbits(1,2) means, set all bits except 1 and 2
B = Nbits(7) 'do not set
bit 7
Print B
End

6.74 BLOAD

Action
Writes the Content of a File into SRAM

Syntax
BLoad sFileName, wSRAMPointer

Remarks
sFileName (String) Name of the File to be read

wSRAMPointer (Word) Variable, which holds the SRAM Address to which the
content of the file should be written

This function writes the content of a file to a desired space in SRAM. A free handle is
needed for this function.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

615 669 370 574 679 638

642 643 566 580 569 718 356 627

545 546 582 688 570 572

571 542 571 814 622

353BASCOM Language Reference

© 2008 MCS Electronics

ASM
Calls _BLoad

Input X: Pointer to string
with filename

Z: Pointer to Long-variable, which holds the start
position of SRAM

Output r25: Errorcode C-Flag: Set on Error

Example
' THIS IS A CODE FRAGMENT, it needs AVR-DOS in order to work
'now the good old bsave and bload
Dim Ar(100)as Byte , I Asbyte
For I = 1 To 100
 Ar(i) = I ' fill the
array
Next

Wait 2

W = Varptr(ar(1))
Bsave"josef.img", W , 100
For I = 1 To 100
 Ar(i) = 0 ' reset the
array
Next

Bload "josef.img" , W ' Josef you
are amazing !

For I = 1 To 10
 Print Ar(i) ; " ";
Next
Print

6.75 BOX

Action
Create a filled box on a graphical display.

Syntax
BOX (x1,y1) - (x2,y2) , color

Remarks
x1 The left corner position of the box

y1 The top position of the box

x2 The right corner position of the box

y2 The bottom position of the box

color The color to use to fill the box

On COLOR displays, the box will be filled with the specified color.
On B&W displays, the box will not be filled. Only the box is drawn in the specified
color.
On B&W displays you can use the BOXFILL statement to create a solid box.

354 BASCOM-AVR

© 2008 MCS Electronics

See also
LINE , CIRCLE , BOXFILL

ASM
NONE

Example
'
--

' The support for this display has been made possible by Peter Küsters
from (c) Display3000
' You can buy the displays from Display3000 or MCS Electronics
'
--
----------------'
'
$lib "lcd-pcf8833.lbx" 'special
color display support

$regfile = "m88def.dat" 'ATMega 8,
change if using different processors
$crystal = 8000000 '8 MHz

'First we define that we use a graphic LCD
Config Graphlcd = Color , Controlport = Portc , Cs = 1 , Rs = 0 , Scl =
3 , Sda = 2

'here we define the colors

Const Blue = &B00000011 ''predefined
contants are making programming easier
Const Yellow = &B11111100
Const Red = &B11100000
Const Green = &B00011100
Const Black = &B00000000
Const White = &B11111111
Const Brightgreen = &B00111110
Const Darkgreen = &B00010100
Const Darkred = &B10100000
Const Darkblue = &B00000010
Const Brightblue = &B00011111
Const Orange = &B11111000

'clear the display
Cls

'create a cross
Line(0 , 0) -(130 , 130) , Blue
Line(130 , 0) -(0 , 130) , Red

Waitms 1000

'show an RLE encoded picture
Showpic 0 , 0 , Plaatje
Showpic 40 , 40 , Plaatje

635 362 355

355BASCOM Language Reference

© 2008 MCS Electronics

Waitms 1000

'select a font
Setfont Color16x16
'and show some text
Lcdat 100 , 0 , "12345678" , Blue , Yellow

Waitms 1000
Circle(30 , 30) , 10 , Blue

Waitms 1000
'make a box
Box(10 , 30) -(60 , 100) , Red

'set some pixels
Pset 32 , 110 , Black
Pset 38 , 110 , Black
Pset 35 , 112 , Black

End

Plaatje:
$bgf "a.bgc"

$include "color.font"
$include "color16x16.font"

6.76 BOXFILL

Action
Create a filled box on a graphical display.

Syntax
BOX (x1,y1) - (x2,y2) , color

Remarks
x1 The left corner position of the box

y1 The top position of the box

x2 The right corner position of the box

y2 The bottom position of the box

color The color to use to fill the box

The BOXFILL command will draw a number of lines which will appear as a filled box.

See also
LINE , CIRCLE , BOX

ASM
NONE

635 362 353

356 BASCOM-AVR

© 2008 MCS Electronics

Example
'create a bargraph effect
B o x f i l l(0 , 0) - (60 , 10) , 1
B o x f i l l(2 , 2) - (40 , 8) , 0

6.77 BSAVE

Action
Save a range in SRAM to a File

Syntax
BSave sFileName, wSRAMPointer, wLength

Remarks
sFileName (String) Name of the File to be written

wSRAMPointer (Word) Variable, which holds the SRAM Address, from where SRAM
should be written to a File

wLength (Word) Count of Bytes from SRAM, which should be written to the file

This function writes a range from the SRAM to a file. A free file handle is needed for
this function.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _BSave

Input X: Pointer to string with
filename

Z: Pointer to Long-variable, which holds the
start position of SRAM

r20/r21: Count of bytes to
be written

Output r25: Errorcode C-Flag: Set on Error

Example
' THIS IS A CODE FRAGMENT, it needs AVR-DOS in order to work
'now the good old bsave and bload
Dim Ar(100)as Byte , I Asbyte
For I = 1 To 100
 Ar(i) = I ' fill the
array
Next

Wait 2

W = Varptr(ar(1))
Bsave"josef.img", W , 100

615 669 370 574 679 638

642 643 566 580 569 718 352 627

545 546 582 688 570 572

571 542 571 814 622

357BASCOM Language Reference

© 2008 MCS Electronics

For I = 1 To 100
 Ar(i) = 0 ' reset the
array
Next

Bload "josef.img" , W ' Josef you
are amazing !

For I = 1 To 10
 Print Ar(i) ; " ";
Next
Print

6.78 BUFSPACE

Action
Returns the amount of free space of a serial buffer.

Syntax
Var = BufSpace(n)

Remarks
Var A word or integer variable that is assigned with the free buffer space.

N A constant in the range from 0-3.
A value of 0 : output buffer first UART
A value of 1 : input buffer first UART
A value of 2 : output buffer second UART
A value of 3 : input buffer second UART

While serial buffers are great because you do not have to wait/block the processor,
the buffer can become full when the micro has no time to empty the buffer. With the
bufspace() function you can determine if there is still room in the buffer.

See Also
CONFIG SERIAL , CLEAAR

Example
'---
NONE

6.79 BYVAL

Action
Specifies that a variable will be passed by value.

Syntax
Sub Test(BYVAL var)

Remarks

449 365

358 BASCOM-AVR

© 2008 MCS Electronics

Var Variable name

The default for passing variables to SUBS and FUNCTIONS, is by reference(BYREF).
When you pass a variable by reference, the address is passed to the SUB or
FUNCTION. When you pass a variable by Value, a temp variable is created on the
frame and the address of the copy is passed.

When you pass by reference, changes to the variable will be made to the calling
variable.
When you pass by value, changes to the variable will be made to the copy so the
original value will not be changed.

By default passing by reference is used.
Note that calling by reference will generate less code.

See also
CALL , DECLARE , SUB , FUNCTION

ASM
NONE

Example
Declare Sub Test(Byval X As Byte, Byref Y As Byte, Z As Byte)

6.80 CALL

Action
Call and execute a subroutine.

Syntax
CALL Test [(var1, var-n)]

Remarks
Var1 Any BASCOM variable or constant.

Var-n Any BASCOM variable or constant.

Test Name of the subroutine. In this case Test.

You can call sub routines with or without passing parameters.

It is important that the SUB routine is DECLARED before you make the CALL to the
subroutine. Of course the number of declared parameters must match the number of
passed parameters.

It is also important that when you pass constants to a SUB routine, you must
DECLARE these parameters with the BYVAL argument.

With the CALL statement, you can call a procedure or subroutine.

For example: Call Test2

358 532 777 530

359BASCOM Language Reference

© 2008 MCS Electronics

The call statement enables you to implement your own statements.
You don't have to use the CALL statement:
Test2 will also call subroutine test2

When you don't supply the CALL statement, you must leave out the parenthesis.
So Call Routine(x,y,z) must be written as Routine x,y,x

Unlike normal SUB programs called with the GOSUB statement, the CALL statement
enables you to pass variables to a SUB routine that may be local to the SUB.

See also
DECLARE , SUB , EXIT , FUNCTION , LOCAL

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim A As Byte , B As Byte 'dimension
some variables
Declare Sub Test(b1 As Byte , Byval B2 As Byte) 'declare the
SUB program
A = 65 'assign a
value to variable A
Call Test(a , 5)'call test with parameter A and constant
Test A , 5 'alternative
call
Print A 'now print
the new value
End

Sub Test(b1 As Byte , Byval B2 As Byte) 'use the
same variable names as 'the declared one
 Print B1 'print it
 Print Bcd(b2)
 B1 = 10 'reassign
the variable
 B2 = 15 'reassign
the variable
End Sub

 One important thing to notice is that you can change b2 but that the change will

532 777 567 530 644

360 BASCOM-AVR

© 2008 MCS Electronics

not be reflected to the calling program!
Variable A is changed however.

This is the difference between the BYVAL and BYREF argument in the DECLARE ration
of the SUB program.

When you use BYVAL, this means that you will pass the argument by its value. A copy
of the variable is made and passed to the SUB program. So the SUB program can use
the value and modify it, but the change will not be reflected to the calling parameter.
It would be impossible too when you pass a numeric constant for example.

If you do not specify BYVAL, BYREF will be used by default and you will pass the
address of the variable. So when you reassign B1 in the above example, you are
actually changing parameter A.

6.81 CHECKSUM

Action
Returns a checksum of a string.

Syntax
PRINT Checksum(var)
b = Checksum(var)

Remarks
Var A string variable.

B A numeric variable that is assigned with the checksum.

The checksum is computed by counting all the bytes of the string variable.
Checksums are often used with serial communication.
The checksum is a byte checksum. The following VB code is equivalent :

Dim Check as Byte
Check = 255
For x = 1 To Len(s$)
 Check = check – ASC(mid$(s$,x,1))
Next

See also
CRC8 , CRC16 , CRC32

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default

490 491 496

361BASCOM Language Reference

© 2008 MCS Electronics

use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As String * 10 'dim
variable
S = "test" 'assign
variable
Print Checksum(s) 'print value
(192)
End

6.82 CHR

Action
Convert a numeric variable or a constant to a string with a length of 1 character. The
character represents the ASCII value of the numeric value.

Syntax
PRINT CHR(var)
s = CHR(var)

Remarks
Var Numeric variable or numeric constant.

S A string variable.

When you want to print a character to the screen or the LCD display,
you must convert it with the CHR() function.

When you use PRINT numvar, the value will be printed.
When you use PRINT Chr(numvar), the ASCII character itself will be printed.
The Chr() function is handy in combination with the LCD custom characters where
you can redefine characters 0-7 of the ASCII table.

See also
ASC

Example
'---

'name : chr.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to use the CHR() and BCD()
function and
' HEX() function in combination with a PRINT
statement
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

335

362 BASCOM-AVR

© 2008 MCS Electronics

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim K As Byte

K = 65
Print K ; Chr(k) ; K ; Chr(66) ; Bcd(k) ; Hex(k)
End

6.83 CIRCLE

Action
Draws a circle on a graphic display.

Syntax
CIRCLE(x0,y0) , radius, color

Remarks
X0 Starting horizontal location of the line.

Y0 Starting vertical location of the line.

Radius Radius of the circle

Color Color of the circle

See Also
LINE

Example
'---

'name : t6963_240_128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : T6963C graphic display support demo 240 *
128
'micro : Mega8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8535.dat" ' specify

635

363BASCOM Language Reference

© 2008 MCS Electronics

the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'---
' (c) 2001-2003 MCS Electronics
' T6963C graphic display support demo 240 * 128
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
'2 GND GND
'3 +5V +5V
'4 -9V -9V potmeter
'5 /WR PORTC.0
'6 /RD PORTC.1
'7 /CE PORTC.2
'8 C/D PORTC.3
'9 NC not conneted
'10 RESET PORTC.4
'11-18 D0-D7 PA
'19 FS PORTC.5
'20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,
Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2
'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor Off

Wait 1
'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30

Locate 1 , 1

'Show some text

364 BASCOM-AVR

© 2008 MCS Electronics

Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"
Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "write this to the lower line"

Wait 2

Cls Text

'use the new LINE statement to create a box
'LINE(X0,Y0) - (X1,Y1), on/off
Line(0 , 0) -(239 , 127) , 255 ' diagonal
line
Line(0 , 127) -(239 , 0) , 255 ' diagonal
line
Line(0 , 0) -(240 , 0) , 255 ' horizontal
upper line
Line(0 , 127) -(239 , 127) , 255 'horizontal
lower line
Line(0 , 0) -(0 , 127) , 255 ' vertical
left line
Line(239 , 0) -(239 , 127) , 255 ' vertical
right line

Wait 2
' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it
on
For X = 0 To 140
 Pset X , 20 , 255 ' set the
pixel
Next

For X = 0 To 140
 Pset X , 127 , 255 ' set the
pixel
Next

Wait 2

'circle time
'circle(X,Y), radius, color
'X,y is the middle of the circle,color must be 255 to show a pixel and 0
to clear a pixel
For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Wait 1
 Circle(20 , 20) , X , 0 'remove
circle
 Wait 1
Next

Wait 2

For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Waitms 200
Next
Wait 2

365BASCOM Language Reference

© 2008 MCS Electronics

'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Test:
Showpic 0 , 0 , Plaatje
Showpic 0 , 64 , Plaatje ' show 2
since we have a big display
Wait 2
Cls Text ' clear the
text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

6.84 CLEAR

Action
Clear serial input or output buffer

Syntax
CLEAR bufname

Remarks
Bufname Serialbuffer name such as Serialin, Serialin1 , Serialout or Serialout1

For chips with more UARTS :
SERIALIN2, SERIALIN3, SERIALOUT2, SERIALOUT3

When you use buffered serial input or buffered serial output, you might want to clear
the buffer.
While you can make the head pointer equal to the tail pointer, an interrupt could be
active which might result in an update of the buffer variables, resulting in an
unexpected result.
The CLEAR statement will reset the head and tail pointers of the ring buffer, and it
will set the buffer count variable to 0. The buffer count variable is new and introduced
in 1.11.8.3. It counts how many bytes are in the buffer.
The internal buffercount variable is named _RS_BUFCOUNTxy , where X is R for R
eceive, and W for Write, and y is 0 for the first UART, and 1 for the second UART.
The

See also
CONFIG SERIALIN , CONFIG SERIALOUT

ASM
Calls _BUF_CLEAR from MCS.LIB

Example
CLEAR SERIALIN

444 449

366 BASCOM-AVR

© 2008 MCS Electronics

6.85 CLS

Action
Clear the LCD display and set the cursor to home.

Syntax
CLS

Syntax for graphical LCD
CLS
CLS TEXT
CLS GRAPH
CLS Y, X1 , X2 [, CHAR]

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom characters
are stored.
For graphical LCD displays CLS will clear both the text and the graphical display.
The EADOG128 and KS108 support the option to clear a portion of a line. Depending
on the used graphic chip, this option might be added to other graphical LCD lib's
too.
Graphical displays coordinates start with 1. To clear the entire first line you need to
code : CLS 1,1,128
This will clear the first line, from the starting position X1(1) to the ending position
(X2). You may specify an optional character to use. By default 0 is used. When you
have inverse text, you need to use 255.

See also
$LCD , $LCDRS , LCD , SHIFTLCD , SHIFTCURSOR , SHIFTLCD ,
INITLCD

Example
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

275 280 629 748 743 748

616

367BASCOM Language Reference

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim
'REMOVE the above command for the real program !!
'$sim is used for faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left

368 BASCOM-AVR

© 2008 MCS Electronics

 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the

369BASCOM Language Reference

© 2008 MCS Electronics

special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.86 CLOCKDIVISION

Action
Will set the system clock division available in the MEGA chips.

Syntax
CLOCKDIVISON = var

Remarks
Var Variable or numeric constant that sets the clock division. Valid values

are from 2-129.

A value of 0 will disable the division.

On the MEGA 103 and 603 the system clock frequency can be divided so you can save
power for instance. A value of 0 will disable the clock divider. The divider can divide
from 2 to 127. So the other valid values are from 2 - 127.

Some routines that rely on the system clock will not work proper anymore when you
use the divider. WAITMS for example will take twice the time when you use a value of
2.

See also
POWERSAVE

Example
$regfile = "m103def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Clockdivision = 2

679

370 BASCOM-AVR

© 2008 MCS Electronics

6.87 CLOSE

Action
Closes an opened device.

Syntax
OPEN "device" for MODE As #channel
CLOSE #channel

Remarks
Device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.

With the implementation of the software UART, the compiler must know
to which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 is : COM1:

Some chips have 2 UARTS. You can use COM2: to open the second HW
UART.

The format for the software UART is: COMpin:speed,8,N,stop bits[,
INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stop bits can be 1 or 2.
An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

MODE You can use BINARY or RANDOM for COM1 and COM2, but for the
software UART pins, you must specify INPUT or OUTPUT.

Channel The number of the channel to open. Must be a positive constant >0.

The statements that support the device are PRINT , INPUT and INPUTHEX , INKEY,
WAITKEY.

Every opened device must be closed using the CLOSE #channel statement. Of course,
you must use the same channel number.

The best place for the CLOSE statement is at the end of your program.

The INPUT statement in combination with the software UART, will not echo characters
back because there is no default associated pin for this.

 For the AVR-DOS file system, you may place the CLOSE at any place in your
program. This because the file system supports real file handles.

371BASCOM Language Reference

© 2008 MCS Electronics

See also
OPEN , PRINT

Example
'---

'name : open.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates software UART
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 10000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B As Byte

'Optional you can fine tune the calculated bit delay
'Why would you want to do that?
'Because chips that have an internal oscillator may not
'run at the speed specified. This depends on the voltage, temp etc.
'You can either change $CRYSTAL or you can use
'BAUD #1,9610

'In this example file we use the DT006 from www.simmstick.com
'This allows easy testing with the existing serial port
'The MAX232 is fitted for this example.
'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related
statements
'We will use the software UART.
Waitms 100

'open channel for output
Open "comd.1:19200,8,n,1" For Output As #1
Print #1 , "serial output"

'Now open a pin for input
Open "comd.0:19200,8,n,1" For Input As #2
'since there is no relation between the input and output pin
'there is NO ECHO while keys are typed
Print #1 , "Number"
'get a number
Input #2 , B
'print the number
Print #1 , B

669 679

372 BASCOM-AVR

© 2008 MCS Electronics

'now loop until ESC is pressed
'With INKEY() we can check if there is data available
'To use it with the software UART you must provide the channel
Do
 'store in byte
 B = Inkey(#2)
 'when the value > 0 we got something
 If B > 0 Then
 Print #1 , Chr(b) 'print the
character
 End If
Loop Until B = 27

Close #2
Close #1

'OPTIONAL you may use the HARDWARE UART
'The software UART will not work on the hardware UART pins
'so you must choose other pins
'use normal hardware UART for printing
'Print B
'When you dont want to use a level inverter such as the MAX-232
'You can specify ,INVERTED :
'Open "comd.0:300,8,n,1,inverted" For Input As #2
'Now the logic is inverted and there is no need for a level converter
'But the distance of the wires must be shorter with this
End

6.88 CLOSESOCKET

Action
Closes a socket connection.

Syntax
CloseSocket socket [, prm]

Remarks
Socket The socket number you want to close in the range of 0-3. When the

socket is already closed, no action will be performed.

Prm An optional parameter to change the behavior of the CloseSocket
statement.
The following values are possible :

· 0 - The code will behave as if no parameter has been set.
· 1 - In normal cases, there is a test to see if all data written to the chip

has been sent. When you set bit 0 (value of 1) , this test is not
performed.

· 2 - In normal cases, there is a test to see if the socket is actually
closed after the command has been given to the chip. When it is not
closed, you can not re-use the socket. The statement will block
program execution however and you could test at a later time if the
connection has been closed.

You may combine the values. So 3 will combine parameter value 1 and 2.
It is advised to use option value 1 with care.

373BASCOM Language Reference

© 2008 MCS Electronics

You must close a socket when you receive the SOCK_CLOSE_WAIT status.
You may also close a socket if that is needed by your protocol.
You will receive a SOCK_CLOSE_WAIT status when the server closes the connection.

When you use CloseSocket you actively close the connection.
Note that it is not needed to wait for a SOCK_CLOSE_WAIT message in order to close
a socket connection.

After you have closed the connection, you need to use GetSocket in order to use the
socket number again.

In normal conditions, without using the optional parameter, the statement can block
your code for a short or longer time, depending on the connection speed.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , TCPREAD , SOCKETLISTEN

Example
'---

'name : clienttest.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : start the easytcp.exe program and listen to
port 5000
'micro : Mega161
'suited for demo : no
'commercial addon needed : yes
'---

$regfile = "M161def.dat"
$crystal = 4000000
$baud = 19200
$hwstack = 40 ' default
use 40 for the hardware stack
$swstack = 40 ' default
use 40 for the SW stack
$framesize = 64 ' default
use64 for the frame space

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp

456 600 752 756

787 788 786 755

374 BASCOM-AVR

© 2008 MCS Electronics

Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

$lib "tcpip.lbx" ' specify
the tcpip library
Print "Init , set IP to 192.168.0.8" ' display a
message
Enable Interrupts ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 0.0.0.0 , Localport = 1000 , Tx =
$55 , Rx = $55

'Use the line below if you have a gate way
'Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55

Dim Bclient As Byte ' socket
number
Dim Idx As Byte
Dim Result As Word ' result
Dim S As String * 80

For Idx = 0 To 3 ' for all
sockets
 Bclient = Getsocket(idx , Sock_stream , 0 , 0) ' get socket
for client mode, specify port 0 so loal_port is used
 Print "Local port : " ; Local_port ' print
local port that was used
 Print "Socket " ; Idx ; " " ; Bclient
 Result = Socketconnect(idx , 192.168.0.3 , 5000) ' connect to
easytcpip.exe server
 Print "Result " ; Result

375BASCOM Language Reference

© 2008 MCS Electronics

Next

Do

 If Ischarwaiting() <> 0 Then ' is there a
key waiting in the uart?
 Bclient = Waitkey() ' get the
key
 If Bclient = 27 Then
 Input "Enter string to send " , S ' send WHO ,
TIME or EXIT
 For Idx = 0 To 3
 Result = Tcpwritestr(idx , S , 255)
 Next
 End If
 End If

 For Idx = 0 To 3
 Result = Socketstat(idx , 0) ' get status
 Select Case Result
 Case Sock_established
 Result = Socketstat(idx , Sel_recv) ' get number
of bytes waiting
 If Result > 0 Then
 Do
 Result = Tcpread(idx , S)
 Print "Data from server: " ; Idx ; " " ; S
 Loop Until Result = 0
 End If
 Case Sock_close_wait
 Print "close_wait"
 Closesocket Idx
 Case Sock_closed
 'Print "closed"
 End Select
 Next
Loop
End

6.89 CONFIG

The CONFIG statement is used to configure the various hardware devices.

DIRECTIVE RE-USABLE

CONFIG 1WIRE NO

CONFIG ACI YES

CONFIG ADC NO

CONFIG ATEMU NO

CONFIG BCCARD NO

CONFIG CLOCK NO

CONFIG CLOCKDIV YES

CONFIG COM1 YES

CONFIG COM2 also COM3,
COM4

YES

CONFIG DATE NO

CONFIG DCF77 NO

CONFIG DEBOUNCE NO

CONFIG GRAPHLCD NO

377

379

380

382

384

387

390

390

392

395

398

403

416

376 BASCOM-AVR

© 2008 MCS Electronics

CONFIG HITAG NO

CONFIG I2CDELAY NO

CONFIG I2CSLAVE NO

CONFIG INPUT NO

CONFIG INTx YES

CONFIG KBD NO

CONFIG KEYBOARD NO

CONFIG LCD NO

CONFIG LCDBUS NO

CONFIG LCDMODE NO

CONFIG LCDPIN NO

CONFIG RC5 NO

CONFIG PORT YES

CONFIG PRINT NO

CONFIG PRINTBIN NO

CONFIG SERIALIN NO

CONFIG SERIALIN1 NO

CONFIG SERIALIN2 NO

CONFIG SERIALIN3 NO

CONFIG SERIALOUT NO

CONFIG SERIALOUT1 NO

CONFIG SERIALOUT2 NO

CONFIG SERIALOUT3 NO

CONFIG SERVOS NO

CONFIG PS2EMU NO

CONFIG SINGLE NO

CONFIG SDA NO

CONFIG SCL NO

CONFIG SPI NO

CONFIG SHIFTIN NO

CONFIG TCPIP NO

CONFIG TWI YES

CONFIG TWISLAVE NO

CONFIG TIMER0 YES

CONFIG TIMER1 YES

CONFIG TIMER2 and 3 YES

CONFIG USB NO

CONFIG WATCHDOG YES

CONFIG WAITSUART NO

CONFIG X10 NO

CONFIG XRAM YES

Some CONFIG directives are intended to be used once. Others can be used multiple
times. For example you can specify that a port must be set to input after you have
specified that it is used as an input.

You cannot change the LCD pins during run time. In that case the last specification
will be used or an error message will be displayed.

405

408

411

413

414

421

421

426

430

433

433

443

436

438

439

444

444

444

444

449

449

449

449

454

440

451

443

444

453

452

456

466

467

459

461

464

471

478

478

480

482

377BASCOM Language Reference

© 2008 MCS Electronics

6.90 CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements and override the compiler setting.

Syntax
CONFIG 1WIRE = pin [, extended=0|1]

Remarks
Pin The port pin to use such as PORTB.0

extended An optional constant value which need to be 0 or 1.

The CONFIG 1WIRE statement overrides the compiler setting. It is the preferred that
you use it. This way the setting is stored in your source code.
You can configure only one pin for the 1WIRE statements because the idea is that you
can attach multiple 1WIRE devices to the 1WIRE bus.

You can however use multiple pins and thus multiple busses. All 1wire commands and
functions need the port and pin in that case.

The 1wire commands and function will automatically set the DDR and PORT register
bits to the proper state. You do not need to bring the pins into the right state
yourself.

It is important that you use a pull up resistor of 4K7 ohm on the 1wire pin. The pull
up resistor of the AVR is not sufficient.

Also notice that some 1wire chips also need +5V. 1 wire is just marketing since you
need GND anyway. The least is 2 wires and typical you need 3 wires.

Extended
The extended option is only needed when you use multiple busses/pins and if these
are pins mix normal and extended addresses.
Let's clear that up. When the 1wire code was written in 1995 all the port addresses
were normal I/O addresses. These are addresses that fit in the I/O space (address <
&H60). To save code, register R31 was cleared in the library and the port register
was passed in R30.
When Atmel introduced the extended I/O registers with address >&HFF, it was
possible to set R31 to a fixed value when the user port was an extended I/O address.
But when you want to mix the addresses, there is no other way then to pass the word
address of the I/O register to the library code.
And that is exactly what EXTENDED=1 will do. It will use more code. This support was
written for a customer that already made his PCB's. We do advise to use the same
port when you use multiple pins.

See also
1WRESET , 1WREAD , 1WWRITE , 1WIRECOUNT , 1WRESET ,
1WSEARCHFIRST , 1WSEARCHNEXT

Example
'---

314 317 326 312 314

319 321

378 BASCOM-AVR

© 2008 MCS Electronics

'name : 1wire.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates 1wreset, 1wwrite and 1wread()
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
' pull-up of 4K7 required to VCC from Portb.2
' DS2401 serial button connected to Portb.2
'---

$regfile = "m48def.dat"
$crystal = 8000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'when only bytes are used, use the following lib for smaller code
$lib "mcsbyte.lib"

Config 1wire = Portb.0 'use this
pin
'On the STK200 jumper B.0 must be inserted
Dim Ar(8) As Byte , A As Byte , I As Byte

Do
 Wait 1
 1wreset 'reset the
device
 Print Err 'print error
1 if error
 1wwrite &H33 'read ROM
command
 For I = 1 To 8
 Ar(i) = 1wread() 'place into
array
 Next

'You could also read 8 bytes a time by unremarking the next line
'and by deleting the for next above
'Ar(1) = 1wread(8) 'read 8
bytes

 For I = 1 To 8
 Print Hex(ar(i)); 'print
output
 Next
 Print 'linefeed
Loop

'NOTE THAT WHEN YOU COMPILE THIS SAMPLE THE CODE WILL RUN TO THIS POINT
'THIS because of the DO LOOP that is never terminated!!!

379BASCOM Language Reference

© 2008 MCS Electronics

'New is the possibility to use more than one 1 wire bus
'The following syntax must be used:
For I = 1 To 8
 Ar(i) = 0 'clear array
to see that it works
Next

1wreset Pinb , 2 'use this
port and pin for the second device
1wwrite &H33 , 1 , Pinb , 2 'note that
now the number of bytes must be specified!
'1wwrite Ar(1) , 5,pinb,2

'reading is also different
Ar(1) = 1wread(8 , Pinb , 2) 'read 8
bytes from portB on pin 2

For I = 1 To 8
 Print Hex(ar(i));
Next

'you could create a loop with a variable for the bit number !
For I = 0 To 3 'for pin 0-3
 1wreset Pinb , I
 1wwrite &H33 , 1 , Pinb , I
 Ar(1) = 1wread(8 , Pinb , I)
 For A = 1 To 8
 Print Hex(ar(a));
 Next
 Print
Next
End

6.91 CONFIG ACI

Action
Configures the Analog Comparator.

Syntax
CONFIG ACI = ON|OFF, COMPARE = ON|OFF, TRIGGER=TOGGLE|RISING|FALLING

Remarks
ACI Can be switched on or off

COMPARE Can be on or off.

When switched ON, the TIMER1 in capture mode will trigger on ACI too.

TRIGGER Specifies which comparator events trigger the analog comparator
interrupts.

See also
NONE

Example
NONE

380 BASCOM-AVR

© 2008 MCS Electronics

6.92 CONFIG ADC

Action
Configures the A/D converter.

Syntax
CONFIG ADC = single, PRESCALER = AUTO, REFERENCE = opt

Remarks
ADC Running mode. May be SINGLE or FREE.

PRESCALE
R

A numeric constant for the clock divider. Use AUTO to let the compiler
generate the best value depending on the XTAL

REFERENC
E

The options depend on the used micro. Some chips like the M163 have
additional reference options. In the definition files you will find :
ADC_REFMODEL = x
This specifies which reference options are available. The possible values
are listed in the table below.

Chip Modes ADC_REFMODEL

2233,4433,4434,8535,m103,
m603, m128103

OFF
AVCC

0

m165, m169, m325,m3250,
m645, m6450, m329,m3290,
m649, m6490,m48,m88,m168

OFF
AVCC
INTERNAL or INTERNAL_1.1

1

tiny15,tiny26 AVCC
OFF
INTERNAL
INTERNALEXTCAP

2

tiny13 AVCC
INTERNAL

3

tiny24,tiny44,tiny85 AVCC
EXTERNAL or OFF
INTERNAL or INTERNAL_1.1

4

m164,m324,m644,m640,m1280,
m1281,m2561,m2560

AREF or OFF
AVCC
INTERNAL1.1
INTERNAL_2.56

5

tiny261,tiny461,tiny861, tiny25,
tiny45,tiny85

AVCC
EXTERNAL or OFF
INTERNAL_1.1
INTERNAL_2.56_NOCAP
INTERNAL_2.56_EXTCAP

7

CAN128, PWM2_3,USB1287,
m128, m16, m163, m32, m323,
m64

AREF or OFF
AVCC
INTERNAL or INTERNAL_2.56

8

You may also use VALUE=value

When you use VALUE=value, you may specify any value. The disadvantage is that
when you port your code from one chip to another it will not work.
While the AREF, AVCC, etc. are all converter to the right settings, the value can not

381BASCOM Language Reference

© 2008 MCS Electronics

be converted.

The AD converter is started automatic when you use the CONFIG ADC command.
You can use STOP ADC and START ADC to disable and enable the power of the AD
converter.

See also
GETADC

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,16,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc ' NOT required since it will start automatic

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop

585

382 BASCOM-AVR

© 2008 MCS Electronics

End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :
'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off
'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar
AREF pin

'Using the additional param on chip that do not have the internal
reference will have no effect.

6.93 CONFIG ATEMU

Action
Configures the PS/2 keyboard data and clock pins.

Syntax
CONFIG ATEMU = int , DATA = data, CLOCK=clock [,INIT=VALUE]

Remarks
Int The interrupt used such as INT0 or INT1.

DATA The pin that is connected to the DATA line. This must be the same pin as
the used interrupt.

CLOCK The pin that is connected to the CLOCK line.

INIT An optional value that will identify the keyboard. By default or when
omitted this is &HAB83. The code that identifies a keyboard. Some
mother boards/BIOS seems to require the reverse &H83AB. By making it
an option you can pass any possible value. The MSB is passed first, the
LSB last.

Male

(Plug)

Female

(Socket)

5-pin DIN (AT/
XT):

1 - Clock
2 - Data
3 - Not
Implemented
4 - Ground
5 - +5v

Male

(Plug)

Female

(Socket)

6-pin Mini-DIN
(PS/2):

1 - Data
2 - Not
Implemented
3 - Ground
4 - +5v

383BASCOM Language Reference

© 2008 MCS Electronics

5 - Clock
6 - Not
Implemented

Old PC’s are equipped with a 5-pin DIN female connector. Newer PC’s have a 6-pin
mini DIN female connector.
The male sockets must be used for the connection with the micro.

Besides the DATA and CLOCK you need to connect from the PC to the micro, you need
to connect ground. You can use the +5V from the PC to power your microprocessor.

The config statement will setup an ISR that is triggered when the INT pin goes low.
This routine you can find in the library.
The ISR will retrieve a byte from the PC and will send the proper commands back to
the PC.

The SENDSCANKBD statement allows you to send keyboard commands.

Note that unlike the mouse emulator, the keyboard emulator is also recognized after
your PC has booted.

 The PS2 Keyboard and mouse emulator needs an additional commercial addon
library.

See also
SENDSCANKBD

Example
'---

'name : ps2_kbdemul.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PS2 AT Keyboard emulator
'micro : 90S2313
'suited for demo : no, ADD ONE NEEDED
'commercial addon needed : yes
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

730

384 BASCOM-AVR

© 2008 MCS Electronics

$lib "mcsbyteint.lbx" ' use
optional lib since we use only bytes

'configure PS2 AT pins
Enable Interrupts ' you need
to turn on interrupts yourself since an INT is used
Config Atemu = Int1 , Data = Pind.3 , Clock = Pinb.0
' ^------------------------ used interrupt
' ^----------- pin connected to DATA
' ^-- pin connected to clock
'Note that the DATA must be connected to the used interrupt pin

Waitms 500 ' optional
delay

'rcall _AT_KBD_INIT
Print "Press t for test, and set focus to the editor window"
Dim Key2 As Byte , Key As Byte
Do
 Key2 = Waitkey() ' get key
from terminal
 Select Case Key2
 Case "t" :
 Waitms 1500
 Sendscankbd Mark ' send a
scan code
 Case Else
 End Select
Loop
Print Hex(key)

Mark: ' send mark
Data 12 , &H3A , &HF0 , &H3A , &H1C , &HF0 , &H1C , &H2D , &HF0 , &H2D ,
 &H42 , &HF0 , &H42
' ^ send 12 bytes
' m a r
 k

6.94 CONFIG BCCARD

Action
Initializes the pins that are connected to the BasicCard.

Syntax
CONFIG BCCARD = port , IO=pin, RESET=pin

Remarks
Port The PORT of the micro that is connected to the BasicCard. This can

be B or D for most micro’s. (PORTB and PORTD)

IO The pin number that is connected to the IO of the BasicCard. Must
be in the range from 0-7

RESET The pin number that is connected to the RESET of the BasicCard.
Must be in the range from 0-7

The variables SW1, SW2 and _BC_PCB are automatically dimensioned by the CONFIG

385BASCOM Language Reference

© 2008 MCS Electronics

BCCARD statement.

This statements uses BCCARD.LIB, a library that is available separately from
MCS Electronics.

See Also
BCRESET , BCDEF , BCCALL

Example
'---

' BCCARD.BAS
' This AN shows how to use the BasicCard from Zeitcontrol
' www.basiccard.com
'---

'connections:
' C1 = +5V
' C2 = PORTD.4 - RESET
' C3 = PIN 4 - CLOCK
' C5 = GND
' C7 = PORTD.5 - I/O

' /--------------------------------\
' | |
' | C1 C5 |
' | C2 C6 |
' | C3 C7 |
' | C4 C8 |
' | |
' \--------------------------------/
'
'

'----------- configure the pins we use ------------
Config Bccard = D , Io = 5 , Reset = 4
' ^ PORTD.4
' ^------------ PORTD.5
' ^--------------------- PORT D

'Load the sample calc.bas into the basiccard

' Now define the procedure in BASCOM
' We pass a string and also receive a string
Bcdef Calc(string)

'We need to dim the following variables
'SW1 and SW2 are returned by the BasicCard
'BC_PCB must be set to 0 before you start a session

'Our program uses a string to pass the data so DIM it
Dim S As String * 15

'Baudrate might be changed
$baud = 9600
' Crystal used must be 3579545 since it is connected to the Card too
$crystal = 3579545

861 855 855

386 BASCOM-AVR

© 2008 MCS Electronics

'Perform an ATR
Bcreset

'Now we call the procedure in the BasicCard
'bccall funcname(nad,cla,ins,p1,p2,PRM as TYPE,PRM as TYPE)
S = "1+1+3" ' we want to
calculate the result of this expression

Bccall Calc(0 , &H20 , 1 , 0 , 0 , S)
' ^--- variable to pass that holds the
expression
' ^------- P2
' ^----------- P1
' ^--------------- INS
' ^-------------------- CLA
' ^-------------------------- NAD
'For info about NAD, CLA, INS, P1 and P2 see your BasicCard manual
'if an error occurs ERR is set
' The BCCALL returns also the variables SW1 and SW2
Print "Result of calc : " ; S
Print "SW1 = " ; Hex(sw1)
Print "SW2 = " ; Hex(sw2)
'Print Hex(_bc_pcb) ' for test you can see that it toggles between 0
and 40
Print "Error : " ; Err

'You can call this or another function again in this session

S = "2+2"
Bccall Calc(0 , &H20 , 1 , 0 , 0 , S)
Print "Result of calc : " ; S
Print "SW1 = " ; Hex(sw1)
Print "SW2 = " ; Hex(sw2)
'Print Hex(_bc_pcb) ' for test you can see that it toggles between 0
and 40
Print "Error : " ; Err

'perform another ATR
Bcreset
Input "expression " , S
Bccall Calc(0 , &H20 , 1 , 0 , 0 , S)
Print "Answer : " ; S

'----and now perform an ATR as a function
Dim Buf(25) As Byte , I As Byte
Buf(1) = Bcreset()
For I = 1 To 25
 Print I ; " " ; Hex(buf(i))
Next
'typical returns :
'TS = 3B
'T0 = EF
'TB1 = 00
'TC1 = FF
'TD1 = 81 T=1 indication
'TD2 = 31 TA3,TB3 follow T=1 indicator
'TA3 = 50 or 20 IFSC ,50 =Compact Card, 20 = Enhanced Card
'TB3 = 45 BWT blocl waiting time
'T1 -Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00

387BASCOM Language Reference

© 2008 MCS Electronics

' B a s i c C a r d Z C 1 2 3

'and another test
'define the procedure in the BasicCard program
Bcdef Paramtest(byte , Word , Long)

'dim some variables
Dim B As Byte , W As Word , L As Long

'assign the variables
B = 1 : W = &H1234 : L = &H12345678

Bccall Paramtest(0 , &HF6 , 1 , 0 , 0 , B , W , L)
Print Hex(sw1) ; Spc(3) ; Hex(sw2)
'and see that the variables are changed by the BasicCard !
Print B ; Spc(3) ; Hex(w) ; " " ; Hex(l)

'try the echotest command
Bcdef Echotest(byte)
Bccall Echotest(0 , &HC0 , &H14 , 1 , 0 , B)
Print B
End 'end program

6.95 CONFIG CLOCK

Action
Configures the timer to be used for the TIME$ and DATE$ variables.

Syntax
CONFIG CLOCK = soft | USER [, GOSUB = SECTIC]

Remarks
Soft Use SOFT for using the software based clock routines. Use USER to write/

use your own code in combination with an I2C clock chip for example.

Sectic This option allows to jump to a user routine with the label sectic.

Since the interrupt occurs every second you may handle various tasks in
the sectic label. It is important that you use the name SECTIC and that
you return with a RETURN statement from this label.

The usage of the optional SECTIC routine will use 30 bytes of the
hardware stack. This option only works with the SOFT clock mode. It does
not work in USER mode.

When you use the CONFIG CLOCK directive the compiler will DIM the following
variables automatic : _sec , _min , _hour, _day , _month , _year
The variables TIME$ and DATE$ will also be dimensioned. These are special variables
since they are treated different. See TIME$ and DATE$.

The _sec, _min and other internal variables can be changed by the user too.
But of course changing their values will change the DATE$/TIME$ variables.

793 514

388 BASCOM-AVR

© 2008 MCS Electronics

The compiler also creates an ISR that gets updates once a second. This works only for
the 8535, M163 and M103 and M603, or other AVR chips that have a timer that can
work in asynchrony mode.

For the 90S8535, timer2 is used. It can not be used my the user anymore! This is
also true for the other chips async timer.

Notice that you need to connect a 32768 Hz crystal in order to use the timer in async
mode, the mode that is used for the clock timer.

When you choose the USER option, only the internal variables are created. With the
USER option you need to write the clock code yourself.

See the datetime.bas example that shows how you can use a DS1307 clock chip for
the date and time generation.

Numeric Values to calculate with Date and Time:

· SecOfDay: (Type LONG) Seconds elapsed since Midnight. 00:00:00 start with
0 to 85399 at 23:59:59.

· SysSec: (Type LONG) Seconds elapsed since begin of century (at 2000-01-
01!). 00:00:00 at 2000-01-01 start with 0 to 2147483647 (overflow of LONG-
Type) at 2068-01-19 03:14:07

· DayOfYear: (Type WORD) Days elapsed since first January of the current year.
· First January start with 0 to 364 (365 in a leap year)
· SysDay: (Type WORD) Days elapsed since begin of century (at 2000-01-01!).

2000-01-01 starts with 0 to 36524 at 2099-12-31
· DayOfWeek: (Type Byte) Days elapsed since Monday of current week. Monday

start with 0 to Sunday = 6

With the numeric type calculations with Time and date are possible. Type 1 (discrete
Bytes) and 2 (Strings) can be converted to an according numeric value. Than Seconds
(at SecOfDay and SysSec) or Days (at DayOfYear, SysDay), can be added or
subtracted. The Result can be converted back.

See also
TIME$, DATE$, CONFIG DATE

ASM
The following ASM routines are called from datetime.lib
_soft_clock. This is the ISR that gets called once per second.

Example
'---

'name : megaclock.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows the new TIME$ and DATE$ reserved
variables
'micro : Mega103
'suited for demo : yes
'commercial addon needed : no

793 514 395

389BASCOM Language Reference

© 2008 MCS Electronics

'---

$regfile = "m103def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32768 Hz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for
E and RS
$lcdrs = &H8000 'address for
only E
Config Lcd = 20 * 4 'nice
display from bg micro
Config Lcdbus = 4 'we run it
in bus mode and I hooked up only db4-db7
Config Lcdmode = Bus 'tell about
the bus mode

'[now init the clock]
Config Date = Mdy , Separator = / ' ANSI-
Format

Config Clock = Soft 'this is how
simple it is
'The above statement will bind in an ISR so you can not use the TIMER
anymore!
'For the M103 in this case it means that TIMER0 can not be used by the
user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY
Date$ = "11/11/00"

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'---

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the

390 BASCOM-AVR

© 2008 MCS Electronics

date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century
End

6.96 CONFIG CLOCKDIV

Action
Sets the clock divisor.

Syntax
CONFIG CLOCKDIV = constant

Remarks
constant The clock division factor to use. Possible values are 1 , 2 , 4 , 8 ,16 ,

32 ,64 , 128 and 256.

The options to set the clock divisor is available in most new chips. Under normal
conditions the clock divisor is one. Thus an oscillator value of 8 MHz will result in a
system clock of 8 MHz. With a clock divisor of 8, you would get a system clock of 1
MHz.
Low speeds can be used to generate an accurate system frequency and for low power
consumption.
Some chips have a 8 or 16 division enabled by default by a fuse bit.
You can then reprogram the fuse bit or you can set the divisor from code.

When you set the clock divisor take care that you adjust the $CRYSTAL directive also.
$CRYSTAL specifies the clock frequency of the system. So with 8 MHz clock and
divisor of 8 you would specify $CRYSTAL = 1000000.

See also
$CRYSTAL

Example
CONFIG CLOCKDIV = 8 'we divide 8 MHz crystal clock by 8 resulting in 1
MHz speed

6.97 CONFIG COM1

Action
Configures the UART of AVR chips that have an extended UART like the M8.

Syntax
CONFIG COM1 = baud , synchrone=0|1,parity=none|disabled|even|odd,stopbits=1|
2,databits=4|6|7|8|9,clockpol=0|1

262

391BASCOM Language Reference

© 2008 MCS Electronics

Remarks
baud Baud rate to use. Use 'dummy' to leave the baud rate at the $baud

value.

synchrone 0 for asynchrone operation (default) and 1 for synchrone operation.

Parity None, disabled, even or odd

Stopbits The number of stop bits : 1 or 2

Databits The number of data bits : 4,5,7,8 or 9.

Clockpol Clock polarity. 0 or 1.

Note that not all AVR chips have the extended UART. Most AVR chips have a
UART with fixed communication parameters. These are : No parity, 1 stop bit, 8 data
bits.

Normally you set the BAUD rate with $BAUD or at run time with BAUD. You may also
set the baud rate when you open the COM channel. It is intended for the Mega2560
that has 4 UARTS and it is simpler to specify the baud rate when you open the
channel. It may also be used with the first and second UART but it will generate
additional code since using the first UART will always result in generating BAUD rate
init code.

See Also
CONFIG COM2 , CONFIG COMx

Example
'---

'name :
'copyright : (c) 1995-2005, MCS Electronics
'purpose : test for M128 support in M128 mode
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$baud1 = 19200
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'By default the M128 has the M103 compatibility fuse set. Set the fuse
to M128
'It also runs on a 1 MHz internal oscillator by default
'Set the internal osc to 4 MHz for this example DCBA=1100

'use the m128def.dat file when you wanto to use the M128 in M128 mode

390 394

392 BASCOM-AVR

© 2008 MCS Electronics

'The M128 mode will use memory from $60-$9F for the extended registers

'Since some ports are located in extended registers it means that some
statements
'will not work on these ports. Especially statements that will set or
reset a bit
'in a register. You can set any bit yourself with the PORTF.1=1
statement for example
'But the I2C routines use ASM instructions to set the bit of a port.
These ASM instructions may
'only be used on port registers. PORTF and PORTG will not work with I2C.

'The M128 has an extended UART.
'when CONFIG COMx is not used, the default N,8,1 will be used
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
Config Com2 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'try the second hardware UART
Open "com2:" For Binary As #1

'try to access an extended register
Config Portf = Output
'Config Portf = Input

Print "Hello"
Dim B As Byte
Do
 Input "test serial port 0" , B
 Print B
 Print #1 , "test serial port 2"
Loop

Close #1
End

6.98 CONFIG COM2

Action
Configures the UART of AVR chips that have a second extended UART like the M128.

Syntax
CONFIG COM2 = baud , synchrone=0|1,parity=none|disabled|even|odd,stopbits=1|
2,databits=4|6|7|8|9,clockpol=0|1

Remarks
baud Baud rate to use. Use 'dummy' to leave the baud rate at the $baud1

value.

synchrone 0 for asynchrone operation (default) and 1 for synchrone operation.

Parity None, disabled, even or odd

Stopbits The number of stopbits : 1 or 2

Databits The number of databits : 4,5,7,8 or 9.

Clockpol Clock polarity. 0 or 1.

Normally you set the BAUD rate with $BAUD or at run time with BAUD. You may also

393BASCOM Language Reference

© 2008 MCS Electronics

set the baud rate when you open the COM channel. It is intended for the Mega2560
that has 4 UARTS and it is simpler to specify the baud rate when you open the
channel. It may also be used with the first and second UART but it will generate
additional code since using the first or second UART will always result in generating
BAUD rate init code.

Note that not all AVR chips have the extended UART. Most AVR chips have a
UART with fixed communication parameters. They are : No parity, 1 stopbit, 8 data
bits.

See Also
CONFIG COM1 , CONFIG COMx

Example
'---

'name :
'copyright : (c) 1995-2005, MCS Electronics
'purpose : test for M128 support in M128 mode
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$baud1 = 19200
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'By default the M128 has the M103 compatibility fuse set. Set the fuse
to M128
'It also runs on a 1 MHz internal oscillator by default
'Set the internal osc to 4 MHz for this example DCBA=1100

'use the m128def.dat file when you wanto to use the M128 in M128 mode
'The M128 mode will use memory from $60-$9F for the extended registers

'Since some ports are located in extended registers it means that some
statements
'will not work on these ports. Especially statements that will set or
reset a bit
'in a register. You can set any bit yourself with the PORTF.1=1
statement for example
'But the I2C routines use ASM instructions to set the bit of a port.
These ASM instructions may
'only be used on port registers. PORTF and PORTG will not work with I2C.

390 394

394 BASCOM-AVR

© 2008 MCS Electronics

'The M128 has an extended UART.
'when CONFIG COMx is not used, the default N,8,1 will be used
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
Config Com2 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'try the second hardware UART
Open "com2:" For Binary As #1

'try to access an extended register
Config Portf = Output
'Config Portf = Input

Print "Hello"
Dim B As Byte
Do
 Input "test serial port 0" , B
 Print B
 Print #1 , "test serial port 2"
Loop

Close #1
End

6.99 CONFIG COMx

Action
Configures the UART of AVR chips that have an extended UART like the M2560.

Syntax
CONFIG COMx = baud , synchrone=0|1,parity=none|disabled|even|odd,stopbits=1|
2,databits=4|6|7|8|9,clockpol=0|1

Remarks
COMx The COM port to configure. Value in range from 1-4

baud Baud rate to use.

synchrone 0 for asynchrone operation (default) and 1 for synchrone operation.

Parity None, disabled, even or odd

Stopbits The number of stopbits : 1 or 2

Databits The number of databits : 4,5,7,8 or 9.

Clockpol Clock polarity. 0 or 1.

Note that not all AVR chips have the extended UART. Most AVR chips have a
UART with fixed communication parameters. These are : No parity, 1 stopbit, 8 data
bits.
The Mega2560 does support 4 UART's.

See Also
CONFIG COM1 , CONFIG COM2390 390

395BASCOM Language Reference

© 2008 MCS Electronics

Example
'---
'name :
'copyright : (c) 1995-2008, MCS Electronics
'purpose : test for M2560 support
'micro : Mega2560
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m2560def.dat" ' specify the used micro
$crystal = 8000000 ' used crystal frequency
$hwstack = 40 ' default use 32 for the hardware stack
$swstack = 40 ' default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

'The M128 has an extended UART.
'when CO'NFIG COMx is not used, the default N,8,1 will be used
Config Com1 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0
Config Com2 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0
Config Com3 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0
Config Com4 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0

'Open all UARTS
Open "com2:" For Binary As #1
Open "Com3:" For Binary As #2
Open "Com4:" For Binary As #3

Print "Hello" 'first uart
Dim B As Byte
Dim Tel As Word

Do
 Incr Tel
 Print Tel ; " test serial port 1"
 Print #1 , Tel ; " test serial port 2"
 Print #2 , Tel ; " test serial port 3"
 Print #3 , Tel ; " test serial port 4"

 B = Inkey(#3)
 If B <> 0 Then
 Print #3 , B ; " from port 4"
 End If
 Waitms 500
Loop

Close #1
Close #2
Close #3
End

6.100 CONFIG DATE

Action
Configure the Format of the Date String for Input to and Output from BASCOM – Date
functions

Syntax

396 BASCOM-AVR

© 2008 MCS Electronics

CONFIG DATE = DMY , Separator = char

Remarks
DMY The Day, month and year order. Use DMY, MDY or YMD.

Char A character used to separate the day, month and year.

Use / , - or . (dot)

The following table shows the common formats of date and the associated
statements.

Country Format Statement

American mm/dd/yy Config Date = MDY, Separator = /

ANSI yy.mm.dd Config Date = YMD, Separator = .

Britisch/
French

dd/mm/yy Config Date = DMY, Separator = /

German dd.mm.yy Config Date = DMY, Separator = .

Italian dd-mm-yy Config Date = DMY, Separator = -

Japan/Taiwan yy/mm/dd Config Date = YMD, Separator = /

USA mm-dd-yy Config Date = MDY, Separator = -

When you live in Holland you would use :
CONFIG DATE = DMY, separator = -
This would print 24-04-02 for 24 November 2002.

When you line in the US, you would use :
CONFIG DATE = MDY , separator = /
This would print 04/24/02 for 24 November 2002.

See also
CONFIG CLOCK , DATE TIME functions , DayOfWeek , DayOfYear ,
SecOfDay , SecElapsed , SysDay , SysSec , SysSecElapsed , Time ,
Date

Example
'---

'name : megaclock.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows the new TIME$ and DATE$ reserved
variables
'micro : Mega103
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m103def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud

387 852 504 513

717 716 780 777 779 794

516

397BASCOM Language Reference

© 2008 MCS Electronics

rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32768 Hz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for
E and RS
$lcdrs = &H8000 'address for
only E
Config Lcd = 20 * 4 'nice
display from bg micro
Config Lcdbus = 4 'we run it
in bus mode and I hooked up only db4-db7
Config Lcdmode = Bus 'tell about
the bus mode

'[now init the clock]
Config Date = Mdy , Separator = / ' ANSI-
Format

Config Clock = Soft 'this is how
simple it is
'The above statement will bind in an ISR so you can not use the TIMER
anymore!
'For the M103 in this case it means that TIMER0 can not be used by the
user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY
Date$ = "11/11/00"

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'---

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the
date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century

398 BASCOM-AVR

© 2008 MCS Electronics

End

6.101 CONFIG DCF77

Action
Instruct the compiler to use DCF-77 radio signal to get atom clock precision time

Syntax
CONFIG DCF77 = pin , timer = timer [INVERTED=inv, CHECK=check,
UPDATE=upd, UPDATETIME=updtime , TIMER1SEC=tmr1sec, SWITCHPOWER=swpwr,
POWERPIN=pin, POWERLEVEL = pwrlvl , SECONDTICKS=sectick ,DEBUG=dbg ,
GOSUB = Sectic]

Remarks
PIN The input pin that is connected to the DCF-77 signal. This can be

any micro processor pin that can be used as an input.

TIMER The timer that is used to generate the compare interrupts, needed
to determine the level of the DCF signal. Supported timers are :
TIMER1.

INVERTED This value is 0 by default. When you specify 1, the compiler will
assume you use an inverted DCF signal. Most DCF-77 receivers have
a normal output and an inverted output.

CHECK Check is 1 by default. The possible values are :
0 - The DCF-77 parity bits are checked. No other checks are
performed.
Use it when you have exceptional signal strength
1 - The received minutes are compared with the previous received
minutes. And the difference must be 1.
2 - All received values(minutes, hours, etc.) are compared with
their previous received values. Only the minutes must differ with 1,
the other values must be exactly the same.
This value uses more internal ram but it gives the best check. Use
this when you have bad signal reception.

UPDATE Upd determines how often the internal date/time variables are
updated with the DCF received values. The default value is 0.
There are 3 possible values :
0 - Continuous update. The date and time variables are updated
every time the correct values have been received
1 - Hourly update. The date and time variables are updated once an
hour.
2- Daily update. The date and time variables are updated once a
day.
The UPDATE value also determines the maximum value of the
UPDATETIME option.

UPDATETIME This value depends on the used UPDATE parameter.
When UPDATE is 1, the value must be in the range from 0-59. Start
every hour at this minute with the new update.
When UPDATE is 2, the value must be in the range from 0-23. Start
every day at this hour with the new update.
The default is 0.

TIMER1SEC 16 bit timers with the right crystal value can generate a precise
interrupt that fires every second. This can be used to synchronize
only once a day or hour with the DCF values. The remaining time,

399BASCOM Language Reference

© 2008 MCS Electronics

the 1-sec interrupt will update the soft clock. By default this value is
0.

SWITCHPOWER This option can be used to turn on/off the DCF-77 module with the
control of a port pin. The default is 0. When you specify a value of 1
, the DCF receiver will be switched off to save power, as soon as the
clock is synchronized.

POWERPIN The name of a pin like pinB.2 that will be used to turn on/off the
DCF module.

POWERLEVEL This option controls the level of the output pin that will result in a
power ON for the module.
0 - When a logic 0 is applied to the power pin, the module is ON.
1 - When a logic 1 is applied to the power pin, the module is ON.
Use a transistor to power the module. Do not power it from a port
PIN directly. When you do power from a pin, make sure you sink the
current. Ie : connect VCC to module, and GND of the module to
ground. A logic 0 will then turn on the module.

SECONDTICKS The number of times that the DCF signal state is read. This is the
number of times per second that the interrupt is executed. This
value is calculated by the compiler. The highest possible timer pre
scale value is used and the lowest possible number of times that the
interrupt is executed. This gives least impact on your main
application.
You can override the value by defining your own value. For example
when you want to run some own code in the interrupt and need it to
execute more often.

DEBUG Optional value to fill 2 variables with debug info. DEBUG is on when
a value of 1 is specified. By default, DEBUG is off. This has nothing
to do with other DEBUG options of the compiler, it is only for the
DCF77 code!
When 1 is specified the compiler will create 2 internal variable
named : bDCF_Pause and bDCF_Impuls. These values contain the
DCF pulse length of the pause and the impulse. In the sample these
values are printed.

GOSUB The Sectic option will call a label in the main program every second.
You have to insert this label yourself. You must also end it with a
RETURN. The option is the same as used with CONFIG CLOCK

The DCF decoding routines use a status byte. This byte can be examined as in the
example.
The bits have the following meaning.

Bit Explanation

0 The last reading of the DCF pin.

1 This bit is reserved.

2 This Bit is set, if after a complete time-stamp at second 58 the time-stamp is
checked and it is OK. If after a minute mark (2 sec pause) this bit is set, the
time from the DCF-Part is copied to the Clock-Part and this bit reset too. Every
second mark also resets this bit. So time is only set, if after second 58 a minute
mark follows. Normally this bit is only at value 1 from Second 58 to second
60/00.

3 This Bit indicates, that the DCF-Part should be stopped, if time is set. (at the
option of updating once per hour or day).

4 This Bit indicated that the DCF-Part is stopped.

5 This bit indicates, that the CLOCK is configured the way, that during DCF-Clock
is stopped, there is only one ISR-Call in one second.

387

400 BASCOM-AVR

© 2008 MCS Electronics

6 This Bit determines the level of the DCF input-pin at the pulse (100/200 mSec
part).

7 This bit indicates, that the DCF-Part has set the time of the Clock-part.

See Also
DCF77TIMEZONE

You can read the Status-Bit 7 (DCF_Status.7), to check whether the internal
clock was synchronized by the DCF-Part. You can also reset this Bit with RESET
DCF_Status.7. The DCF-Part will set this bit again, if a valid time-stamp is received.
You can read all other bits, but don’t change them.

The DCF-77 signal is broadcasted by the German Time and Frequency department.
The following information is copied from : http://www.ptb.de/en/org/4/44/_index.
htm

The main task of the department time and frequency is the realization and
dissemination of the base unit time (second) and the dissemination of the legal time
in the Federal Republic of Germany.

The second is defined as the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyper fine levels of the ground state
of the cesium-133 atom.

For the realization and dissemination of the unit of time, the department develops
and operates cesium atomic clocks as primary standards of time and frequency. In
the past decades, these, as the worldwide most accurate atomic clocks, have
contributed to the international atomic time scale (TAI) and represent the basis for
the legal time in Germany. Dissemination of the legal time to the various users in
industry, society, and research is performed via satellite, via a low frequency
transmitter DCF77 and via an internet- and telephone service.

The department participates in the tests for the future European satellite navigation
system „Galileo“.

Presently the primary clocks realizing the time unit are augmented by Cs clocks with
laser cooled atoms („Cs-fountain clocks“) whose accuracy presently exceeds the
clocks with thermal beams by a factor of 10 (frequency uncertainty of 1 . 10-15).

Future atomic clocks will most likely be based on atomic transitions in the optical
range of single stored ions. Such standards are presently being developed along with
the means to relate their optical frequencies without errors to radio-frequencies or 1
second pulsed.

As one may expect transitions in nuclei of atoms to be better shielded from
environmental perturbations than electron-shell transitions which have been used so
far as atomic clock references, the department attempts to use an optical transition in
the nucleus of 229Th for a future generation of atomic clocks.

The work of the department is complemented by research in nonlinear optics
(Solitons) and precision time transfer techniques, funded in the frame of several
European projects and by national funding by Deutsche Forschungsgemeinschaft
particularly in the frame of Sonderforschungsbereich 407 jointly with Hannover
University.

The following information is copied from wikipedia : http://en.wikipedia.org/wiki/

526

707

http://www.ptb.de/en/org/4/44/_index.htm
http://www.ptb.de/en/org/4/44/_index.htm
http://en.wikipedia.org/wiki/DCF77

401BASCOM Language Reference

© 2008 MCS Electronics

DCF77

The signal can be received in this area:

DCF77 is a long wave time signal and standard-frequency radio station. Its primary
and backup transmitter are located in Mainflingen, about 25 km south-east of
Frankfurt, Germany. It is operated by T-Systems Media Broadcast, a subsidiary of
Deutsche Telekom AG, on behalf of the Physikalisch-Technische Bundesanstalt,
Germany's national physics laboratory. DCF77 has been in service as a standard-
frequency station since 1959; date and time information was added in 1973.

The 77.5 kHz carrier signal is generated from local atomic clocks that are linked with
the German master clocks in Braunschweig. With a relatively-high power of 50 kW,
the station can be received in large parts of Europe, as far as 2000 km from
Frankfurt. Its signal carries an amplitude-modulated, pulse-width coded 1 bit/s data
signal. The same data signal is also phase modulated onto the carrier using a 511-bit
long pseudo random sequence (direct-sequence spread spectrum modulation). The
transmitted data repeats each minute
Map showing the range of the DCF77 signal.
Map showing the range of the DCF77 signal.

 * the current date and time;
 * a leap second warning bit;
 * a summer time bit;
 * a primary/backup transmitter identification bit;
 * several parity bits.

Since 2003, 14 previously unused bits of the time code have been used for civil
defence emergency signals. This is still an experimental service, aimed to replace one
day the German network of civil defense sirens.

The call sign stands for D=Deutschland (Germany), C=long wave signal, F=Frankfurt,
77=frequency: 77.5 kHz. It is transmitted three times per hour in morse code.

Radio clocks have been very popular in Europe since the late 1980s and most of them
use the DCF77 signal to set their time automatically.

For further reference see wikipedia, a great on line information resource.

The DCF library parameters state diagram looks as following:

http://en.wikipedia.org/wiki/DCF77

402 BASCOM-AVR

© 2008 MCS Electronics

See also
CONFIG DATE 395

403BASCOM Language Reference

© 2008 MCS Electronics

ASM
_DCF77 from DCF77.LBX is included by the compiler when you use the CONFIG
statement.

Example
$regfile = "M88def.dat"
$crystal = 8000000

$hwstack = 128
$swstack = 128
$framesize = 128

$baud = 19200

'Config Dcf77 = Pind.2 , Debug = 1 , Inverted = 0 , Check = 2 , Update =
0 , Updatetime = 30 , Switchpower = 0 , Secondticks = 50 , Timer1sec = 1
, Powerlevel = 1 , Timer = 1
Config Dcf77 = Pind.2 , Timer = 1 , Timer1sec = 1 , Debug = 1

Enable Interrupts
Config Date = Dmy , Separator = .

Dim I As Integer
Dim Sec_old As Byte , Dcfsec_old As Byte

Sec_old = 99 : Dcfsec_old = 99 ':
DCF_Debug_Timer = 0

' Testroutine für die DCF77 Clock
Print "Test DCF77 Version 1.00"
Do
 For I = 1 To 78
 Waitms 10
 If Sec_old <> _sec Then
 Exit For
 End If
 If Dcfsec_old <> Dcf_sec Then
 Exit For
 End If
 Next
 Waitms 220
 Sec_old = _sec
 Dcfsec_old = Dcf_sec
 Print Time$; " " ; Date$; " " ; Time(dcf_sec) ; " " ; Date(dcf_day)
 ; " " ; Bin(dcf_status) ; " " ; Bin(dcf_bits) ; " " ; Bdcf_impuls ; " "
 ; Bdcf_pause
Loop
End

6.102 CONFIG DEBOUNCE

Action
Configures the delay time for the DEBOUNCE statement.

Syntax
CONFIG DEBOUNCE = time

404 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Time A numeric constant which specifies the delay time in mS.

When debounce time is not configured, 25 mS will be used as a default.

See also
DEBOUNCE

Example
'---

'name : deboun.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates DEBOUNCE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Debounce = 30 'when the
config statement is not used a default of 25mS will be used

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)
 Debounce Pind.0 , 0 , Pr , Sub
 Debounce Pind.0 , 0 , Pr , Sub
 ' ^----- label to branch to
 ' ^---------- Branch when P1.0 goes low(0)
 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr
 'Pind.0 must go high again before it jumps again
 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch
 Debounce Pind.0 , 1 , Pr 'will result
in a return without gosub
End

Pr:
 Print "PIND.0 was/is low"
Return

527

405BASCOM Language Reference

© 2008 MCS Electronics

6.103 CONFIG HITAG

Action
Configures the timer and HITAG variables.

Syntax
CONFIG HITAG = prescale, TYPE=tp, DOUT = dout, DIN=din , CLOCK=clock,
INT=int
CONFIG HITAG = prescale, TYPE=tp, DEMOD= demod, INT=@int

Remarks
syntax for HTRC110

prescale The pre scaler value that is used by TIMER0. A value of 8 and 256 will
work at 8 MHz.

tp The kind of RFID chip you use. Use HTRC110.

DOUT The pin that is connected to the DOUT pin of the HTRC110. This pin is
used in input mode since DOUT is an output. A pin that support the pin-
change interrupt or the PCINT should be selected.

DIN The pin that is connected to the DIN pin of the HTRC110. This pin is
used in output mode. You can chose any pin that can be used in output
mode.

CLOCK The pin that is connected tot the CLOCK pin of the HTRC110. This pin is
used in output mode. You can chose any pin that can be used in output
mode.

INT The interrupt used. Note that you need to precede the interrupt with an
@ sign. For example for INT1 you provide : @INT1

syntax for EM4095

prescale The pre scaler value that is used by TIMER0. A value of 8 and 256 will
work at 8 MHz.

tp The kind of RFID chip you use. Use EM4095.

demod The pin that is connected to the DEMOD pin of the EM4095. This pin is
used in input mode. A pin that support the pin-change interrupt or the
PCINT should be selected.

INT The interrupt used. Note that you need to precede the interrupt with an
@ sign. For example for INT1 you provide : @INT1

The CONFIG HITAGE command will generate a number of internal used variables and
constants.
Constants : _TAG_MIN_SHORT, _TAG_MAX_SHORT , _TAG_MIN_LONG and
_TAG_MAX_LONG.
See the description of READHITAG to see how they are calculated. The actual value
will depend on the prescale value you use.

Variables for HTRC110 :
_htr_statemachine , a byte that is used to maintain a state machine.
_htcbit , a byte that will hold the received bit.
_htcbitcount , a byte to store the number of received bits.
_htcmpulse , a byte that stores the pulse
_htr_pulse_state , a byte that is used to maintain the pulse state machine.
_htc_retries, a byte that is used for the number of retries.
_tagdelta , a byte that will held the delta time between 2 edges.
_tagtime , a byte with the actual timer0 value when an edge is detected.

406 BASCOM-AVR

© 2008 MCS Electronics

_taglasttime , a byte with the previous edge time, needed to calculate the delta time.
_tagparbit , a byte that will held the parity.
_tagdata , a byte where the bits are stored before they are loaded into the serial
number array.
_tagid , a word that points to the serial number array

The HTRC110.LBX contains a number of other constants that are used to control the
HTRC chip.
The _init_Tag routine is called automatically.

The clock output of the Mega88 is used to drive the HTRC110. Since the clock
output of the internal oscillator is 8 MHz, the HTRC110 is also configured to work at 8
MHz. The .equ for Tag_set_config_page3 = &H40 + 48 + Fsel0 in the LBX. You can
set it to 12 and 16 MHz too but you can not drive it from the clock output then.

Variables for EM4095 :
_tagflag , a byte that stores the return flag that will be loaded with 1 when a valid tag
is detected
_tag_insync ,a byte that is used to store the state of the bit stream.
_tag_bitcount , a byte that stores the total bits when not in sync yet
_tag_tbit , a byte that stores the total received bits
_tag_par , a byte that stores the parity
_tag_timeout ,a byte that is loaded with the time that will be tried to detect an RFID
chip
_taglasttime , a byte that stores the last time a valid edge was detected
_tagid , a word that points to the serial number array

See also
READHITAG

Example HTRC110
'--
' (c) 1995-2008 , MCS Electronics
' sample : readhitag.bas
' demonstrates usage of the READHITAG() function
'--

$regfile = "m88def.dat" ' specify chip
$crystal = 8000000 ' used speed
$baud = 19200 'baud rate
'Notice that the CLOCK OUTPUT of the micro is connected to the clock input of the HTRC110
'PORTB.0 of the Mega88 can optional output the clock. You need to set the fusebit for this option
'This way all parts use the Mega88 internal oscillator

'The code is based on Philips(NXP) datasheets and code. We have signed an NDA to get the 8051 code
'You can find more info on Philips website if you want their code
Print "HTC110 demo"

Config Hitag = 64 , Type = Htrc110 , Dout = Pind.2 , Din = Pind.3 , Clock = Pind.4 , Int = @int0
' ^ use timer0 and select prescale value 64
' ^ we used htrc110 chip
' ^-- dout of HTRC110 is connected to PIND.2 which will be set to input mode
' ^ DIN of HTRC100 is connected to PIND.3 which will be set to output mode
' ^clock of HTRC110 is connected to PIND.4 which is set to output mode
' ^ interrupt
'the config statement will generate a number of constante and internal variables used by the code

701

407BASCOM Language Reference

© 2008 MCS Electronics

'the htrc110.lbx library is called

Dim Tags(5) As Byte 'each tag has 5 byte serial
Dim J As Byte ' a loop counter

'you need to use a pin that can detect a pin level change
'most INT pins have this option
'OR , you can use the PCINT interrupt that is available on some chips

'In case you want PCINT option
' Pcmsk2 = &B0000_0100 'set the mask to ONLY use the pin connected to DOUT
' On Pcint2 Checkints 'label to be called
' Enable Pcint2 'enable this interrupt

'In case you want to use INT option
On Int0 Checkints ' PIND.2 is INT0
Config Int0 = Change 'you must configure the pin to work in pin change intertupt mode

Enable Interrupts ' enable global interrupts

Do
 If Readhitag(tags(1)) = 1 Then 'check if there is a new tag ID
 For J = 1 To 5 'print the 5 bytes
 Print Hex(tags(j)) ; ",";
 Next
 Else 'there was nothing
 Print "Nothing"
 End If
 Waitms 500 'some delay
Loop

'this routine is called by the interrupt routine
Checkints:
 Call _checkhitag 'you must call this label
 'you can do other things here but keep time to a minimum
Return

Example EM4095
'---
' (c) 1995-2008 MCS Electronics
' This sample will read a HITAG chip based on the EM4095 chip
' Consult EM4102 and EM4095 datasheets for more info
'---
' The EM4095 was implemented after an idea of Gerhard Günzel
' Gerhard provided the hardware and did research at the coil and capacitors.
' The EM4095 is much simpler to use than the HTRC110. It need less pins.
' A reference design with all parts is available from MCS
'---
$regfile = "M88def.dat"
$baud = 19200
$crystal = 8000000
$hwstack = 40
$swstack = 40
$framesize = 40

'Make SHD and MOD low

Dim Tags(5) As Byte 'make sure the array is at least 5 bytes
Dim J As Byte

Config Hitag = 64 , Type = Em4095 , Demod = Pind.3 , Int = @int1

408 BASCOM-AVR

© 2008 MCS Electronics

Print "Test EM4095"

'you could use the PCINT option too, but you must mask all pins out so it will only respond to our pin
' Pcmsk2 = &B0000_0100
' On Pcint2 Checkints
' Enable Pcint2
On Int1 Checkints Nosave 'we use the INT1 pin all regs are saved in the lib
Config Int1 = Change 'we have to config so that on each pin change the routine will be called
Enable Interrupts 'as last we have to enable all interrupts

Do
 Print "Check..."

 If Readhitag(tags(1)) = 1 Then 'this will enable INT1
 For J = 1 To 5
 Print Hex(tags(j)) ; ",";
 Next
 Print
 Else
 Print "Nothing"
 End If
 Waitms 500
Loop

Checkints:
 Call _checkhitag 'in case you have used a PCINT, you could have other code here as well
Return

6.104 CONFIG I2CDELAY

Action
Compiler directive that overrides the internal I2C delay routine.

Syntax
CONFIG I2CDELAY = value

Remarks
value A numeric value in the range from 1 to 255.

A higher value means a slower I2C clock.

For the I2C routines the clock rate is calculated depending on the used crystal. In
order to make it work for all I2C devices the slow mode is used. When you have
faster I2C devices you can specify a low value.

By default a value of 5 is used. This will give a 200 kHZ clock.
When you specify 10, 10 uS will be used resulting in a 100 KHz clock.

When you use a very low crystal frequency, it is not possible to work with high clock
frequencies.

ASM

409BASCOM Language Reference

© 2008 MCS Electronics

The I2C routines are located in the i2c.lib/i2c.lbx files.
For chips that have hardware TWI, you can use the MasterTWI lib.

See also
CONFIG SCL , CONFIG SDA

Example
'---

'name : i2c.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: I2CSEND and I2CRECEIVE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Scl = Portb.4
Config Sda = Portb.5

Declare Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
Declare Sub Read_eeprom(byval Adres As Byte , Value As Byte)

Const Addressw = 174 'slave write
address
Const Addressr = 175 'slave read
address

Dim B1 As Byte , Adres As Byte , Value As Byte 'dim byte

Call Write_eeprom(1 , 3) 'write value
of three to address 1 of EEPROM

Call Read_eeprom(1 , Value) : Print Value 'read it
back
Call Read_eeprom(5 , Value) : Print Value 'again for
address 5

'-------- now write to a PCF8474 I/O expander -------
I2csend &H40 , 255 'all outputs
high
I2creceive &H40 , B1 'retrieve
input
Print "Received data " ; B1 'print it

444 443

410 BASCOM-AVR

© 2008 MCS Electronics

End

Rem Note That The Slaveaddress Is Adjusted Automaticly With I2csend &
I2creceive
Rem This Means You Can Specify The Baseaddress Of The Chip.

'sample of writing a byte to EEPROM AT2404
Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
 I2cstart 'start
condition
 I2cwbyte Addressw 'slave
address
 I2cwbyte Adres 'asdress of
EEPROM
 I2cwbyte Value 'value to
write
 I2cstop 'stop
condition
 Waitms 10 'wait for 10
milliseconds
End Sub

'sample of reading a byte from EEPROM AT2404
Sub Read_eeprom(byval Adres As Byte , Value As Byte)
 I2cstart 'generate
start
 I2cwbyte Addressw 'slave
adsress
 I2cwbyte Adres 'address of
EEPROM
 I2cstart 'repeated
start
 I2cwbyte Addressr 'slave
address (read)
 I2crbyte Value , Nack 'read byte
 I2cstop 'generate
stop
End Sub

' when you want to control a chip with a larger memory like the 24c64 it
requires an additional byte
' to be sent (consult the datasheet):
' Wires from the I2C address that are not connected will default to 0 in
most cases!

' I2cstart 'start
condition
' I2cwbyte &B1010_0000 'slave
address
' I2cwbyte H 'high
address
' I2cwbyte L 'low address
' I2cwbyte Value 'value to
write
' I2cstop 'stop
condition
' Waitms 10

411BASCOM Language Reference

© 2008 MCS Electronics

6.105 CONFIG I2CSLAVE

Action
Configures the I2C slave mode.

Syntax
CONFIG I2CSLAVE = address , INT = interrupt , TIMER = tmr

Remarks
Address The slave address you want to assign to the I2C slave chip. This is an

address that must be even like 60. So 61 cannot be used.

Interrupt The interrupt that must be used. This is INT0 by default.

Tmr The timer that must be used. This is TIMER0 by default.

While the interrupt can be specified, you need to change the library code when you
use a non-default interrupt. For example when you like to use INT1 instead of the
default INT0.

The same applies to the TIMER. You need to change the library when you like to use
another timer.

See Also

CONFIG TWI

Example
'---

'name : i2c_pcf8574.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how you could use the I2C slave
library to create a PCF8574
'micro : AT90S2313
'suited for demo : NO, ADDON NEEDED
'commercial addon needed : yes
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 3684000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'This program shows how you could use the I2C slave library to create a
PCF8574
'The PCF8574 is an IO extender chip that has 8 pins.
'The pins can be set to a logic level by writing the address followed by
a value
'In order to read from the pins you need to make them '1' first

466

412 BASCOM-AVR

© 2008 MCS Electronics

'This program uses a AT90S2313, PORTB is used as the PCF8574 PORT
'The slave library needs INT0 and TIMER0 in order to work.
'SCL is PORTD.4 (T0)
'SDA is PORTD.2 (INT0)
'Use 10K pull up resistors for both SCL and SDA

'The Slave library will only work for chips that have T0 and INT0
connected to the same PORT.
'These chips are : 2313,2323, 2333,2343,4433,tiny22, tiny12,tiny15, M8
'The other chips have build in hardware I2C(slave) support.

'specify the slave address. This is &H40 for the PCF8574
'You always need to specify the address used for write. In this case
&H40 ,

'The config i2cslave command will enable the global interrupt enable
flag !
Config I2cslave = &B01000000 ' same as
&H40
'Config I2cslave = &H40 , Int = Int0 , Timer = Timer0
'A byte named _i2c_slave_address_received is generated by the compiler.
'This byte will hold the received address.

'A byte named _i2c_slave_address is generated by the compiler.
'This byte must be assigned with the slave address of your choice

'the following constants will be created that are used by the slave
library:

' _i2c_pinmask = &H14
' _i2c_slave_port = Portd
' _i2c_slave_pin = Pind
' _i2c_slave_ddr = Ddrd
' _i2c_slave_scl = 4
' _i2c_slave_sda = 2

'These values are adjusted automatic depending on the selected chip.
'You do not need to worry about it, only provided as additional info

'by default the PCF8574 port is set to input
Config Portb = Input
Portb = 255 'all pins
high by default

'DIM a byte that is not needed but shows how you can store/write the I2C
DATA
Dim Bfake As Byte

'empty loop
Do
 ' you could put your other program code here
 'In any case, do not use END since it will disable interrupts

Loop

'here you can write your other program code
'But do not forget, do not use END. Use STOP when needed

'!!!
!!!!!!!
' The following labels are called from the slave library
'!!!

413BASCOM Language Reference

© 2008 MCS Electronics

!!!!!!!

'When the master wants to read a byte, the following label is allways
called
'You must put the data you want to send to the master in variable _a1
which is register R16
I2c_master_needs_data:
 'when your code is short, you need to put in a waitms statement
 'Take in mind that during this routine, a wait state is active and the
master will wait
 'After the return, the waitstate is ended
 Config Portb = Input ' make it an
input
 _a1 = Pinb ' Get input
from portB and assign it
Return

'When the master writes a byte, the following label is always called
'It is your task to retrieve variable _A1 and do something with it
'_A1 is register R16 that could be destroyed/altered by BASIC statements
'For that reason it is important that you first save this variable

I2c_master_has_data:
 'when your code is short, you need to put in a waitms statement
 'Take in mind that during this routine, a wait state is active and the
master will wait
 'After the return, the waitstate is ended

 Bfake = _a1 ' this is
not needed but it shows how you can store _A1 in a byte
 'after you have stored the received data into bFake, you can alter R16
 Config Portb = Output ' make it an
output since it could be an input
 Portb = _a1 'assign _A1
(R16)
Return

'!!!
!!!!!!!

'You could simply extend this sample so it will use 3 pins of PORT D for
the address selection
'For example portD.1 , portd.2 and portD.3 could be used for the address
selection
'Then after the CONFIG I2CSLAVE = &H40 statement, you can put code like:
'Dim switches as Byte ' dim byte
'switches = PIND ' get dip switch value
'switches = switches and &H1110 ' we only need the lower nibble without
the LS bit
'_i2c_slave_address = &H40 + switches ' set the proper address

6.106 CONFIG INPUT

Action
Instruct the compiler to modify serial input line terminator behaviour

Syntax
CONFIG INPUT = term , ECHO=echo

414 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Term A parameter with one of the following values :

CR - Carriage Return (default)
LF - Line Feed
CRLF - Carriage Return followed by a Line Feed
LFCR - Line Feed followed by a Carriage Return

Echo A parameter with one of the following values :
CR - Carriage Return
LF - Line Feed
CRLF - Carriage Return followed by a Line Feed (default)
LFCR - Line Feed followed by a Carriage Return

The 'term' parameter specifies which character(s) are expected to terminate the
INPUT statement with serial communication. It has no impact on the DOS file
system INPUT.
In most cases, when you press <ENTER> , a carriage return(ASCII 13) will be sent.
In some cases, a line feed (LF) will also be sent after the CR. It depends on the
terminal emulator or serial communication OCX control you use.

The 'echo' parameter specifies which character(s) are send back to the terminal
emulator after the INPUT terminator is received. By default CR and LF is sent. But you
can specify which characters are sent. This can be different characters then the 'term'
characters. So when you send in your VB application a string, and end it with a CR,
you can send back a LF only when you want.

When NOECHO is used, no characters are sent back even while configured with
CONFIG INPUT

See also
INPUT

ASM
NONE

Example
Config Input0 = CR , Echo = CRLF
Dim S as String * 20
Input "Hello ",s

6.107 CONFIG INTx

Action
Configures the way the interrupts 0,1 and 4-7 will be triggered.

Syntax
CONFIG INTx = state
Where X can be 0,1 and 4 to 7 in the MEGA chips.

Remarks

622

622

415BASCOM Language Reference

© 2008 MCS Electronics

state LOW LEVEL to generate an interrupt while the pin is held low. Holding
the pin low will generate an interrupt over and over again.
FALLING to generate an interrupt on the falling edge.
RISING to generate an interrupt on the rising edge.
CHANGE to generate an interrupt on the change of the edge. Not all
microprocessors support CHANGE.

The MEGA103 has also INT0-INT3. These are always low level triggered so there is no
need /possibility for configuration.
The number of interrupt pins depend on the used chip. Most chips only have int0 and
int1.

Example
'---

'name : spi-softslave.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to implement a SPI SLAVE with
software
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'Some atmel chips like the 2313 do not have a SPI port.
'The BASCOM SPI routines are all master mode routines
'This example show how to create a slave using the 2313
'ISP slave code

'define the constants used by the SPI slave
Const _softslavespi_port = Portd ' we used
portD
Const _softslavespi_pin = Pind 'we use the
PIND register for reading
Const _softslavespi_ddr = Ddrd ' data
direction of port D

Const _softslavespi_clock = 5 'pD.5 is
used for the CLOCK
Const _softslavespi_miso = 3 'pD.3 is
MISO
Const _softslavespi_mosi = 4 'pd.4 is
MOSI
Const _softslavespi_ss = 2 ' pd.2 is SS
'while you may choose all pins you must use the INT0 pin for the SS
'for the 2313 this is pin 2

416 BASCOM-AVR

© 2008 MCS Electronics

'PD.3(7), MISO must be output
'PD.4(8), MOSI
'Pd.5(9) , Clock
'PD.2(6), SS /INT0

'define the spi slave lib
$lib "spislave.lbx"
'sepcify wich routine to use
$external _spisoftslave

'we use the int0 interrupt to detect that our slave is addressed
On Int0 Isr_sspi Nosave
'we enable the int0 interrupt
Enable Int0
'we configure the INT0 interrupt to trigger when a falling edge is
detected
Config Int0 = Falling
'finally we enabled interrupts
Enable Interrupts

'
Dim _ssspdr As Byte ' this is
out SPI SLAVE SPDR register
Dim _ssspif As Bit ' SPI
interrupt revceive bit
Dim Bsend As Byte , I As Byte , B As Byte ' some other
demo variables

_ssspdr = 0 ' we send a
0 the first time the master sends data
Do
 If _ssspif = 1 Then
 Print "received: " ; _ssspdr
 Reset _ssspif
 _ssspdr = _ssspdr + 1 ' we send
this the next time
 End If
Loop

6.108 CONFIG GRAPHLCD

Action
Configures the Graphical LCD display.

Syntax
Config GRAPHLCD = type , DATAPORT = port, CONTROLPORT=port , CE = pin , CD
= pin , WR = pin, RD=pin, RESET= pin, FS=pin, MODE = mode

Remarks
Type This must be 240 * 64, 128* 128, 128 * 64 , 160 * 48 , 240 * 128 or

SED180*32.

For SED displays use 128 * 64sed or 120* 64SED or SED180*32
For 132x132 color displays, use COLOR
For EADOG128x64 use 128 * 64EADOGM

Dataport The name of the port that is used to put the data on the LCD data pins
db0-db7.

417BASCOM Language Reference

© 2008 MCS Electronics

PORTA for example.

Controlport This is the name of the port that is used to control the LCD control pins.
PORTC for example

Ce The pin number that is used to enable the chip on the LCD.

Cd The pin number that is used to control the CD pin of the display.

WR The pin number that is used to control the /WR pin of the display.

RD The pin number that is used to control the /RD pin of the display.

FS The pin number that is used to control the FS pin of the display.

Not needed for SED based displays.

RESET The pin number that is used to control the RESET pin of the display.

MODE The number of columns for use as text display. Use 8 for X-pixels / 8 =
30 columns for a 240 pixel screen. When you specify 6, 240 / 6 = 40
columns can be used.

EADOG128M pins for SPI mode.
This display only can write data. As a result, a number of grapical

commands are not supported.

CS1 Chip select for EADOG128x64

A0 A0 line for EADOG128x64. This is the line that controls data/command

SI This is the serial input pin for the EADOG128x64.

SCLK This is the clock pin for the EADOG128x64.

The first chip supported was T6963C. There are also driver for other LCD's such as
SED and KS0108. The most popular LCD's will be supported with a custom driver.

The following connections were used for the T6963C:

PORTA.0 to PORTA.7 to DB0-DB7 of the LCD
PORTC.5 to FS, font select of LCD
PORTC.2 to CE, chip enable of LCD
PORTC.3 to CD, code/data select of LCD
PORTC.0 to WR of LCD, write
PORTC.1 to RD of LCD, read
PORTC.4 to RESET of LCD, reset LCD

The LCD used from www.conrad.de needs a negative voltage for the contrast.

Two 9V batteries were used with a pot meter.
Some displays have a Vout that can be used for the contrast(Vo)

The T6963C displays have both a graphical area and a text area. They can be used
together. The routines use the XOR mode to display both text and graphics layered
over each other.

The statements that can be used with the graphical LCD are :

CLS , will clear the graphic display and the text display
CLS GRAPH will clear only the graphic part of the display
CLS TEXT will only clear the text part of the display

LOCATE row,column : Will place the cursor at the specified row and column
The row may vary from 1 to 16 and the column from 1 to 40. This depends on the

366

647

418 BASCOM-AVR

© 2008 MCS Electronics

size and mode of the display.

CURSOR ON/OFF BLINK/NOBLINK can be used the same way as for text displays.

LCD : can be handled the same way as for text displays.

SHOWPIC X, Y , Label : Show image where X and Y are the column and row and
Label is the label where the picture info is placed.

PSET X, Y , color : Will set or reset a pixel. X can range from 0-239 and Y from 9-
63. When color is 0 the pixel will turned off. When it is 1 the pixel will be set on.

$BGF "file.bgf" : inserts a BGF file at the current location

LINE (x0,y0) – (x1,y1) , color : Will draw a line from the coordinate x0,y0 to x1,y1.
Color must be 0 to clear the line and 255 for a black line.

BOX (x0,y0)-(x1,y1), color : Will draw a box from x0,y0 to x1,y1. Color must be 0 to clear the
box and 255 for a black line.

BOXFILL (x0,y0)-(x1,y1), color : Will draw a filled box from x0,y0 to x1,y1. Color must be 0 or
255.

The Graphic routines are located in the glib.lib or glib.lbx files.
You can hard wire the FS and RESET and change the code from the glib.lib file so
these pins can be used for other tasks.

COLOR LCD
Color displays were always relatively expensive. The mobile phone market changed
that. And Display3000.com , sorted out how to connect these small nice colorful
displays.
You can buy brand new Color displays from Display3000. MCS Electronics offers the
same displays.
There are two different chip sets used. One chipset is from EPSON and the other from
Philips. For this reason there are two different libraries. When you select the wrong
one it will not work, but you will not damage anything.
LCD-EPSON.LBX need to be used with the EPSON chipset.
LCD-PCF8833.LBX need to be used with the Philihps chipset.

Config Graphlcd = Color , Controlport = Portc , Cs = 1 , Rs = 0 , Scl = 3 , Sda = 2

Controlport The port that is used to control the pins. PORTA, PORTB, etc.

CS The chip select pin of the display screen. Specify the pin number. 1 will
mean PORTC.1

RS The RESET pin of the display

SCL The clock pin of the display

SDA The data pin of the display

As the color display does not have a built in font, you need to generate the fonts
yourself.
You can use the Fonteditor for this task.

A number of statements accept a color parameter. See the samples below in bold.

LINE Line(0 , 0) -(130 , 130) , Blue

LCDAT Lcdat 100 , 0 , "12345678" , Blue , Yellow

CIRCLE Circle(30 , 30) , 10 , Blue

PSET 32 , 110 , Black

498

629

749

682

259

635

353

355

125

419BASCOM Language Reference

© 2008 MCS Electronics

BOX Box(10 , 30) -(60 , 100) , Red

See also
SHOWPIC , PSET , $BGF , LINE , LCD , BOX , BOXFILL

Example
'---

'name : t6963_240_128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : T6963C graphic display support demo 240 *
128
'micro : Mega8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8535.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'---
' (c) 2001-2008 MCS Electronics
' T6963C graphic display support demo 240 * 128
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
'2 GND GND
'3 +5V +5V
'4 -9V -9V potmeter
'5 /WR PORTC.0
'6 /RD PORTC.1
'7 /CE PORTC.2
'8 C/D PORTC.3
'9 NC not conneted
'10 RESET PORTC.4
'11-18 D0-D7 PA
'19 FS PORTC.5
'20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,
Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2

749 682 259 635 275 353 355

420 BASCOM-AVR

© 2008 MCS Electronics

'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor Off

Wait 1
'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30

Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"
Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "write this to the lower line"

Wait 2

Cls Text

'use the new LINE statement to create a box
'LINE(X0,Y0) - (X1,Y1), on/off
Line(0 , 0) -(239 , 127) , 255 ' diagonal
line
Line(0 , 127) -(239 , 0) , 255 ' diagonal
line
Line(0 , 0) -(240 , 0) , 255 ' horizontal
upper line
Line(0 , 127) -(239 , 127) , 255 'horizontal
lower line
Line(0 , 0) -(0 , 127) , 255 ' vertical
left line
Line(239 , 0) -(239 , 127) , 255 ' vertical
right line

Wait 2
' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it
on
For X = 0 To 140
 Pset X , 20 , 255 ' set the
pixel
Next

For X = 0 To 140
 Pset X , 127 , 255 ' set the
pixel
Next

Wait 2

421BASCOM Language Reference

© 2008 MCS Electronics

'circle time
'circle(X,Y), radius, color
'X,y is the middle of the circle,color must be 255 to show a pixel and 0
to clear a pixel
For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Wait 1
 Circle(20 , 20) , X , 0 'remove
circle
 Wait 1
Next

Wait 2

For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Waitms 200
Next
Wait 2
'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Test:
Showpic 0 , 0 , Plaatje
Showpic 0 , 64 , Plaatje ' show 2
since we have a big display
Wait 2
Cls Text ' clear the
text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

6.109 CONFIG KBD

Action
Configure the GETKBD() function and tell which port to use.

Syntax
CONFIG KBD = PORTx , DEBOUNCE = value [, DELAY = value]

Remarks
PORTx The name of the PORT to use such as PORTB or PORTD.

DEBOUNCE By default the debounce value is 20. A higher value might be needed.
The maximum is 255.

Delay An optional parameter that will cause Getkbd() to wait the specified
amount of time after the key is detected. This parameter might be
added when you call GetKbd() repeatedly in a loop. Because of noise

422 BASCOM-AVR

© 2008 MCS Electronics

and static electricity, wrong values can be returned. A delay of say 100
mS, can eliminate this problem.

The GETKBD() function can be used to read the pressed key from a matrix keypad
attached to a port of the uP.
You can define the port with the CONFIG KBD statement.

In addition to the default behavior you can configure the keyboard to have 6 rows
instead of 4 rows.

CONFIG KBD = PORTx , DEBOUNCE = value , rows=6, row5=pinD.6, row6=pind.7

This would specify that row5 is connected to pind.6 and row7 to pind.7
Note that you can only use rows=6. Other values will not work.

See also
GETKBD

Example
'---

'name : getkbd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : GETKBD
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'specify which port must be used
'all 8 pins of the port are used
Config Kbd = Portb

'dimension a variable that receives the value of the pressed key
Dim B As Byte

'loop for ever
Do
 B = Getkbd()
 'look in the help file on how to connect the matrix keyboard
 'when you simulate the getkbd() it is important that you press/click
the keyboard button
 ' before running the getkbd() line !!!
 Print B
 'when no key is pressed 16 will be returned
 'use the Lookup() function to translate the value to another one

593

423BASCOM Language Reference

© 2008 MCS Electronics

' this because the returned value does not match the number on the
keyboad
Loop
End

6.110 CONFIG KEYBOARD

Action
Configure the GETATKBD() function and tell which port pins to use.

Syntax
CONFIG KEYBOARD = PINX.y , DATA = PINX.y , KEYDATA = table

Remarks
KEYBOARD The PIN that serves as the CLOCK input.

DATA The PIN that serves as the DATA input.

KEYDATA The label where the key translation can be found.

The AT keyboard returns scan codes instead of normal ASCII codes. So
a translation table s needed to convert the keys.
BASCOM allows the use of shifted keys too. Special keys like function
keys are not supported.

The AT keyboard can be connected with only 4 wires: clock,data, gnd and vcc.
Some info is displayed below. This is copied from an Atmel data sheet.

The INT0 or INT1 shown can be in fact any pin that can serve as an INPUT pin.

The application note from Atmel works in interrupt mode. For BASCOM we rewrote
the code so that no interrupt is needed/used.

424 BASCOM-AVR

© 2008 MCS Electronics

See also
GETATKBD

Example
'---

'name : getatkbd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PC AT-KEYBOARD Sample
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "8535def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'For this example :
'connect PC AT keyboard clock to PIND.2 on the 8535
'connect PC AT keyboard data to PIND.4 on the 8535

587

425BASCOM Language Reference

© 2008 MCS Electronics

'The GetATKBD() function does not use an interrupt.
'But it waits until a key was pressed!

'configure the pins to use for the clock and data
'can be any pin that can serve as an input
'Keydata is the label of the key translation table
Config Keyboard = Pind.2 , Data = Pind.4 , Keydata = Keydata

'Dim some used variables
Dim S As String * 12
Dim B As Byte

'In this example we use SERIAL(COM) INPUT redirection
$serialinput = Kbdinput

'Show the program is running
Print "hello"

Do
 'The following code is remarked but show how to use the GetATKBD()
function
 ' B = Getatkbd() 'get a byte and store it into byte variable
 'When no real key is pressed the result is 0
 'So test if the result was > 0
 ' If B > 0 Then
 ' Print B ; Chr(b)
 ' End If

 'The purpose of this sample was how to use a PC AT keyboard
 'The input that normally comes from the serial port is redirected to
the
 'external keyboard so you use it to type
 Input "Name " , S
 'and show the result
 Print S
 'now wait for the F1 key , we defined the number 200 for F1 in the
table
 Do
 B = Getatkbd()
 Loop Until B <> 0
 Print B
Loop
End

'Since we do a redirection we call the routine from the redirection
routine
'
Kbdinput:
'we come here when input is required from the COM port
'So we pass the key into R24 with the GetATkbd function
' We need some ASM code to save the registers used by the function
$asm
push r16 ; save used register
push r25
push r26
push r27

Kbdinput1:
rCall _getatkbd ; call the function
tst r24 ; check for zero
breq Kbdinput1 ; yes so try again
pop r27 ; we got a valid key so restore registers
pop r26

426 BASCOM-AVR

© 2008 MCS Electronics

pop r25
pop r16
$end Asm
'just return
Return

'The tricky part is that you MUST include a normal call to the routine
'otherwise you get an error
'This is no clean solution and will be changed
B = Getatkbd()

'This is the key translation table

Keydata:
'normal keys lower case
Data 0 , 0 , 0 , 0 , 0 , 200 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0
Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 ,
50 , 0
Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 ,
114 , 53 , 0
Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117
, 55 , 56 , 0
Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 ,
112 , 43 , 0
Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0
Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 ,
0 , 0

'shifted keys UPPER case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Data 0 , 0 , 0 , 0 , 0 , 81 , 33 , 0 , 0 , 0 , 90 , 83 , 65 , 87 , 34 ,
0
Data 0 , 67 , 88 , 68 , 69 , 0 , 35 , 0 , 0 , 32 , 86 , 70 , 84 , 82 ,
37 , 0
Data 0 , 78 , 66 , 72 , 71 , 89 , 38 , 0 , 0 , 76 , 77 , 74 , 85 , 47 ,
40 , 0
Data 0 , 59 , 75 , 73 , 79 , 61 , 41 , 0 , 0 , 58 , 95 , 76 , 48 , 80 ,
63 , 0
Data 0 , 0 , 0 , 0 , 0 , 96 , 0 , 0 , 0 , 0 , 13 , 94 , 0 , 42 , 0 , 0
Data 0 , 62 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 ,
0 , 0

6.111 CONFIG LCD

Action
Configure the LCD display and override the compiler setting.

Syntax
CONFIG LCD = LCDtype , CHIPSET=KS077 | Dogm163v5 | DOG163V3 | DOG162V5
| DOG162V3 [,CONTRAST=value]

Remarks
LCDtype The type of LCD display used. This can be :

40 * 4,16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4 or 16 * 1a or
20*4A.

427BASCOM Language Reference

© 2008 MCS Electronics

Default 16 * 2 is assumed.

Chipset
KS077

Most text based LCD displays use the same chip from Hitachi. But some
use the KS077 which is highly compatible but needs an additional
function register to be set. This parameter will cause that this register is
set when you initialize the display.

CHIPSET
DOGM

The DOGM chip set uses a special function register that need to be set.
The 16 x 2 LCD displays need DOG162V3 for 3V operation or DOG162V5
for 5V operation.
The 16 x 3 LCD displays need DOG163V3 for 3V operation or
Dogm163v5 for 5V operation

CONTRAST The optional contrast parameter is only supported for the EADOG
displays. By default a value from the manufacture is used. But you
might want to override this value with a custom setting.

When you have a 16 * 2 display, you don't have to use this statement.
The 16 * 1a is special. It is used for 2 * 8 displays that have the address of line 2,
starting at location &H8.
The 20*4A is also special. It uses the addresses &H00, &H20, &H40 and &H60 for the
4 lines. It will also set a special function register.

The CONFIG LCD can only be used once. You can not dynamic(at run time) change
the pins.
When you want to initialize the LCD during run time, you can use the INITLCD
statement.

See Also
CONFIG LCDPIN , CONFIG LCDBUS

Example1
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim

616

433 430

428 BASCOM-AVR

© 2008 MCS Electronics

'REMOVE the above command for the real program !!
'$sim is used for faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this

429BASCOM Language Reference

© 2008 MCS Electronics

Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

430 BASCOM-AVR

© 2008 MCS Electronics

Example2
' -
' EADOG-M163.bas
' Demonstration for EADOG 163 display
' (c) 1995-2006, MCS Electronics
' -
'

$ r e g f i l e = "M8515.dat "
$ c r y s t a l = 4000000
'I used the following settings
'Config Lcdpin = Pin , Db4 = Portb.2 , Db5 = Portb.3 , Db6 = Portb.4 , Db7 = Portb.5 , E =
Portb.1 , Rs = Portb.0

'CONNECT vin TO 5 VOLT
Config Lcd = 16 * 3 , Chipset = Dogm163v5 '16*3 type LCD display
'other options for chipset are DOG163V3 for 3Volt operation

'Config Lcd = 16 * 3 , Chipset = Dogm163v3 , Contrast = &H702 '16*3 type LCD display
'The CONTRAST can be specified when the default value is not what you need

'The EADOG-M162 is also supported :
'Chipset params for the DOGM162 : DOG162V5, DOG162V3

Cls 'Dit maakt het scherm leeg
Locate 1 , 1 : Lcd "Hello World"
Locate 2 , 1 : Lcd "line 2"
Locate 3 , 1 : Lcd "line 3"
End

6.112 CONFIG LCDBUS

Action
Configures the LCD data bus and overrides the compiler setting.

Syntax
CONFIG LCDBUS = constant

Remarks
Constant 4 for 4-bit operation, 8 for 8-bit mode (default)

Use this statement together with the $LCD = address statement.

When you use the LCD display in the bus mode the default is to connect all the data
lines. With the 4-bit mode, you only have to connect data lines d7-d4.

See also
CONFIG LCD

Example
'--
' (c) 1995-2005 MCS Electronics
'--
' file: LCD.BAS
' demo: LCD, CLS, LOWERLINE, SHIFTLCD, SHIFTCURSOR, HOME
' CURSOR, DISPLAY

426

431BASCOM Language Reference

© 2008 MCS Electronics

'--

'note : tested in bus mode with 4-bit on the STK200
'LCD - STK200
'-------------------
'D4 D4
'D5 D5
'D6 D6
'D7 D7
'WR WR
'E E
'RS RS
'+5V +5V
'GND GND
'V0 V0
' D0-D3 are not connected since 4 bit bus mode is used!

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Rem with the config lcdpin statement you can override the compiler
settings

$regfile = "8515def.dat"
$lcd = &HC000
$lcdrs = &H8000
Config Lcdbus = 4

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen
'other options are 16 * 2 , 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

432 BASCOM-AVR

© 2008 MCS Electronics

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------

433BASCOM Language Reference

© 2008 MCS Electronics

_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD

6.113 CONFIG LCDMODE

Action
Configures the LCD operation mode and overrides the compiler setting.

Syntax
CONFIG LCDMODE = type

Remarks
Type PORT

Will drive the LCD in 4-bit port mode and is the default.
In PORT mode you can choose different PIN's from different PORT's to
connect to the upper 4 data lines of the LCD display. The RS and E can
also be connected to a user selectable pin. This is very flexible since you
can use pins that are not used by your design and makes the board
layout simple. On the other hand, more software is necessary to drive
the pins.

BUS will drive the LCD in bus mode and in this mode is meant when you
have external RAM and so have an address and data bus on your system.
The RS and E line of the LCD display can be connected to an address
decoder. Simply writing to an external memory location select the LCD
and the data is sent to the LCD display. This means the data-lines of the
LCD display are fixed to the data-bus lines.

Use $LCD = address and $LCDRS = address, to specify the
addresses that will enable the E and RS lines.

See also
CONFIG LCD , $LCD , $LCDRS

Example
Config LCDMODE = PORT 'the report will show the settings
Config LCDBUS = 4 '4 bit mode
LCD "hello"

6.114 CONFIG LCDPIN

Action
Override the LCD-PIN select options.

Syntax
CONFIG LCDPIN = PIN , DB4= PN,DB5=PN, DB6=PN, DB7=PN, E=PN, RS=PN
CONFIG LCDPIN = PIN , PORT=PORTx, E=PN, RS=PN

275 280

426 275 280

434 BASCOM-AVR

© 2008 MCS Electronics

Remarks
PN The name of the PORT pin such as PORTB.2 for example.

PORTX When you want to use the LCD in 8 bit data, pin mode, you must specify
the PORT to use.

You can override the PIN selection from the Compiler Settings with this statement, so
a second configuration lets you not choose more pins for a second LCD display.

The config command is preferred over the menu settings since the code makes clear
which pins are used. The CONFIG statement overrides the Options setting.

See also
CONFIG LCD

Example
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim
'REMOVE the above command for the real program !!
'$sim is used for faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector

426

435BASCOM Language Reference

© 2008 MCS Electronics

'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a

436 BASCOM-AVR

© 2008 MCS Electronics

moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.115 CONFIG PORT

Action
Sets the port or a port pin to the right data direction.

Syntax
CONFIG PORTx = state
CONFIG PINx.y = state

437BASCOM Language Reference

© 2008 MCS Electronics

Remarks
state A numeric constant that can be INPUT or OUTPUT.

INPUT will set the data direction register to input for port X.
OUTPUT will set the data direction to output for port X.
You can also use a number for state. &B0001111, will set the upper
nibble to input and the lower nibble to output.

You can also set a single port pin with the CONFIG PIN = state,
statement.
Again, you can use INPUT, OUTPUT or a number. In this case the
number can be only zero or one.

The best way to set the data direction for more than 1 pin, is to use the CONFIG
PORT, statement and not multiple lines with CONFIG PIN statements.

See Also
AVR Internal hardware ports

Example
'---

'name : port.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: PortB and PortD
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , Count As Byte

'configure PORT D for input mode
Config Portd = Input

'reading the PORT, will read the latch, that is the value
'you have written to the PORT.
'This is not the same as reading the logical values on the pins!
'When you want to know the logical state of the attached hardware,
'you MUST use the PIN register.
A = Pind

'a port or SFR can be treated as a byte
A = A And Portd

Print A 'print it

135

438 BASCOM-AVR

© 2008 MCS Electronics

Bitwait Pind.7 , Reset 'wait until
bit is low

'We will use port B for output
Config Portb = Output

'assign value
Portb = 10 'set port B
to 10
Portb = Portb And 2

Set Portb.0 'set bit 0
of port B to 1

Incr Portb

'Now a light show on the STK200
Count = 0
Do
 Incr Count
 Portb = 1
 For A = 1 To 8
 Rotate Portb , Left 'rotate bits
left
 Wait 1
 Next
 'the following 2 lines do the same as the previous loop
 'but there is no delay
' Portb = 1
' Rotate Portb , Left , 8
Loop Until Count = 10
Print "Ready"

'Again, note that the AVR port pins have a data direction register
'when you want to use a pin as an input it must be set low first
'you can do this by writing zeros to the DDRx:
'DDRB =&B11110000 'this will set portb1.0,portb.1,portb.2 and portb.3
to use as inputs.

'So : when you want to use a pin as an input set it low first in the
DDRx!
' and read with PINx
' and when you want to use the pin as output, write a 1 first
' and write the value to PORTx
End

6.116 CONFIG PRINT

Action
Configure the UART to be used for RS-485

Syntax
CONFIG PRINT0 = pin
CONFIG PRINT1 = pin

Remarks
pin The name of the PORT pin that is used to control the

439BASCOM Language Reference

© 2008 MCS Electronics

direction of an RS-485 driver.

mode SET or RESET

Use PRINT or PRINT0 for the first serial port. Use PRINT1 for the second serial port.

When you use RS-485 half duplex communication you need a pin for the direction of
the data. The CONFIG PRINT automates the manual setting/resetting. It will either
SET or RESET the logic level of the specified pin before data is printed with the
BASCOM print routines. After the data is sent, it will inverse the pin so it goes into
receive mode.
You need to set the direction of the used pin to output mode yourself.

See also
CONFIG PRINTBIN

Example
' -
- - - - - - -
'name : rs485.bas
'copyright : (c) 1995-2006, MCS Electronics
'purpose : demonstrates
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
' -
- - - - - - -
$ r e g f i l e = "m48de f . da t " ' we use the
M48
$ c r y s t a l = 8000000
$baud = 19200

$hwstack = 32
$swstack = 32
$framesize = 32

Config Print0 = P o r t b. 0 , Mode = Set
Config P i nb. 0 = Output 'set the
direction yourself

Dim Resp As S t r i n g * 10
Do
 P r i n t "test message"
 I n p u t Resp ' get
response
Loop

6.117 CONFIG PRINTBIN

Action
Configure PRINTBIN behavior

Syntax
CONFIG PRINTBIN = extended

Remarks

439

440 BASCOM-AVR

© 2008 MCS Electronics

extended This mode is the only mode. It allows to send huge
arrays(more then 255 elements) to the serial port.
Without the CONFIG PRINTBIN option, the maximum
number of elements is 255. Because support for big
arrays cost more code, it is made optional.

See also
CONFIG PRINT

Example
$regfile = "m103def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Config Printbin = Extended
Dim A(1000)
Printbin A(1) ; 1000

6.118 CONFIG PS2EMU

Action
Configures the PS2 mouse data and clock pins.

Syntax
CONFIG PS2EMU= int , DATA = data, CLOCK=clock

Remarks
Int The interrupt used such as INT0 or INT1.

DATA The pin that is connected to the DATA line. This must be the same pin
as the used interrupt.

CLOCK The pin that is connected to the CLOCK line.

438

441BASCOM Language Reference

© 2008 MCS Electronics

5-pin DIN (AT/
XT):

1 - Clock
2 - Data
3 - Not
Implemented
4 - Ground
5 - +5v

6-pin Mini-DIN
(PS/2):

1 - Data
2 - Not
Implemented
3 - Ground
4 - +5v
5 - Clock
6 - Not
Implemented

Old PC’s are equipped with a 5-pin DIN female connector. Newer PC’s have a 6-pin
mini DIN female connector.
The male sockets must be used for the connection with the micro.

Besides the DATA and CLOCK you need to connect from the PC to the micro, you need
to connect ground. You can use the +5V from the PC to power your microprocessor.

The config statement will setup an ISR that is triggered when the INT pin goes low.
This routine you can find in the library.
The ISR will retrieve a byte from the PC and will send the proper commands back to
the PC.

The SENDSCAN and PS2MOUSEXY statements allow you to send mouse commands.

Note that the mouse emulator is only recognized after you have booted your PC.
Mouse devices can not be plugged into your PC once it has booted. Inserting a mouse
or mouse device when the PC is already booted, may damage your PC.

See also
SENDSCAN , PS2MOUSEXY

Example
'---

'name : ps2_emul.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PS2 Mouse emulator
'micro : 90S2313
'suited for demo : NO, commercial addon needed
'commercial addon needed : yes

728 685

442 BASCOM-AVR

© 2008 MCS Electronics

'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$lib "mcsbyteint.lbx" ' use
optional lib since we use only bytes

'configure PS2 pins
Config Ps2emu = Int1 , Data = Pind.3 , Clock = Pinb.0
' ^------------------------ used interrupt
' ^----------- pin connected to DATA
' ^-- pin connected to clock
'Note that the DATA must be connected to the used interrupt pin

Waitms 500 ' optional
delay

Enable Interrupts ' you need
to turn on interrupts yourself since an INT is used

Print "Press u,d,l,r,b, or t"
Dim Key As Byte
Do
 Key = Waitkey() ' get key
from terminal
 Select Case Key
 Case "u" : Ps2mousexy 0 , 10 , 0 ' up
 Case "d" : Ps2mousexy 0 , -10 , 0 ' down
 Case "l" : Ps2mousexy -10 , 0 , 0 ' left
 Case "r" : Ps2mousexy 10 , 0 , 0 ' right
 Case "b" : Ps2mousexy 0 , 0 , 1 ' left
button pressed
 Ps2mousexy 0 , 0 , 0 ' left
button released
 Case "t" : Sendscan Mouseup ' send a
scan code
 Case Else
 End Select
Loop

Mouseup:
Data 3 , &H08 , &H00 , &H01 ' mouse up
by 1 unit

443BASCOM Language Reference

© 2008 MCS Electronics

6.119 CONFIG RC5

Action
Overrides the RC5 pin assignment from the Option Compiler Settings .

Syntax
CONFIG RC5 = pin [,TIMER=2]

Remarks
Pin The port pin to which the RC5 receiver is connected.

TIMER Must be 2. The micro must have a timer2 when you want to
use this option. This additional parameter will cause that
TIMER2 will be used instead of the default TIMER0.

When you use different pins in different projects, you can use this statement to
override the Options Compiler setting for the RC5 pin. This way you will remember
which pin you used because it is in your code and you do not have to change the
settings from the options. In BASCOM-AVR the settings are also stored in the project.
CFG file.

See also
GETRC5

Example
CONFIG RC5 = PIND.5 'PORTD.5 is the RC5 input line

6.120 CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Compiler Settings .

Syntax
CONFIG SDA = pin

Remarks
Pin The port pin to which the I2C-SDA line is connected.

When you use different pins in different projects, you can use this statement to
override the Options Compiler setting for the SDA pin. This way you will remember
which pin you used because it is in your code and you do not have to change the
settings from the options. In BASCOM-AVR the settings are also stored in the project.
CFG file.

See also
CONFIG SCL , CONFIG I2CDELAY

90

596

90

444 408

444 BASCOM-AVR

© 2008 MCS Electronics

Example
CONFIG SDA = PORTB.7 'PORTB.7 is the SDA line

6.121 CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Compiler Settings .

Syntax
CONFIG SCL = pin

Remarks
Pin The port pin to which the I2C-SCL line is connected.

When you use different pins in different projects, you can use this statement to
override the Options Compiler setting for the SCL pin. This way you will remember
which pin you used because it is in your code and you do not have to change the
settings from the options. Of course BASCOM-AVR also stores the settings in a
project.CFG file.

See also
CONFIG SDA , CONFIG I2CDELAY

Example
CONFIG SCL = PORTB.5 'PORTB.5 is the SCL line

6.122 CONFIG SERIALIN

Action
Configures the hardware UART to use a buffer for input

Syntax
CONFIG SERIALIN | SERIALIN1 | SERIALIN2 | SERIALIN3 = BUFFERED , SIZE
= size [, BYTEMATCH=ALL|BYTE|NONE] [,CTS=pin, RTS=pin , Threshold_full=num ,
Threshold_empty=num]

Remarks
SerialIn Some chips have multiple HW UARTS. Use the following parameter

values:
· SERIALIN : first UART/UART0
· SERIALIN1 : second UART/UART1
· SERIALIN2 : third UART/UART2
· SERIALIN3 : fourth UART/UART3

Size A numeric constant that specifies how large the input buffer should
be. The space is taken from the SRAM. The maximum is 255.

Bytematch The ASCII value of the byte that will result in calling a user label.

90

443 408

445BASCOM Language Reference

© 2008 MCS Electronics

When you specify ALL, the user label will be called for every byte
that is received. You must include the label yourself in your code
and end it with a return. The following label names must be used
when you check for a specific byte value:

· Serial0CharMatch (for SERIALIN or the first UART/UART0)
· Serial1CharMatch (for SERIALIN1 or the second UART/UART1)
· Serial2CharMatch (for SERIALIN2 or the third UART/UART2)
· Serial3CharMatch (for SERIALIN3 or the fourth UART/UART3)

The following label names must be used when you check for any
value:

· Serial0ByteReceived (for SERIALIN or the first UART/UART0)
· Serial1ByteReceived (for SERIALIN1 or the second UART/UART1

)
· Serial2ByteReceived (for SERIALIN2 or the third UART/UART2)
· Serial3ByteReceived (for SERIALIN3 or the fourth UART/UART3)

When you specify NONE, it is the same as not specifying this
optional parameter.

CTS The pin used for the CTS.(Clear to send). For example PIND.6

RTS The pin used for RTS. (Ready to send). For example PIND.7

Threshold_full The number of bytes that will cause RTS to be set to '1'. This is an
indication to the sender, that the buffer is full.

Threshold_empt
y

The number of free bytes that must be in the buffer before CTS
may be made '0' again.

The following internal variables will be generated for UART0:
_RS_HEAD_PTR0 , a byte counter that stores the head of the buffer
_RS_TAIL_PTR0 , a byte counter that stores the tail of the buffer.
_RS232INBUF0 , an array of bytes that serves as a ring buffer for the received
characters.
_RS_BUFCOUNTR0, a byte that holds the number of bytes that are in the buffer.

For the other UARTS, the variables are named similar. But they do have a different
number.
A 1 for the second UART, a 3 for the third UART and a 4 for the fourth UART. Yes, the
'2' is skipped.

While you can read and write the internal variables, we advise not to write to them.
The variables are updated inside interrupts routines, and just when you write a value
to them, an ISR can overwrite the value.

The optional BYTEMATCH can be used to monitor the incoming bytes and call a label
when the specified label is found. This label is a fixed label as mentioned in the table
above.
This way you can determine the start of a serial stream.

While bytematch allows you to trap the incoming bytes, take care that you do not
delay the program execution too much. After all the serial input interrupt is used in
order not to miss incoming data. When you add delays or code that will delay
execution too much you might loose incoming data.

To clear the buffer, use CLEAR SERIALIN. Do not read and write the internal365

446 BASCOM-AVR

© 2008 MCS Electronics

buffer variables yourself.

CTS-RTS is hardware flow control. Both the sender and receiver need to use CTS-RTS
when CTS-RTS is used. When one of the parties does not use CTS-RTS, no
communication will be possible.
CTS-RTS use two extra lines. The receiver must check the CTS pin to see if it may
send. The CTS pin is a input pin as the receiver looks at the level that the sender can
change.

The receiver can set the RTS pin to indicate to the sender that it can accept data.
In the start condition, RTS is made '0' by the receiver. The sender will then check
this logic level with it's CTS pin, and will start to send data. The receiver will store the
data into the buffer and when the buffer is almost full, or better said, when the
Threshold_full is the same as the number of bytes in the receive buffer, the receiver
will make RTS '1' to signal to the sender, that the buffer is full. The sender will stop
sending data. And will continue when the RTS is made '0' again.

The receiver can send data to the sender and it will check the CTS pin to see if it may
send data.

In order to work with CTS-RTS, you need both a serial input buffer, and a serial
output buffer. So use both CONFIG SERIALIN and CONFIG SERIALOUT to specify the
buffers.
The CTS-RTS can only be configured with the CONFIG SERIALIN statement.

The thresholds are needed for high baud rates where it will take some time to react
on a CTS-RTS.
You need to experiment with the thresholds but good start values are 80% full, and
20% empty.

You need to use a pin that is bit addressable. For most chips this is a pin from
port A, B,C or D.

ASM
Routines called from MCS.LIB :

_GotChar. This is an ISR that gets called when ever a character is received.
When there is no room for the data it will not be stored.
So the buffer must be emptied periodic by reading from the serial port using the
normal statements like INKEY() and INPUT.

Since URXC interrupt is used by _GotChar, you can not use this interrupt anymore.
Unless you modify the _gotchar routine of course.

See also
CONFIG SERIALOUT , ISCHARWAITING , CLEAR

Example
'---

'name : rs232buffer.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example shows the difference between normal

449 626 365

447BASCOM Language Reference

© 2008 MCS Electronics

and buffered
' serial INPUT
'micro : Mega161
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m161def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 9600 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'first compile and run this program with the line below remarked
Config Serialin = Buffered , Size = 20

Dim Na As String * 10

'the enabling of interrupts is not needed for the normal serial mode
'So the line below must be remarked to for the first test
Enable Interrupts

Print "Start"
Do
 'get a char from the UART

 If Ischarwaiting() = 1 Then 'was there a
char?
 Input Na
 Print Na 'print it
 End If

 Wait 1 'wait 1
second
Loop

'You will see that when you slowly enter characters in the terminal
emulator
'they will be received/displayed.
'When you enter them fast you will see that you loose some chars

'NOW remove the remarks from line 11 and 18
'and compile and program and run again
'This time the chars are received by an interrupt routine and are
'stored in a buffer. This way you will not loose characters providing
that
'you empty the buffer
'So when you fast type abcdefg, they will be printed after each other
with the
'1 second delay

'Using the CONFIG SERIAL=BUFFERED, SIZE = 10 for example will
'use some SRAM memory
'The following internal variables will be generated :
'_Rs_head_ptr0 BYTE , a pointer to the location of the start of the

448 BASCOM-AVR

© 2008 MCS Electronics

buffer
'_Rs_tail_ptr0 BYTE , a pointer to the location of tail of the buffer
'_RS232INBUF0 BYTE ARRAY , the actual buffer with the size of SIZE

Example2
' -
'name :
'copyright : (c) 1995-2008, MCS Electronics
'purpose : test for M2560 support
'micro : Mega2560
'suited for demo : yes
'commercial addon needed : no
' -

$ r e g f i l e = "m2560def .da t " ' specify the used micro
$ c r y s t a l = 8000000 ' used crystal frequency
$hwstack = 40 ' default use 32 for the
hardware stack
$swstack = 40 ' default use 10 for the SW
s t a c k
$framesize = 40 ' default use 40 for the frame
space

'$timeout = 1000000

'The M128 has an extended UART.
'when CO'NFIG COMx is not used, the default N,8,1 will be used
Config Com1 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 ,
C lockpo l = 0
Config Com2 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 ,
C lockpo l = 0
Config Com3 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 ,
C lockpo l = 0
Config Com4 = 19200 , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 ,
C lockpo l = 0

Enable I n t e r r u p t s
Config Serialin = Buffered , Size = 20
Config Serialin1 = Buffered , Size = 20 , Bytematch = 65
Config Serialin2 = Buffered , Size = 20 , Bytematch = 66
Config Serialin3 = Buffered , Size = 20 , Bytematch = All

'Open all UARTS
Open "COM2:" For Binary As #2
Open "COM3:" For Binary As #3
Open "COM4:" For Binary As #4

P r i n t " H e l l o " 'first uart
Dim B1 As Byte , B2 As Byte , B3 As Byte , B4 As Byte
Dim Tel As Word , Nm As St r ing * 16

'unremark to test second UART
'Input #2 , "Name ?" , Nm
'Print #2 , "Hello " ; Nm

Do
 I n c r Tel
 P r i n t Tel ; " test serial port 1"
 P r i n t #2 , Tel ; " test serial port 2"
 P r i n t #3 , Tel ; " test serial port 3"
 P r i n t #4 , Tel ; " test serial port 4"

 B1 = Inkey() 'first uart
 B2 = Inkey(#2)
 B3 = Inkey(#3)
 B4 = Inkey(#4)

 I f B1 <> 0 Then
 P r i n t B1 ; " from port 1"
 End I f
 I f B2 <> 0 Then
 P r i n t #2 , B2 ; " from port 2"
 End I f
 I f B3 <> 0 Then

449BASCOM Language Reference

© 2008 MCS Electronics

 P r i n t #3 , B3 ; " from port 3"
 End I f
 I f B4 <> 0 Then
 P r i n t #4 , B4 ; " from port 4"
 End I f

 Waitms 500
Loop

'Label called when UART2 received an A
Ser ia l1charmatch:
 P r i n t #2 , "we got an A"
Return

'Label called when UART2 received a B
Ser ia l2charmatch:
 P r i n t #3 , "we got a B"
Return

'Label called when UART3 receives a char
S e r i a l 3 b y t e r e c e i v e d:
 P r i n t #4 , "we got a char"
Return

End

Close #2
Close #3
Close #4

$eeprom
Data 1 , 2

6.123 CONFIG SERIALOUT

Action
Configures the hardware UART to use a buffer for output

Syntax
CONFIG SERIALOUT | SERIALOUT1 | SERIALOUT2 | SERIALOUT3 =
BUFFERED , SIZE = size

Remarks
SerialOut Some chips have multiple HW UARTS. Use the following parameter

values:
· SERIALOUT : first UART/UART0
· SERIALOUT1 : second UART/UART1
· SERIALOUT2 : third UART/UART2
· SERIALOUT3 : fourth UART/UART3

size A numeric constant that specifies how large the output buffer should
be. The space is taken from the SRAM. The maximum value is 255.

The following internal variables will be used when you use CONFIG SERIALOUT

_RS_HEAD_PTRW0 , byte that stores the head of the buffer
_RS_TAIL_PTRW0 , byte that stores the tail of the buffer
_RS232OUTBUF0, array of bytes for the ring buffer that stores the printed data.
_RS_BUFCOUNTW0, a byte that holds the number of bytes in the buffer.

450 BASCOM-AVR

© 2008 MCS Electronics

For the other UARTS, the variables are named similar. But they do have a different
number.
A 1 for the second UART, a 3 for the third UART and a 4 for the fourth UART. Yes, the
'2' is skipped.

Serial buffered output can be used when you use a low baud rate. It would take
relatively much time to print all data without a buffer. When you use a buffer, the
data is printed on the background when the micro UART byte buffer is empty. It will
get a byte from the buffer then and transmit it.
As with any buffer you have, you must make sure that it is emptied at one moment in
time.
You can not keep filling it as it will become full. When you do not empty it, you will
have the same situation as without a buffer !!! When the roof is leaking and you put a
bucket on the floor and in the morning you empty it, it will work. But when you will
go away for a day, the bucket will overflow and the result is that the floor is still wet.

Another important consideration is data loss. When you print a long string of 100
bytes, and there is only room in the buffer for 80 bytes, there is still a wait evolved
since after 80 bytes, the code will wait for the buffer to become empty. When the
buffer is empty it will continue to print the data. The advantage is that you do not
loose any data, the disadvantage is that it blocks program execution just like a
normal un-buffered PRINT would do.

ASM
Routines called from MCS.LIB :
_CHECKSENDCHAR. This is an ISR that gets called when ever the transmission buffer
is empty.
Since UDRE interrupt is used , you can not use this interrupt anymore. Unless you
modify the _CheckSendChar routine of course.

When you use the PRINT statement to send data to the serial port, the UDRE
interrupt will be enabled. And so the _CheckSendChar routine will send the data from
the buffer.

See also
CONFIG SERIALIN

Example
'---

'name : rs232bufferout.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates how to use a serial output
buffer
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 9600 ' use baud
rate

444

451BASCOM Language Reference

© 2008 MCS Electronics

$hwstack = 40 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
Config Com2 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

'setup to use a serial output buffer
'and reserve 20 bytes for the buffer
Config Serialout = Buffered , Size = 255

'It is important since UDRE interrupt is used that you enable the
interrupts
Enable Interrupts
Print "Hello world"
Print "test1"
Do
Wait 1
'notice that using the UDRE interrupt will slown down execution of
waiting loops like waitms
Print "test"
Loop
End

6.124 CONFIG SINGLE

Action
Instruct the compiler to use an alternative conversion routine for representation of a
single.

Syntax
CONFIG SINGLE = SCIENTIFIC , DIGITS = value

Remarks
Digits A numeric constant with a value between 0 and 7.

A value of 0 will result in no trailing zero's.
A value between 1-7 can be used to specify the number of digits behind
the comma.

When a conversion is performed from numeric single variable, to a string, for example
when you PRINT a single, or when you use the STR() function to convert a single into
a string, a special conversion routine is used that will convert into human readable
output. You will get an output of digits and a decimal point.
This is well suited for showing the value on an LCD display. But there is a downside
also. The routine is limited in the way that it can not shown very big or very small
numbers correct.

The CONFIG SINGLE will instruct the compiler to use a special version of the
conversion routine. This version will use scientific notation such as : 12e3.
You can specify how many digits you want to be included after the decimal point.

452 BASCOM-AVR

© 2008 MCS Electronics

See also
NONE

ASM
Uses single.lbx library

Example
' -
' (c) 1995-2005, MCS
' single_scientific.bas
' demonstation of scientific , single output
' -

$ r e g f i l e = "m88de f . da t "
$ c r y s t a l = 8000000
$baud = 19200

'you can view the difference by compiling and simulating this sample
with the
'line below remarked and active
Config Single = Scientific , Digits = 7

Dim S As Single
S = 1
Do
 S = S / 10
 P r i n t S
Loop

6.125 CONFIG SHIFTIN

Action
Instruct the compiler to use new behaviour of the SHIFTIN statement.

Syntax
CONFIG SHIFTIN = value

Remarks
value This must be COMPATIBLE or NEW. By default the old behaviour is used.

So in order to use the new behaviour you must use : CONFIG
SHIFTIN=NEW

The SHIFTOUT has been enhanced with a number of options which make it
incompatible to the old SHIFTOUT.
In order to maintain compatibility with your old code, this option has been added so
you have control over which SHIFTIN version is used.

See also
SHIFTIN 743

453BASCOM Language Reference

© 2008 MCS Electronics

6.126 CONFIG SPI

Action
Configures the SPI related statements.

Syntax for software SPI
CONFIG SPI = SOFT, DIN = PIN, DOUT = PIN , SS = PIN|NONE, CLOCK = PIN ,
SPIIN=value

Syntax for hardware SPI
CONFIG SPI = HARD, INTERRUPT=ON|OFF, DATA ORDER = LSB|MSB , MASTER =
YES|NO , POLARITY = HIGH|LOW , PHASE = 0|1, CLOCKRATE = 4|16|64|128 ,
NOSS=1|0 , SPIIN=value

Remarks
SPI SOFT

for software emulation of SPI, this allows you to choose the PINS to
use. Only works in master mode.

HARD for the internal SPI hardware, that will use fixed pins of the
microprocessor.

DIN Data input or MISO. Pin is the pin number to use such as PINB.0

DOUT Data output or MOSI. Pin is the pin number to use such as PORTB.1

SS Slave Select. Pin is the pin number to use such as PORTB.2

Use NONE when you do not want the SS signal to be generated. See
remarks

CLOCK Clock. Pin is the pin number to use such as PORTB.3

DATA ORDER Selects if MSB or LSB is transferred first.

MASTER Selects if the SPI is run in master or slave mode.

POLARITY Select HIGH to make the CLOCK line high while the SPI is idle. LOW
will make clock LOW while idle.

PHASE Refer to a data sheet to learn about the different settings in
combination with polarity.

CLOCKRATE The clock rate selects the division of the of the oscillator frequency
that serves as the SPI clock. So with 4 you will have a clock rate of
4.000000 / 4 = 1 MHz , when a 4 MHZ XTAL is used.

NOSS 1 or 0. Use 1 when you do not want the SS signal to be generated in
master mode.

INTERRUPT Specify ON or OFF. ON will enable the SPI interrupts to occur. While
OFF disables SPI interrupts. ENABLE SPI and DISABLE SPI will
accomplish the same.

SPIIN When reading from the SPI slave, it should not matter what kind of
data you send. But some chips require a value of 255 while others
require a value of 0. By default, when the SPIIN option is not
provided, a value of 0 will be sent to the SPI slave. With this SPIIN
option you can override this value.

The default setting for hardware SPI when set from the Compiler, Options, SPI menu
is MSB first, POLARITY = HIGH, MASTER = YES, PHASE = 0, CLOCKRATE = 4

454 BASCOM-AVR

© 2008 MCS Electronics

When you use CONFIG SPI = HARD alone without the other parameters, the SPI will
only be enabled. It will work in slave mode then with CPOL =0 and CPH=0.

In hardware mode the SPIINIT statement will set the SPI pins to :
sbi DDRB,7 ; SCK output
cbi DDRB,6 ; MISO input
sbi DDRB,5 ; MOSI output

In softmode the SPIINIT statement will set the SPI pins for example to :
sbi PORTB,5 ;set latch bit hi (inactive)SS
sbi DDRB,5 ;make it an output SS
cbi PORTB,4 ;set clk line lo
sbi DDRB,4 ;make it an output
cbi PORTB,6 ;set data-out lo MOSI
sbi DDRB,6 ;make it an output MOSI
cbi DDRB,7 ;MISO input
Ret

When you want to address multiple slaves with the software SPI you need multiple
pins to select/activate the slave chip. Specify NONE for SS in that case. This also
means that before every SPI command you need to set the logic level to 0 to address
the chip and after the SPI command you need to set it back to a logic high level.

The hardware SPI also has this option. The NOSS parameter with a value of 1, will
not set the SS line to logic 0 when the SPI operation begins. You need to set SS or
any other pin of your choice to a logic 0 yourself. After the SPI command(s) are used
you need to set it back to a logic 1 to deselect the slave chip.

All SPI routines are SPI-master routines. Example 2 below demonstrates how to
create a soft SPI slave. In the samples directory you will also find a SPI hardware
master and SPI hardware slave sample.

See also
SPIIN , SPIOUT , SPIINIT , SPI , SPIMOVE

Example
Config SPI = SOFT, DIN = PINB.0 , DOUT = PORTB.1, SS = PORTB.2, CLOCK =
PORTB.3
Dim var As Byte
SPIINIT 'Init SPI state and pins.
SPIOUT var , 1 'send 1 byte

6.127 CONFIG SERVOS

Action
Configures how much servo’s will be controlled.

Syntax
CONFIG SERVOS = X , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = rl

Remarks

764 766 765 160 765

455BASCOM Language Reference

© 2008 MCS Electronics

Servo’s need a variable pulse in order to operate. The CONFIG SERVOS directive will
set up a byte array with the servo pulse width values and will initialize an ISR that
uses TIMER0.

X The number of servo’s you want to control. Each used servo will use one
byte of SRAM.

PORT The port pin the servo is attached too.

RL The reload value for the ISR in uS.

When you use for example :
Config Servos = 2 , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = 10
The internal ISR will execute every 10 uS.

An arrays named SERVO() will be created and it can hold 2 bytes : servo(1) and
servo(2).

By setting the value of the servo() array you control how long the positive pulse will
last. After it has reached this value it will be reset to 0.

The reload value should be set to 10. After 20 mS, a new pulse will be generated.
You can use other reload values but it will also mean that the repeat value will
change.

The PORT pins specified must be set to work as an output pin by the user.
CONFIG PINB.0 = OUTPUT
Will set a pin to output mode.

Resources used
TIMER0 is used to create the ISR.

ASM
NONE

Example
'---

'name : servos.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates the SERVO option
'micro : 90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default

456 BASCOM-AVR

© 2008 MCS Electronics

use 40 for the frame space

'Servo's need a pulse in order to operate
'with the config statement CONFIG SERVOS we can specify how many servo's
we
'will use and which port pins are used
'A maximum of 14 servos might be used
'The SERVO statements use one byte for an interrupt counter and the
TIMER0
'This means that you can not use TIMER0 anymore
'The reload value specifies the interval of the timer in uS
'Config Servos = 2 , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = 10

Config Servos = 1 , Servo1 = Portb.0 , Reload = 10
'as an option you can use TIMER1
'Config Servos = 2 , Servo1 = Portb.0 , Servo2 = Portb.1 , Reload = 10 ,
Timer = Timer1

'we use 2 servos with 10 uS resolution(steps)

'we must configure the port pins used to act as output
Config Portb = Output

'finally we must turn on the global interrupt
Enable Interrupts

'the servo() array is created automatic. You can used it to set the
'time the servo must be on
Servo(1) = 10 '10 times 10
= 100 uS on
'Servo(2) = 20 '20 times
10 = 200 uS on
Do
Loop

Dim I As Byte
Do
For I = 0 To 100
 Servo(1) = I
 Waitms 1000
Next

For I = 100 To 0 Step -1
' Servo(1) = I
 Waitms 1000
Next
Loop
End

6.128 CONFIG TCPIP

Action
Configures the TCP/IP W3100A chip.

Syntax
CONFIG TCPIP = int , MAC = mac , IP = ip, SUBMASK = mask, GATEWAY =
gateway, LOCALPORT= port, TX= tx, RX= rx , NOINIT= 0|1 , TWI=address , Clock =
speed [, baseaddress = address] [,TimeOut=tmOut]

457BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Int The interrupt to use such as INT0 or INT1.

For the Easy TCP/IP PCB, use INT0.

MAC The MAC address you want to assign to the W3100A.

The MAC address is a unique number that identifies your chip. You
must use a different address for every W3100A chip in your network.
Example : 123.00.12.34.56.78

You need to specify 6 bytes that must be separated by dots. The bytes
must be specified in decimal notation.

IP The IP address you want to assign to the W3100A.

The IP address must be unique for every W3100A in your network.
When you have a LAN, 192.168.0.10 can be used. 192.168.0.x is used
for LAN’s since the address is not an assigned internet address.

SUBMASK The submask you want to assign to the W3100A.

The submask is in most cases 255.255.255.0

GATEWAY This is the gateway address of the W3100A.

The gateway address you can determine with the IPCONFIG command
at the command prompt :

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . :
IP Address. : 192.168.0.3
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.0.1

Use 192.168.0.1 in this case.

LOCALPORT A word value that is assigned to the LOCAL_PORT internal variable.
See also Getsocket.

As a default you can assign a value of 5000.

TX A byte which specifies the transmit buffer size of the W3100A. The
W3100A has 4 sockets.

A value of 00 will assign 1024 bytes, a value of 01 will assign 2048
bytes. A value of 10 will assign 4096 bytes and a value of 11 will
assign 8192 bytes.

This is binary notation. And the Msbits specify the size of socket 3.

For example, you want to assign 2048 bytes to each socket for
transmission : TX = &B01010101

Since the transmission buffer size may be 8KB in total, you can split
them up in 4 parts of 2048 bytes : 01.

When you want to use 1 socket with 8KB size, you would use : TX =

458 BASCOM-AVR

© 2008 MCS Electronics

&B11. You can use only 1 socket in that case : socket 0.

RX A byte which specifies the receive buffer size of the W3100A. The
W3100A has 4 sockets.

A value of 00 will assign 1024 bytes, a value of 01 will assign 2048
bytes. A value of 10 will assign 4096 bytes and a value of 11 will
assign 8192 bytes.

This is binary notation. And the Msbits specify the size of socket 3.

For example, you want to assign 2048 bytes to each socket for
reception : RX = &B01010101

Since the receive buffer size may be 8KB in total, you can split them
up in 4 parts of 2048 bytes : 01.

When you want to use 1 socket with 8KB size, you would use : RX =
&B11. You can use only 1 socket in that case : socket 0.

Consult the W3100A pdf for more info.

Noinit Make this 1 when you want to configure the TCP, MAC, Subnetmask
and GateWay dynamic. Noinit will only make some important settings
and you need to use SETTCP in order to finish the setup.

TWI The slave address of the W3100A/NM7010. When you specify TWI,
your micro must have a TWI interface such as Mega128, Mega88,
Mega32.

Clock The clock frequency to use with the TWI interface

Baseaddress An optional value for the chip select of the W3100A. This is default
&H8000 when not specified. When you create your own board, you can
override it.

TimeOut You can specify an optional timeout when sending UDP data. The
Wiznet API does wait for the CSEND status. But it means that it will
block your application. In such cases, you can use the timeout value.
The timeout constant is a counter which decreases every time the
status is checked. When it reaches 0, it will get out of the loop. Thus a
higher value will result in a longer delay. Notice that it has nothing to
do with the chip timeout registers/values. Without the software
timeout, the chip will also time out.

The CONFIG TCPIP statement may be used only once.
Interrupts must be enabled before you use CONFIG TCPIP.
Configuring the W3100A will init the chip.
After the CONFIG TCPIP, you can already PING the chip!

The TWI mode works only when your micro support the TWI mode. You need to have
4k7 pull up resistors.
MCS Electronics has a small adapter PCB and KIT available that can be connected
easily to your microprocessor.
The new TWI mode makes your PCB design much simpler. TWI is not as fast as bus
mode. While you can use every supported TCP/IP function, it will run at a lower
speed.

See also
GETSOCKET , SOCKETCONNECT , SOCKETSTAT , TCPWRITE ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN

600 752 756 787

788 786 372 755

459BASCOM Language Reference

© 2008 MCS Electronics

Syntax Example
Config Tcpip = Int0 , Mac = 00.00.12.34.56.78 , Ip = 192.168.0.8 , Submask =
255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx = $55 , Rx = $55

‘Now use PING at the command line to send a ping:

PING 192.168.0.8

Or use the easytcp application to ping the chip.

6.129 CONFIG TIMER0

Action
Configure TIMER0.

Syntax
CONFIG TIMER0 = COUNTER , PRESCALE= 1|8|64|256|1024 ,
EDGE=RISING/FALLING , CLEAR TIMER = 1|0
CONFIG TIMER0 = TIMER , PRESCALE= 1|8|64|256|1024

Remarks
TIMER0 is a 8 bit counter. See the hardware description of TIMER0.

When configured as a COUNTER:

EDGE You can select whether the TIMER will count on the falling or rising
edge.

When configured as a TIMER:

PRESCALE The TIMER is connected to the system clock in this case. You can select
the division of the system clock with this parameter.

Valid values are 1 , 8, 64, 256 or 1024

Note that some new AVR chips have different pre scale values. You can use these.

 Notice that the Help was written with the AT90S2313 and AT90S8515 timers in
mind.

When you use the CONFIG TIMER0 statement, the mode is stored by the compiler and
the TCCRO register is set.
When you use the STOP TIMER0 statement, the TIMER is stopped.
When you use the START TIMER0 statement, the TIMER TCCR0 register is loaded with
the last value that was configured with the CONFIG TIMER0 statement.

So before using the START and STOP TIMER0 statements, use the CONFIG
statement first.

769 775

460 BASCOM-AVR

© 2008 MCS Electronics

Example
'---

'name : timer0.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to use TIMER0 related statements
'micro : 90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'First you must configure the timer to operate as a counter or as a
timer
'Lets configure it as a COUNTER now
'You must also specify if it will count on a rising or falling edge

Config Timer0 = Counter , Edge = Rising
'Config Timer0 = Counter , Edge = falling
'unremark the line aboven to use timer0 to count on falling edge

'To get/set the value from the timer access the timer/counter register
'lets reset it to 0
Tcnt0 = 0

Do
 Print Tcnt0
Loop Until Tcnt0 >= 10
'when 10 pulses are count the loop is exited
'or use the special variable TIMER0
Timer0 = 0

'Now configire it as a TIMER
'The TIMER can have the systemclock as an input or the systemclock
divided
'by 8,64,256 or 1024
'The prescale parameter excepts 1,8,64,256 or 1024
Config Timer0 = Timer , Prescale = 1

'The TIMER is started now automaticly
'You can STOP the timer with the following statement :
Stop Timer0

'Now the timer is stopped
'To START it again in the last configured mode, use :
Start Timer0

'Again you can access the value with the tcnt0 register
Print Tcnt0

461BASCOM Language Reference

© 2008 MCS Electronics

'or
Print Timer0
'when the timer overflows, a flag named TOV0 in register TIFR is set
'You can use this to execute an ISR
'To reset the flag manual in non ISR mode you must write a 1 to the bit
position
'in TIFR:
Set Tifr.1

'The following code shows how to use the TIMER0 in interrupt mode
'The code is block remarked with '(en ')

'(

'Configute the timer to use the clock divided by 1024
Config Timer0 = Timer , Prescale = 1024

'Define the ISR handler
On Ovf0 Tim0_isr
'you may also use TIMER0 for OVF0, it is the same

Enable Timer0 ' enable the
timer interrupt
Enable Interrupts 'allow
interrupts to occur
Do
 'your program goes here
Loop

'the following code is executed when the timer rolls over
Tim0_isr:
 Print "*";
Return

')
End

6.130 CONFIG TIMER1

Action
Configure TIMER1.

Syntax
CONFIG TIMER1 = COUNTER | TIMER | PWM ,
EDGE=RISING | FALLING , PRESCALE= 1|8|64|256|1024 ,
NOISE CANCEL=0 |1, CAPTURE EDGE = RISING | FALLING ,
CLEAR TIMER = 1|0,
COMPARE A = CLEAR | SET | TOGGLE I DISCONNECT ,
COMPARE B = CLEAR | SET | TOGGLE I DISCONNECT ,
PWM = 8 | 9 10 ,
COMPARE A PWM = CLEAR UP| CLEAR DOWN | DISCONNECT
COMPARE B PWM = CLEAR UP| CLEAR DOWN | DISCONNECT

Remarks
The TIMER1 is a 16 bit counter. See the hardware description of TIMER1.

462 BASCOM-AVR

© 2008 MCS Electronics

It depends on the chip if COMPARE B is available or not.
Some chips even have a COMARE C.

The syntax shown above must be on one line. Not all the options need to be selected.

Here is the effect of the various options.

EDGE You can select whether the TIMER will count on the falling or rising
edge. Only for COUNTER mode.

CAPTURE
EDGE

You can choose to capture the TIMER registers to the INPUT CAPTURE
registers

With the CAPTURE EDGE = FALLING/RISING, you can specify to
capture on the falling or rising edge of pin ICP

NOISE
CANCELING

To allow noise canceling you can provide a value of 1.

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.

Valid values are 1 , 8, 64, 256 or 1024

The TIMER1 also has two compare registers A and B

When the timer value matches a compare register, an action can be performed

COMPARE
A

The action can be:

SET will set the OC1X pin
CLEAR will clear the OC1X pin
TOGGLE will toggle the OC1X pin
DISCONNECT will disconnect the TIMER from output pin OC1X

And the TIMER can be used in PWM mode.
You have the choice between 8, 9 or 10 bit PWM mode

Also you can specify if the counter must count UP or down after a match to the
compare registers
Note that there are two compare registers A and B

PWM Can be 8, 9 or 10.

COMPARE A
PWM

PWM compare mode. Can be CLEAR UP or CLEAR DOWN

Using COMPARE A, COMPARE B, COMPARE A PWM or COMPARE B PWM will set the
corresponding pin for output. When this is not wanted you can use the alternative
NO_OUTPUT version that will not alter the output pin.

For example : COMPARE A NO_OUTPUT , COMPARE A PWM NO_OUTPUT

Example
'---

'name : timer1.bas
'copyright : (c) 1995-2005, MCS Electronics

463BASCOM Language Reference

© 2008 MCS Electronics

'purpose : show using Timer1
'micro : 90S8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "8515def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim W As Word

'The TIMER1 is a versatile 16 bit TIMER.
'This example shows how to configure the TIMER

'First like TIMER0 , it can be set to act as a TIMER or COUNTER
'Lets configure it as a TIMER that means that it will count and that
'the input is provided by the internal clock.
'The internal clock can be divided by 1,8,64,256 or 1024
Config Timer1 = Timer , Prescale = 1024

'You can read or write to the timer with the COUNTER1 or TIMER1 variable
W = Timer1
Timer1 = W

'To use it as a COUNTER, you can choose on which edge it is trigereed
Config Timer1 = Counter , Edge = Falling , Prescale = 1
'Config Timer1 = Counter , Edge = Rising

'Also you can choose to capture the TIMER registers to the INPUT CAPTURE
registers
'With the CAPTURE EDGE = , you can specify to capture on the falling or
rising edge of
'pin ICP
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling ,
Prescale = 1024
'Config Timer1 = Counter , Edge = Falling , Capture Edge = Rising

'To allow noise canceling you can also provide :
Config Timer1 = Counter , Edge = Falling , Capture Edge = Falling ,
Noise Cancel = 1 , Prescale = 1

'to read the input capture register :
W = Capture1
'to write to the capture register :
Capture1 = W

464 BASCOM-AVR

© 2008 MCS Electronics

'The TIMER also has two compare registers A and B
'When the timer value matches a compare register, an action can be
performed
Config Timer1 = Counter , Edge = Falling , Compare A = Set , Compare B =
 Toggle , , Clear Timer = 1
'SET , will set the OC1X pin
'CLEAR, will clear the OC1X pin
'TOGGLE, will toggle the OC1X pin
'DISCONNECT, will disconnect the TIMER from output pin OC1X
'CLEAR TIMER will clear the timer on a compare A match

'To read write the compare registers, you can use the COMPARE1A and
COMPARE1B variables
Compare1a = W
W = Compare1a

'And the TIMER can be used in PWM mode
'You have the choice between 8,9 or 10 bit PWM mode
'Also you can specify if the counter must count UP or down after a match
'to the compare registers
'Note that there are two compare registers A and B
Config Timer1 = Pwm , Pwm = 8 , Compare A Pwm = Clear Up , Compare B
Pwm = Clear Down , Prescale = 1

'to set the PWM registers, just assign a value to the compare A and B
registers
Compare1a = 100
Compare1b = 200

'Or for better reading :
Pwm1a = 100
Pwm1b = 200
End

6.131 CONFIG TIMER2

Action
Configure TIMER2.

Syntax for the 8535
CONFIG TIMER2 = TIMER | PWM , ASYNC=ON |OFF,
PRESCALE = 1 | 8 | 32 | 64 | 128 | 256 | 1024 ,
COMPARE = CLEAR | SET | TOGGLE I DISCONNECT ,
PWM = ON | OFF ,
COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT ,
CLEAR TIMER = 1|0

Syntax for the M103
CONFIG TIMER2 = COUNTER| TIMER | PWM ,
EDGE= FALLING |RISING,
PRESCALE = 1 | 8 | 64 | 256 | 1024 ,
COMPARE = CLEAR | SET | TOGGLE I DISCONNECT ,
PWM = ON | OFF ,
COMPARE PWM = CLEAR UP| CLEAR DOWN | DISCONNECT ,
CLEAR TIMER = 1|0

465BASCOM Language Reference

© 2008 MCS Electronics

Remarks
The TIMER2 is an 8 bit counter.
It depends on the chip if it can work as a counter or not.
The syntax shown above must be on one line. Not all the options need to be selected.

Here is the effect of the various options.

EDGE You can select whether the TIMER will count on the falling or rising
edge. Only for COUNTER mode.

PRESCALE The TIMER is connected to the system clock in this case. You can
select the division of the system clock with this parameter.

Valid values are 1 , 8, 64, 256 or 1024
or
1 , 8, 32 , 64 , 256 or 1024 for the M103

The TIMER2 also has a compare registers

When the timer value matches a compare register, an action can be performed

COMPARE The action can be:

SET will set the OC2 pin
CLEAR will clear the OC2 pin
TOGGLE will toggle the OC2 pin
DISCONNECT will disconnect the TIMER from output pin OC2

And the TIMER can be used in 8 bit PWM mode

You can specify if the counter must count UP or down after a match to the compare
registers

COMPARE PWM PWM compare mode.
Can be CLEAR UP or CLEAR DOWN

Example

Dim W As Byte
Config Timer2 = Timer , ASYNC = 1 , Prescale = 128
On TIMER2 Myisr
ENABLE INTERRUPTS
ENABLE TIMER2
DO

LOOP

MYISR:
'get here every second with a 32768 Hz xtal
RETURN

466 BASCOM-AVR

© 2008 MCS Electronics

'You can read or write to the timer with the COUNTER2 or TIMER2 variable
W = Timer2
Timer2 = W

6.132 CONFIG TWI

Action
Configure the TWI (two wire serial interface).

Syntax
CONFIG TWI = clockspeed

Remarks
clockspeed The desired clock frequency for SCL

CONFIG TWI will set TWSR pre scaler bits 0 and 1, and TWBR depending on the
used $CRYSTAL frequency and the desired SCL clock speed.
Typical you need a speed of 400 KHz. Some devices will work on 100 KHz as well.

When TWI is used in SLAVE mode, you need to have a faster clock speed as the
master.

 It is important that you specify the proper crystal frequency. Otherwise it will
result in a wrong TWI clock frequency.

See also
$CRYSTAL

Example

'---
' (c) 2004 MCS Electronics
' This demo shows an example of the TWI
' Not all AVR chips have TWI (hardware I2C)
'--

'The chip will work in TWI/I2C master mode
'Connected is a PCF8574A 8-bits port extender

$regfile="M8def.dat"' the used chip
$crystal= 4000000 ' frequency used
$baud= 19200 ' baud rate

$lib"i2c_twi.lbx"' we do not use software emulated I2C but the TWI

Config Scl =Portc.5 ' we need to provide the SCL pin name
Config Sda =Portc.4 ' we need to provide the SDA pin name

262

467BASCOM Language Reference

© 2008 MCS Electronics

'On the Mega8, On the PCF8574A
'scl=PC5 , pin 28 pin 14
'sda=PC4 , pin 27 pin 15

I2cinit' we need to set the pins in the proper state

Config Twi = 100000 ' wanted clock frequency
'will set TWBR and TWSR
'Twbr = 12 'bit rate register
'Twsr = 0 'pre scaler bits

Dim B AsByte, X AsByte
Print"TWI master"
Do
Incr B ' increase value
I2csend&B01110000 , B ' send the value
Print"Error : ";Err' show error status
I2creceive&B01110000 , X ' get a byte
Print X ;" ";Err' show error
Waitms 500 'wait a bit
Loop
End

6.133 CONFIG TWISLAVE

Action
Configure the TWI Slave address and bit rate

Syntax
CONFIG TWISLAVE = address , BTR = value , BITRATE = value , SAVE=option [,
GENCALL=value]

Remarks
Address The slave address that is assigned to the slave chip. This must be an

Even number. The address 0 is the general call address and may not be
used.
While a slave address is 7 bit since bit 0 is used to indicate read/write,
BASCOM uses byte notation where you can ignore the last bit. The last
bit will be set by BASCOM automatically.

BTR Bytes to receive. With this constant you specify how many bytes will be
expected when the slave receives bytes.

Bit rate This is the I2C/TWI clock frequency. Most chips support 400 KHz
(400000) but all I2C chips support 100000.

SAVE SAVE = NOSAVE : this can be used when you do not change a lot of
registers in the interrupt.
SAVE : SAVE : this is best to be used when you do not use ASM in the
TWI interrupt. See the explanation below.

GENCALL General call address activated or not. When you specify 1 or YES, the
General call address will be activated which mean that the slave will
respond not only to it's own address, but also to the general call address
0.

468 BASCOM-AVR

© 2008 MCS Electronics

When you omit the option or specify 0 or NO, the general call address
will not be honored.

The variables Twi , Twi_btr and Twi_btw are created by the compiler. These are all
bytes
The TWI interrupt is enabled but you need to enabled the global interrupt

The TWI Slave code is running as an interrupt process. Each time there is a TWI
interrupt some slave code is executed. Your BASIC code is called from the low level
slave code under a number of events. You must include all these labels in your Slave
application. You do not need to write code in all these sub routines.

Label Event

Twi_stop_rstart_received The Master sent a stop(i2CSTOP) or repeated start.
Typical you do not need to do anything here.

Twi_addressed_goread The master has addressed the slave and will now
continue to send data to the slave. You do not need to
take action here.

Twi_addressed_gowrite The master has addressed the slave and will now
continue to receive data from the slave. You do not need
to take action here.

Twi_gotdata The master has sent data. The variable TWI holds the
received value. The byte TWI_BTW is an index that
holds the value of the number of received bytes. The
first received byte will have an index value of 1.

Twi_master_needs_byte The master reads from the slave and needs a value. The
variable TWI_BTR can be inspected to see which index
byte was needed. With the CONFIG BTR, you specify how
many bytes the master will read.

The TWI Slave code will save all used registers. But as it will call your BASIC
application as the TWI interrupt occurs, your BASIC code could be in the middle of a
PRINT statements.
When you then execute another PRINT statement , you will destroy registers.
So keep the code in the sub routines to a minimum, and use SAVE option to save all
registers.
While two printing commands will give odd results (print 12345 and 456 in the middle
of the first print will give 1234545) at least no register is destroyed.

A typical configuration is shown below.

469BASCOM Language Reference

© 2008 MCS Electronics

To test the above hardware, use the samples : twi-master.bas and twi-slave.bas
Optional you can use i2cscan.bas to test the general call address.

See also
CONFIG TWI

ASM
NONE

Example1(master)
'---
' (c) 2004 MCS Electronics
' This demo shows an example of the TWI
' Not all AVR chips have TWI (hardware I2C)
'---

'The chip will work in TWI/I2C master mode
'Connected is a PCF8574A 8-bits port extender

$regfile = "M88def.dat" ' the used chip
$crystal = 8000000 ' frequency used
$baud = 19200 ' baud rate

466

470 BASCOM-AVR

© 2008 MCS Electronics

$lib "i2c_twi.lbx" ' we do not use software emulated I2C but the TWI

Config Scl = Portc.5 ' we need to provide the SCL pin name
Config Sda = Portc.4 ' we need to provide the SDA pin name

'On the Mega88, On the PCF8574A
'scl=PC5 , pin 28 pin 14
'sda=PC4 , pin 27 pin 15

I2cinit ' we need to set the pins in the proper state

Config Twi = 100000 ' wanted clock frequency
'will set TWBR and TWSR
'Twbr = 12 'bit rate register
'Twsr = 0 'pre scaler bits

Dim B As Byte , X As Byte
Print "TWI master"
Do
 Incr B ' increase value
 I2csend &H0 , B ' send the value to general call address

 I2csend &H70 , B ' send the value
 Print "Error : " ; Err ' show error status
 I2creceive &H70 , X ' get a byte
 Print X ; " " ; Err ' show error
 Waitms 500 'wait a bit
Loop
End

Example2(slave)
'---
' (c) 2004 MCS Electronics
' This demo shows an example of the TWI in SLAVE mode
' Not all AVR chips have TWI (hardware I2C)
' IMPORTANT : this example ONLY works when you have the TWI slave library
' which is a commercial add on library, not part of BASCOM
'Use this sample in combination with i2cscan.bas and/or twi-master.bas
'---
$regfile = "M88def.dat" ' the chip we use
$crystal = 8000000 ' crystal oscillator value
$baud = 19200 ' baud rate

Print "MCS Electronics TWI-slave demo"

Config Twislave = &H70 , Btr = 1 , Bitrate = 100000 , Gencall = 1
'In i2c the address has 7 bits. The LS bit is used to indicate read or write
'When the bit is 0, it means a write and a 1 means a read
'When you address a slave with the master in bascom, the LS bit will be set/reset automatic.
'The TWAR register in the AVR is 8 bit with the slave address also in the most left 7 bits
'This means that when you setup the slave address as &H70, TWAR will be set to &H0111_0000
'And in the master you address the slave with address &H70 too.
'The AVR TWI can also recognize the general call address 0. You need to either set bit 0 for example
'by using &H71 as a slave address, or by using GENCALL=1

'as you might need other interrupts as well, you need to enable them all manual
Enable Interrupts

'this is just an empty loop but you could perform other tasks there
Do
 nop
Loop

471BASCOM Language Reference

© 2008 MCS Electronics

End

'A master can send or receive bytes.
'A master protocol can also send some bytes, then receive some bytes
'The master and slave must match.

'the following labels are called from the library
Twi_stop_rstart_received:
 Print "Master sent stop or repeated start"
Return

Twi_addressed_goread:
 Print "We were addressed and master will send data"
Return

Twi_addressed_gowrite:
 Print "We were addressed and master will read data"
Return

'this label is called when the master sends data and the slave has received the byte
'the variable TWI holds the received value
Twi_gotdata:
 Print "received : " ; Twi
Return

'this label is called when the master receives data and needs a byte
'the variable twi_btr is a byte variable that holds the index of the needed byte
'so when sending multiple bytes from an array, twi_btr can be used for the index
Twi_master_needs_byte:
 Print "Master needs byte : " ; Twi_btr
 Twi = 65 ' twi must be filled with a value
Return

'when the mast has all bytes received this label will be called
Twi_master_need_nomore_byte:
 Print "Master does not need anymore bytes"
Return

6.134 CONFIG USB

Action
Create settings related to USB.

Syntax
CONFIG USB = dev, Language= lang, Manufact= "man", Product="prod" ,
Serial="serial"

Remarks
Dev The possible options are Device and Host. Host is not

supported yet.

Lang A language identifier. &H0409 for US/English

Man A string constant with the manufacture name.

Prod A string constant with the product name.

472 BASCOM-AVR

© 2008 MCS Electronics

Serial A string constant with the serial number.

The above settings determine how your device is displayed by the operating system.
Since these settings end up in flash code space, it is best to chose short names. There
is no limit to the length other then the USB specifications impose, but keep it short as
possible. Strings in USB are UNI coded. Which mean that a word is used for each
character. with normal ASCII coding, only a byte is used for each character.

For a commercial USB device you need to give it a unique VID & PID combination.
When you plan to use it at home, this is not needed.
You can buy a Vendor ID (VID) from the USB organization. This cost 2000 $.
As a service MCS offers a PID in the on line shop. This cost little and it gives you a
unique Product ID(PID) but with the MCS Electronics VID.

Notice that using CONFIG USB will include a file named USBINC.BAS. This file is
not part of the BASCOM setup/distribution. It is available as a commercial add on.
The add on package includes 3 samples , the include file, and a special activeX for the
HID demo.
None of the samples require a driver. A small UB162 module with normal pins is
available from the on line shop too.
The first supported USB devices are USB1287, USB162.

See also
NONE

Example
$regfile = "usb162.dat"
$crystal = 8000000
$baud = 19200

Const Mdbg = 1

Config Clockdiv = 1
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Const Vendor_id = &H16D0 ' MCS Vendor
ID
Const Product_id = &H201D ' MCS
product ID, you can buy a VID&PID in the MCS shop

Const Ep_control_length = 32
Const User_conf_size = 41
Const Size_of_report = 53
Const Device_class = 0
Const Device_sub_class = 0
Const Device_protocol = 0
Const Release_number = &H1000
Const Length_of_report_in = 8
Const Length_of_report_out = 8
Const Interface_nb = 0
Const Alternate = 0

473BASCOM Language Reference

© 2008 MCS Electronics

Const Nb_endpoint = 2
Const Interface_class = 3 ' HID
Const Interface_sub_class = 0
Const Interface_protocol = 0
Const Interface_index = 0

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0
Print "USB GENERIC test"

Declare Sub Usb_user_endpoint_init
Declare Sub Hid_test_hit()
Declare Sub Hid_task()
Declare Sub Hid_task_init()

Const Usb_config_attributes_reserved = &H80
Const Usb_config_buspowered = Usb_config_attributes_reserved
Const Usb_config_selfpowered = Usb_config_attributes_reserved Or &H40
Const Usb_config_remotewakeup = Usb_config_attributes_reserved Or &H20

Const Nb_interface = 1
Const Conf_nb = 1
Const Conf_index = 0
Const Conf_attributes = Usb_config_buspowered
Const Max_power = 50 ' 100 mA

Const Interface_nb_mouse = 0
Const Alternate_mouse = 0
Const Nb_endpoint_mouse = 1
Const Interface_class_mouse = 3 ' HID Class
Const Interface_sub_class_mouse = 1 ' Sub Class
is Mouse
Const Interface_protocol_mouse = 2 ' Mouse
Const Interface_index_mouse = 0

Const Nb_endpoints = 2 ' number of
endpoints in the application including control endpoint
Const Ep_kbd_in = 1 ' Number of
the mouse interrupt IN endpoint
Const Ep_hid_in = 1
Const Ep_hid_out = 2

Const Endpoint_nb_1 = Ep_hid_in Or &H80
Const Ep_attributes_1 = 3 ' BULK =
0x02, INTERUPT = 0x03
Const Ep_in_length_1 = 8
Const Ep_size_1 = Ep_in_length_1
Const Ep_interval_1 = 20 ' Interrupt
polling interval from host

Const Endpoint_nb_2 = Ep_hid_out
Const Ep_attributes_2 = 3 ' BULK =
0x02, INTERUPT = 0x03
Const Ep_out_length = 8
Const Ep_size_2 = Ep_out_length
Const Ep_interval_2 = 20 ' interrupt
polling from host

Config Usb = Device , Language = &H0409 , Manufact = "MCS" , Product =
"MCSHID162" , Serial = "MC0001"

474 BASCOM-AVR

© 2008 MCS Electronics

'Dim some user vars
Dim Usb_kbd_state As Byte , Usb_key As Byte , Usb_data_to_send As Byte
Dim Dummy As Byte , Dummy1 As Byte , Dummy2 As Byte

Print "task init"
Usb_task_init
Hid_task_init
Do
 Usb_task
 Hid_task
 'you can call your sub program here
Loop

'nothing needed to init
Sub Hid_task_init()
 'nothing
end sub

'HID task must be checked regular
Sub Hid_task()
 If Usb_connected = 1 Then ' Check USB
HID is enumerated
 Usb_select_endpoint Ep_hid_out ' Get Data
Repport From Host
 If Ueintx.rxouti = 1 Then '
Is_usb_receive_out())
 Dummy1 = Uedatx : Print "Got : " ; Dummy1
 Dummy2 = Uedatx : Print "Got : " ; Dummy2
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Usb_ack_receive_out
 End If

 If Dummy1 = &H55 And Dummy2 = &HAA Then ' Check if
we received DFU mode command from host
 Usb_detach ' Detach
Actual Generic Hid Application
 Waitms 500
 Goto &H1800 'goto
bootloader
 'here you could call the bootloader then
 End If

 Usb_select_endpoint Ep_hid_in ' Ready to
send these information to the host application
 If Ueintx.txini = 1 Then '
Is_usb_in_ready())
 Uedatx = 1
 Uedatx = 2
 Uedatx = 3
 Uedatx = 4
 Uedatx = 5
 Uedatx = 6
 Uedatx = 7
 Uedatx = 8
 Usb_ack_fifocon ' Send data
over the USB
 End If
 End If

475BASCOM Language Reference

© 2008 MCS Electronics

End Sub

Function Usb_user_read_request(type As Byte , Request As Byte) As Byte
 #if Mdbg
 Print "USB_USER_READ_REQ"
 #endif
 Usb_string_type = Uedatx
'Usb_read_byte();
 Usb_descriptor_type = Uedatx
'Usb_read_byte();
 Usb_user_read_request = 0
 Select Case Request
 Case Get_descriptor:
 Select Case Usb_descriptor_type
 Case Report : Call Hid_get_report()
 Usb_user_read_request = 1
 Case Hid : Call Hid_get_hid_descriptor()
 Usb_user_read_request = 1
 Case Else
 Usb_user_read_request = 0
 End Select
 Case Set_configuration:
 Select Case Usb_descriptor_type
 Case Set_report : Call Hid_set_report()
 Usb_user_read_request = 1
 Case Else
 Usb_user_read_request = 0
 End Select
 Case Get_interface:
 '// usb_hid_set_idle();
 Call Usb_hid_get_interface()
 Usb_user_read_request = 1
 Case Else
 Usb_user_read_request = 0
 End Select
End Function

'usb_init_device.
'This function initializes the USB device controller and
'configures the Default Control Endpoint.
Sub Usb_init_device()
 #if Usbfunc
 Usb_select_device
 #endif
 #if Usbfunc
 If Usbsta.id = 1 Then 'is it an
USB device?
 #endif
 Uenum = Ep_control ' select USB
endpoint
 If Ueconx.epen = 0 Then ' usb
endpoint not enabled yet
 Call Usb_configure_endpoint(ep_control , Type_control ,
Direction_out , Size_32 , One_bank , Nyet_disabled)
 End If
 #if Usbfunc
 End If
 #endif
End Sub

Sub Usb_user_endpoint_init(byval Nm As Byte)

476 BASCOM-AVR

© 2008 MCS Electronics

 Call Usb_configure_endpoint(ep_hid_in , Type_interrupt , Direction_in
, Size_8 , One_bank , Nyet_enabled)
 Call Usb_configure_endpoint(ep_hid_out , Type_interrupt ,
Direction_out , Size_8 , One_bank , Nyet_enabled)
End Sub

Usb_dev_desc:
Data 18 , Device_descriptor 'size and
device_descriptor
Data 0 , 2
'Usb_write_word_enum_struc(USB_SPECIFICATION)
Data Device_class , Device_sub_class '
DEVICE_CLASS and DEVICE_SUB_CLASS
Data Device_protocol , Ep_control_length ' device
protol and ep_control_length
Data Vendor_id% '
Usb_write_word_enum_struc(VENDOR_ID)
Data Product_id% '
Usb_write_word_enum_struc(PRODUCT_ID)
Data Release_number% '
Usb_write_word_enum_struc(RELEASE_NUMBER)
Data Man_index , Prod_index ' MAN_INDEX
and PROD_INDEX
Data Sn_index , Nb_configuration ' SN_INDEX
and NB_CONFIGURATION

Usb_conf_desc:
Data 9 , Configuration_descriptor ' length ,
CONFIGURATION descriptor
Data User_conf_size% ' total
length of data returned
Data Nb_interface , Conf_nb ' number of
interfaces for this conf. , value for SetConfiguration resquest
Data Conf_index , Conf_attributes ' index of
string descriptor , Configuration characteristics
Data Max_power ' maximum
power consumption

Data 9 , Interface_descriptor 'length ,
INTERFACE descriptor type
Data Interface_nb , Alternate 'Number of
interface , value to select alternate setting
Data Nb_endpoint , Interface_class 'Number of
EP except EP 0 ,Class code assigned by the USB
Data Interface_sub_class , Interface_protocol 'Sub-class
code assigned by the USB , Protocol code assigned by the USB
Data Interface_index 'Index Of
String Descriptor

Data 9 , Hid_descriptor 'length ,
HID descriptor type
Data Hid_bdc% , 8 ' Binay
Coded Decimal Spec. release , Hid_country_code
Data Hid_class_desc_nb , Hid_descriptor_type 'Number of
HID class descriptors to follow , Report descriptor type
Data Size_of_report% 'HID
KEYBOARD LENGTH

Data 7 , Endpoint_descriptor ' Size Of
This Descriptor In Bytes , ENDPOINT descriptor type

477BASCOM Language Reference

© 2008 MCS Electronics

Data Endpoint_nb_1 , Ep_attributes_1 ' Address of
the endpoint ,Endpoint's attributes
Data Ep_size_1% ' Maximum
packet size for this EP , Interval for polling EP in ms
Data Ep_interval_1

Data 7 , Endpoint_descriptor ' Size Of
This Descriptor In Bytes , ENDPOINT descriptor type
Data Endpoint_nb_2 , Ep_attributes_2 ' Address of
the endpoint , Endpoint's attributes
Data Ep_size_2% ' Maximum
packet size for this EP
Data Ep_interval_2 ' Interval
for polling EP in ms

Usb_hid_report:
Data &H06 , &HFF , &HFF ' 04|2 ,
Usage Page (vendordefined?)
Data &H09 , &H01 ' 08|1 ,
Usage (vendordefined
Data &HA1 , &H01 ' A0|1 ,
Collection (Application)
' // IN report
Data &H09 , &H02 ' 08|1 ,
Usage (vendordefined)
Data &H09 , &H03 ' 08|1 ,
Usage (vendordefined)
Data &H15 , &H00 ' 14|1 ,
Logical Minimum(0 for signed byte?)
Data &H26 , &HFF , &H00 ' 24|1 ,
Logical Maximum(255 for signed byte?)
Data &H75 , &H08 ' 74|1 ,
Report Size(8) = field size in bits = 1 byte
Data &H95 , Length_of_report_in '
94|1:ReportCount(size) = repeat count of previous item
Data &H81 , &H02 ' 80|1: IN
report (Data,Variable, Absolute)
' // OUT report
Data &H09 , &H04 ' 08|1 ,
Usage (vendordefined)
Data &H09 , &H05 ' 08|1 ,
Usage (vendordefined)
Data &H15 , &H00 ' 14|1 ,
Logical Minimum(0 for signed byte?)
Data &H26 , &HFF , &H00 ' 24|1 ,
Logical Maximum(255 for signed byte?)
Data &H75 , &H08 ' 74|1 ,
Report Size(8) = field size in bits = 1 byte
Data &H95 , Length_of_report_out '
94|1:ReportCount(size) = repeat count of previous item
Data &H91 , &H02 ' 90|1: OUT
report (Data,Variable, Absolute)
' // Feature report
Data &H09 , &H06 ' 08|1 ,
Usage (vendordefined)
Data &H09 , &H07 ' 08|1 ,
Usage (vendordefined)
Data &H15 , &H00 ' 14|1 ,
LogicalMinimum(0 for signed byte)
Data &H26 , &HFF , &H00 ' 24|1 ,
Logical Maximum(255 for signed byte)
Data &H75 , &H08 ' 74|1 ,
Report Size(8) =field size in bits = 1 byte

478 BASCOM-AVR

© 2008 MCS Electronics

Data &H95 , &H04 '
94|1:ReportCount
Data &HB1 , &H02 ' B0|1:
Feature report
Data &HC0 ' C0|0 ,
End Collection

6.135 CONFIG WAITSUART

Action
Compiler directive that specifies that software UART waits after sending the last byte.

Syntax
CONFIG WAITSUART = value

Remarks
value A numeric value in the range of 1-255.

A higher value means a longer delay in mS.

When the software UART routine are used in combination with serial LCD displays it
can be convenient to specify a delay so the display can process the data.

See also
OPEN

Example
See OPEN example for more details.

6.136 CONFIG WATCHDOG

Action
Configures the watchdog timer.

Syntax
CONFIG WATCHDOG = time

Remarks
Time The interval constant in mS the watchdog timer will count to before it

will reset your program.

Possible settings :
16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.
Some newer chips : 4096, 8192.

Note that some new AVR's might have additional reset values such as 4096 and
8192.

669

669

479BASCOM Language Reference

© 2008 MCS Electronics

When the WD is started, a reset will occur after the specified number of mS.
With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your
programs periodically with the RESET WATCHDOG statement.

Some AVR's might have the WD timer enabled by default. You can change this with
the Fuse Bits.

After the CONFIG WATCHDOG statement, the watchdog timer is disabled. You
can also use CONFIG WATCHDOG to change the time out value. This will stop the
watchdog timer and load the new value.
After a CONFIG WATCHDOG, you always need to start the Watchdog with the START
WATCHDOG statement.

Most new AVR chips have an MCUSR register that contains some flags. One of the
flags is the WDRF bit. This bit is set when the chip was reset by a Watchdog overflow.
The CONFIG WATCHDOG will clear this bit, providing that the register and bit is
available in the micro.
When it is important to examine at startup if the micro was reset by a Watchdog
overflow, you need to examine this MCUSR.WDRF flag before you use CONFIG
WATCHDOG, since that will clear the flag.

For chips that have an enhanced WD timer, the WD timer is cleared as part of
the chip initialize procedure. This because otherwise the WD timer will only work
once. If it is important that you know the cause of the reset, you can read the register
R0 before you run other code.

The sample below demonstrates how to store the WDRF bit if you need it, and print it
later.

See also
START WATCHDOG , STOP WATCHDOG , RESET WATCHDOG

Example
'---
'name : watchd.bas
'copyright : (c) 1995-2008, MCS Electronics
'purpose : demonstrates the watchdog timer
'micro : Mega88
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m88def.dat" ' specify the used micro
$crystal = 8000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 32 ' default use 32 for the hardware stack
$swstack = 32 ' default use 32 for the SW stack
$framesize = 40 ' default use 40 for the frame space
Dim B As Byte
Dim Wdbit As Bit

Print "Watchdog test"
If Mcusr.wdrf = 1 Then ' there was a WD overflow
 Wdbit = 1 'store the flag
End If

769 775 707

480 BASCOM-AVR

© 2008 MCS Electronics

Config Watchdog = 2048 'reset after 2048 mSec
If Wdbit = 1 Then 'just print it now since it is important that CONFIG WATCHDOG runs early as possible
 Print "Micro was reset by Watchdog overflow"
End If

Start Watchdog 'start the watchdog timer
Dim I As Word
For I = 1 To 1000
 Waitms 100
 Print I 'print value
 B = Inkey() ' get a key from the serial port
 If B = 65 Then 'letter A pressed
 Stop Watchdog ' test if the WD will stop
 Elseif B = 66 Then 'letter B pressed
 Config Watchdog = 4096 'reconfig to 4 sec
 Start Watchdog 'CONFIG WATCHDOG will disable the WD so start it
 Elseif B = 67 Then 'C pressed
 Config Watchdog = 8192 ' some have 8 sec timer
 'observe that the WD timer is OFF
 Elseif B = 68 Then 'D pressed
 Start Watchdog ' start it
 End If
 'Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because the
 'wd-timer is reset before it reaches 2048 msec
 'When you press 'A' you will see that the WD will stop
 'When you press 'B' you will see that the WD will time out after 4 Sec
 'When you press 'C' you will see the WD will stop
 'When you press 'D' you will see the WD will start again timing out after 8 secs
Next
End

And this shows how to read the register r0:
Dim Breset As Byte
Breset = Peek(0)

When you show this value on an LCD display you will see a value of 7 the first time, and later a value of 15 when the WD reset occured.

6.137 CONFIG X10

Action
Configures the pins used for X10.

Syntax
CONFIG X10 = pinZC , TX = portpin

Remarks
PinZC The pin that is connected to the zero cross output of the TW-523. This is

a pin that will be used as INPUT.

Portpin The pin that is connected to the TX pin of the TW-523.

TX is used to send X10 data to the TW-523. This pin will be used in
output mode.

The TW-523 RJ-11 connector has the following pinout:

481BASCOM Language Reference

© 2008 MCS Electronics

Pin Description Connect to micro

1 Zero Cross Input pin. Add 5.1K pull up.

2 GND GND

3 RX Not used.

4 TX Output pin. Add 1K pull up.

See also
X10DETECT , X10SEND

Example
'---

'name : x10.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example needs a TW-523 X10 interface
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'define the house code
Const House = "M" ' use code
A-P

Waitms 500 ' optional
delay not really needed

'dim the used variables
Dim X As Byte

'configure the zero cross pin and TX pin
Config X10 = Pind.4 , Tx = Portb.0
' ^--zero cross
' ^--- transmission pin

'detect the TW-523
X = X10detect()
Print X ' 0 means
error, 1 means 50 Hz, 2 means 60 Hz

Do
 Input "Send (1-32) " , X
 'enter a key code from 1-31
 '1-16 to address a unit

817 819

482 BASCOM-AVR

© 2008 MCS Electronics

 '17 all units off
 '18 all lights on
 '19 ON
 '20 OFF
 '21 DIM
 '22 BRIGHT
 '23 All lights off
 '24 extended code
 '25 hail request
 '26 hail acknowledge
 '27 preset dim
 '28 preset dim
 '29 extended data analog
 '30 status on
 '31 status off
 '32 status request

 X10send House , X ' send the
code
Loop

Dim Ar(4) As Byte
X10send House , X , Ar(1) , 4 ' send 4
additional bytes
End

6.138 CONFIG XRAM

Action
Instruct the compiler to set options for external memory access.

Syntax
CONFIG XRAM = mode [, WaitstateLS=wls , WaitStateHS=whs]

Remarks
Mode The memory mode. This is either enabled or disabled. By default,

external memory access is disabled.

Wls When external memory access is enabled, some chips allow you to set a
wait state. The number of modes depend on the chip. A modern chip
such as the Mega8515 has 4 modes :
0 - no wait states
1 - 1 cycle wait state during read/write
2 - 2 cycle wait state during read/write
3 - 2 cycle wait state during read/write and 1 before new address output

WLS works on the lower sector. Provided that the chip supports this.

Whs When external memory access is enabled, some chips allow you to set a
wait state. The number of modes depend on the chip. A modern chip
such as the Mega8515 has 4 modes :
0 - no wait states
1 - 1 cycle wait state during read/write
2 - 2 cycle wait state during read/write
3 - 2 cycle wait state during read/write and 1 before new address output

WHS works on the high sector. Provided that the chip supports this.

483BASCOM Language Reference

© 2008 MCS Electronics

Wait states are needed in case you connect equipment to the bus, that is relatively
slow. Especial older electronics/chips.
Some AVR chips also allow you to divide the memory map into sections. By default
the total XRAM memory address is selected when you set a wait state.

The $XA directive should not be used anymore. It is the same as CONFIG
XRAM=Enabled.

When using IDLE or another power down mode, it might be needed to use
CONFIG XRAM again, after the chip wakes from the power down mode.

See also
$XA , $WAITSTATE

ASM
NONE

Example
CONFIG XRAM = Enabled, WaitstateLS=1 , WaitstateHS=2

6.139 CONST

Action
Declares a symbolic constant.

Syntax
CONST symbol = numconst
CONST symbol = stringconst
CONST symbol = expression

Remarks
Symbol The name of the symbol.

Numconst The numeric value to assign to the symbol.

Stringconst The string to assign to the symbol

Expression An expression that returns a value to assign the constant

Assigned constants consume no program memory because they only serve as a
reference to the compiler.
The compiler will replace all occurrences of the symbol with the assigned value.

You can use a constant to give a value a more meaningful name.
For example : variable = 1

 const optHeaterOn = 1
 variable = optHeaterOn

The source code is better to read when you assign a constant. Even better when the
values change later, for example when HeaterOn becomes 2, you only need to replace
1 line of code.

310 309

484 BASCOM-AVR

© 2008 MCS Electronics

See also
ALIAS

Example
'---

'name : const.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo for constants
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'dimension some variables
Dim Z As String * 10
Dim B As Byte

'assign some constants
'constants dont use program memory
Const S = "test"
Const A = 5 'declare a
as a constant
Const B1 = &B1001

'or use an expression to assign a constant
Const X =(b1 * 3) + 2
Const Ssingle = Sin(1)

Print X
Print Ssingle

B = A
'the same as b = 5

Z = S
'the same as Z = "test"

Print A
Print B1
Print S

'you can use constants with conditional compilation
#if A = 5 ' note there

334

485BASCOM Language Reference

© 2008 MCS Electronics

is no then
 Print "constant a is 5"
 #if S = "test"
 Print "nested example"
 #else ' else is
optional
 #endif
#else
#endif
End

6.140 COS

Action
Returns the cosine of a single

Syntax
var = COS(single)

Remarks
Var A numeric variable that is assigned with cosine of variable single.

Single The single variable to get the cosine of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , ATN , SIN , TAN

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
S = 0.5 : X = Tan(s) : Print X ' prints
0.546302195
S = 0.5 : X = Sin(s) : Print X ' prints
0.479419108
S = 0.5 : X = Cos(s) : Print X ' prints
0.877588389
End

690 537 339 751 782

486 BASCOM-AVR

© 2008 MCS Electronics

6.141 COSH

Action
Returns the cosine hyperbole of a single

Syntax
var = COSH(single)

Remarks
Var A numeric variable that is assigned with cosine hyperbole of

variable single.

Single The single or double variable to get the cosine hyperbole of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , ATN , COS , SIN , TANH , SINH

Example
Show sample

6.142 COUNTER0 and COUNTER1

Action
Set or retrieve the internal 16 bit hardware register.

Syntax
COUNTER0 = var
var = COUNTER0

TIMER0 can also be used

COUNTER1 = var
var = COUNTER1

TIMER1 can also be used

CAPTURE1 = var
var = CAPTURE1

TIMER1 capture register

COMPARE1A = var
var = COMPARE1A

TIMER1 COMPARE A register

COMARE1B = var
var = COMPARE1B

TIMER1 COMPARE B register

PWM1A = var
var = PWM1A

TIMER1 COMPAREA register. (Is used for PWM)

PWM1B = var
var = PRM1B

TIMER1 COMPARE B register. (Is used for PWM)

Remarks
Var A byte, Integer/Word variable or constant that is assigned to the

register or is read from the register.

690 537 339 485 751 792 752

842

487BASCOM Language Reference

© 2008 MCS Electronics

Because the above 16 bit register pairs must be accessed somewhat differently than
you may expect, they are implemented as variables.

The exception is TIMER0/COUNTER0, this is a normal 8 bit register and is supplied for
compatibility with the syntax.

When the CPU reads the low byte of the register, the data of the low byte is sent to
the CPU and the data of the high byte is placed in a temp register. When the CPU
reads the data in the high byte, the CPU receives the data in the temp register.

When the CPU writes to the high byte of the register pair, the written data is placed in
a temp register. Next when the CPU writes the low byte, this byte of data is combined
with the byte data in the temp register and all 16 bits are written to the register
pairs. So the MSB must be accessed first.

All of the above is handled automatically by BASCOM when accessing the above
registers.
Note that the available registers may vary from chip to chip.

The BASCOM documentation used the 90S8515 to describe the different hardware
registers.

6.143 CPEEK

Action
Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the program

memory at
address

Address Numeric variable or constant with the address location

There is no CPOKE statement because you can not write into program memory.
Cpeek(0) will return the first byte of the file. Cpeek(1) will return the second byte of
the binary file.

See also
PEEK , POKE , INP , OUT

Example
'---

'name : peek.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates PEEk, POKE, CPEEK, INP and OUT
'micro : Mega48

674 675 618 673

488 BASCOM-AVR

© 2008 MCS Electronics

'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32
registers in AVR
 B1 = Peek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

Out &H8000 , 1 'write 1
into XRAM at address 8000
B1 = Inp(&H8000) 'return
value from XRAM
Print B1
End

6.144 CPEEKH

Action
Returns a byte stored in upper page of code memory of micro with more then 64KB
such as M103, M128.

Syntax
var = CPEEKH(address [,page])

Remarks
Var Numeric variable that is assigned with the content of the program

memory at
address

489BASCOM Language Reference

© 2008 MCS Electronics

address Numeric variable or constant with the address location

page A numeric variable or constant with the page address. Each page is 64
KB.

CpeekH(0) will return the first byte of the upper 64KB.
Since the M103 has 64K words of code space the LPM instruction can not access the
64 upper Kbytes.
The CpeekH() function peeks in the upper 64 KB.
This function should be used with the M103 or M128 only.
CpeekH(address,0) will work on the first page (first 64 KB)
CpeekH(addres,1) will work on the second page (second 64 KB)

See also
PEEK , POKE , INP , OUT

Example
'---

'name : peek.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates PEEk, POKE, CPEEK, INP and OUT
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32
registers in AVR
 B1 = Peek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

674 675 618 673

490 BASCOM-AVR

© 2008 MCS Electronics

Out &H8000 , 1 'write 1
into XRAM at address 8000
B1 = Inp(&H8000) 'return
value from XRAM
Print B1
End

6.145 CRC8

Action
Returns the CRC8 value of a variable or array.

Syntax
Var = CRC8(source , L)

Remarks
Var The variable that is assigned with the CRC8 of variable source.

Source The source variable or first element of the array to get the CRC8 of.

L The number of bytes to check.

CRC8 is used in communication protocols to check if there are no transmission errors.
The 1wire for example returns a CRC byte as the last byte from it’s ID.

The code below shows a VB function of CRC8

Function Docrc8(s As String) As Byte
Dim j As Byte
Dim k As Byte
Dim crc8 As Byte
crc8 = 0
For m = 1 To Len(s)
 x = Asc(Mid(s, m, 1))
 For k = 0 To 7
 j = 1 And (x Xor crc8)
 crc8 = Fix(crc8 / 2) And &HFF
 x = Fix(x / 2) And &HFF
 If j <> 0 Then
 crc8 = crc8 Xor &H8C
 End If
 Next k
Next
Docrc8 = crc8
End Function

See also
CHECKSUM , CRC16 , CRC16UNI , CRC32 , TCPCHECKSUM

ASM
The following routine is called from mcs.lib : _CRC8

360 491 494 496 783

491BASCOM Language Reference

© 2008 MCS Electronics

The routine must be called with Z pointing to the data and R24 must contain the
number of bytes to check.
On return, R16 contains the CRC8 value.
The used registers are : R16-R19, R25.

;##### X = Crc8(ar(1) , 7)
Ldi R24,$07 ; number of bytes
Ldi R30,$64 ; address of ar(1)
Ldi R31,$00 ; load constant in register
Rcall _Crc8 ; call routine
Ldi R26,$60 ; address of X
St X,R16 ; store crc8

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim Ar(10) As Byte
Dim J As Byte

Ar(1) = 1
Ar(2) = 2
Ar(3) = 3

J = Crc8(ar(1) , 3) 'calculate
value which is 216
Print J
End

6.146 CRC16

Action
Returns the CRC16 value of a variable or array.

Syntax
Var = CRC16(source , L)

Remarks
Var The variable that is assigned with the CRC16 of variable source. Should

be a word or integer variable.

Source The source variable or first element of the array to get the CRC16 value

492 BASCOM-AVR

© 2008 MCS Electronics

from.

L The number of bytes to check.

CRC16 is used in communication protocols to check if there are no transmission
errors.
The 1wire for example returns a CRC byte as the last byte from it’s ID.
Use CRC8 for the 1wire routines.

There are a lot of different CRC16 routines. There is no real standard since the
polynomial will vary from manufacture to manufacture.

The equivalent code in VB is shown below. There are multiple ways to implement it in
VB. This is one of them.

VB CRC16 Sample
Private Sub Command1_Click()

Dim ar(10) As Byte
Dim b As Byte
Dim J As Integer

ar(1) = 1
ar(2) = 2
ar(3) = 3

b = Docrc8(ar(), 3) ' call funciton
Print b
'calculate value which is 216

J = CRC16(ar(), 3) ' call function
Print J

End Sub

Function Docrc8(ar() As Byte, bts As Byte) As Byte
Dim J As Byte
Dim k As Byte
Dim crc8 As Byte
crc8 = 0
For m = 1 To bts

 x = ar(m)
 For k = 0 To 7
 J = 1 And (x Xor crc8)
 crc8 = Fix(crc8 / 2) And &HFF
 x = Fix(x / 2) And &HFF
 If J <> 0 Then
 crc8 = crc8 Xor &H8C
 End If
 Next k
Next
Docrc8 = crc8
End Function

'***

493BASCOM Language Reference

© 2008 MCS Electronics

Public Function CRC16(buf() As Byte, lbuf As Integer) As Integer
Dim CRC1 As Long
Dim b As Boolean
CRC1 = 0 ' init CRC
For i = 1 To lbuf ' for each byte
 CRC_MSB = CRC1 \ 256
 crc_LSB = CRC1 And 255
 CRC_MSB = CRC_MSB Xor buf(i)
 CRC1 = (CRC_MSB * 256) + crc_LSB

 For J = 0 To 7 Step 1 ' for each bit
 CRC1 = shl(CRC1, b)
 If b Then CRC1 = CRC1 Xor &H1021
Next J
Next i

CRC16 = CRC1
End Function

'Shift Left function
Function shl(n As Long, ByRef b As Boolean) As Long
 Dim L As Long
 L = n
 L = L * 2
 If (L > &HFFFF&) Then
 b = True
 Else
 b = False
 End If
 shl = L And &HFFFF&
End Function

See also
CHECKSUM , CRC8 , CRC16UNI , CRC32 , TCPCHECKSUM

ASM
The following routine is called from mcs.lib : _CRC16
The routine must be called with X pointing to the data. The soft stack –Y must contain
the number of bytes to scan.
On return, R16 and R17 contain the CRC16 value.
The used registers are : R16-R19, R25.

;##### X = Crc16(ar(1) , 7)

Ldi R24,$07 ; number of bytes
St –y, R24
Ldi R26,$64 ; address of ar(1)
Ldi R27,$00 ; load constant in register
Rcall _Crc16 ; call routine
Ldi R26,$60 ; address of X
St X+,R16 ; store crc16 LSB
St X , R17 ; store CRC16 MSB

360 490 494 496 783

494 BASCOM-AVR

© 2008 MCS Electronics

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim Ar(10) As Byte
Dim J As Byte
Dim W As Word
Dim L As Long

Ar(1) = 1
Ar(2) = 2
Ar(3) = 3

J = Crc8(ar(1) , 3) 'calculate
value which is 216
W = Crc16(ar(1) , 3) '24881
L = Crc32(ar(1) , 3) '494976085
End

6.147 CRC16UNI

Action
Returns the CRC16 value of a variable or array.

Syntax
Var = CRC16UNI(source ,length , initial, polynomial,refin,refout)

Remarks
var The variable that is assigned with the CRC16 of variable source. Should

be a word or integer variable.

source The source variable or first element of the array to get the CRC16 value
from.

length The number of bytes to check.

initial The initial value of the CRC. This is usual 0 or &HFFFF.

polynomia
l

The polynomial value to use.

refin Reflect the data input bits. Use 0 to disable this option. Use a non-zero
value to enable this option.

refout Reflect the data output. Use 0 to disable this option. Use a non-zero
value to enable this option.

495BASCOM Language Reference

© 2008 MCS Electronics

CRC16 is used in communication protocols to check if there are no transmission
errors.
The 1wire for example returns a CRC byte as the last byte from it’s ID.
Use CRC8 for the 1wire routines.

There are a lot of different CRC16 routines. There is no real standard since the
polynomial will vary from manufacture to manufacture.

At http://www.ross.net/crc/download/crc_v3.txt you can find a great document about
CRC calculation from Ross N. Williams. At the end you will find an example that is
good for dealing with most CRC variations. The BASCOM CRC16UNI function is a
conversion of this example.
There is a difference however : The CRC16UNI function does not XOR the output
bytes. This because most CRC functions XOR with 0.

The example will show some of the most used combinations.

See also
CHECKSUM , CRC8 , CRC16 , CRC32 , TCPCHECKSUM

Example
'--
'name : crc8-16-32.bas
'copyright : (c) 1995-2008, MCS Electronics
'purpose : demonstrates CRC
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'--

$regfile = "m48def.dat" ' specify the used micro
$crystal = 8000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 32 ' default use 32 for the hardware stack
$swstack = 10 ' default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

Dim Ar(10) As Byte
Dim J As Byte
Dim W As Word
Dim L As Long
Dim S As String * 16

S = "123456789"

Ar(1) = 1
Ar(2) = 2
Ar(3) = 3

J = Crc8(ar(1) , 3) 'calculate value which is 216
W = Crc16(ar(1) , 3) '24881
L = Crc32(ar(1) , 3) '494976085

' data , length, intial value , Poly, reflect input, reflect output

360 490 491 496 783

http://www.ross.net/crc/download/crc_v3.txt

496 BASCOM-AVR

© 2008 MCS Electronics

Print Hex(crc16uni(s , 9 , 0 , &H1021 , 0 , 0)) 'CRC-CCITT (0x0000) 31C3
Print Hex(crc16uni(s , 9 , &HFFFF , &H1021 , 0 , 0)) 'CRC-CCITT (0xFFFF) 29B1
Print Hex(crc16uni(s , 9 , &H1D0F , &H1021 , 0 , 0)) 'CRC-CCITT (0x1D0F) E5CC
Print Hex(crc16uni(s , 9 , 0 , &H8005 , 1 , 1)) 'crc16 BB3D
Print Hex(crc16uni(s , 9 , &HFFFF , &H8005 , 1 , 1)) 'crc16-modbus 4B37

End

6.148 CRC32

Action
Returns the CRC32 value of a variable.

Syntax
Var = CRC32(source , L)

Remarks
Var The

LONG variable that is assigned with the CRC32 of variable source.

Source The source variable or first element of the array to get the CRC
32 value from.

L The number of bytes to check.

CRC32 is used in communication protocols to check if there are no transmission
errors.

See also
CHECKSUM , CRC8 , CRC16 , CRC16UNI , TCPCHECKSUM

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim Ar(10) As Byte
Dim J As Byte
Dim W As Word
Dim L As Long

Ar(1) = 1

360 490 491 494 783

497BASCOM Language Reference

© 2008 MCS Electronics

Ar(2) = 2
Ar(3) = 3

J = Crc8(ar(1) , 3) 'calculate
value which is 216
W = Crc16(ar(1) , 3) '24881
L = Crc32(ar(1) , 3) '494976085
End

6.149 CRYSTAL

Action
Special byte variable that can be used with software UART routine to change the baud
rate during runtime.

Syntax
CRYSTAL = var (old option do not use !!)

___CRYSTAL1 = var
BAUD #1, 2400

Remarks
With the software UART you can generate good baud rates. But chips such as the
ATtiny22 have an internal 1 MHz clock. The clock frequency can change during
runtime by influence of temperature or voltage.

The crystal variable can be changed during runtime to change the baud rate.

The above has been changed in version 1.11
Now you still can change the baud rate with the crystal variable.
But you don't need to dimension it. And the name has been changed:

___CRYSTALx where x is the channel number.

When you opened the channel with #1, the variable will be named ___CRYSTAL1

But a better way is provided now to change the baud rate of the software uart at run
time. You can use the BAUD option now:

Baud #1 , 2400 'change baud rate to 2400 for channel 1

When you use the baud # option, you must specify the baud rate before you print or
use input on the channel. This will dimension the ___CRYSTALx variable and load it
with the right value.

When you don't use the BAUD # option the value will be loaded from code and it will
not use 2 bytes of your SRAM.

The ___CRYSTALx variable is hidden in the report file because it is a system variable.
But you may assign a value to it after BAUD #x, zzzz has dimensioned it.

The old CRYSTAL variable does not exist anymore.

498 BASCOM-AVR

© 2008 MCS Electronics

Some values for 1 MHz internal clock :
66 for 2400 baud
31 for 4800 baud
14 for 9600 baud

See also
OPEN , CLOSE

Example
Dim B as byte
Open "comd.1:9600,8,n,1,inverted" For Output As #1
Print #1 , B
Print #1 ,"serial output"
baud #1, 4800 'use 4800 baud now
Print #1,"serial output"
___CRYSTAL1 = 255
Close#1
End

6.150 CURSOR

Action
Set the LCD Cursor State.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.

See also
DISPLAY , LCD , SHIFTLCD , SHIFTCURSOR

Example
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used

669 669

547 629 748 743

499BASCOM Language Reference

© 2008 MCS Electronics

crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim
'REMOVE the above command for the real program !!
'$sim is used for faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

500 BASCOM-AVR

© 2008 MCS Electronics

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data

501BASCOM Language Reference

© 2008 MCS Electronics

RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.151 DATA

Action
Specifies constant values to be read by subsequent READ statements.

Syntax
DATA var [, varn]

Remarks
Var Numeric or string constant.

The DATA related statements use the internal registers pair R8 and R9 to store the
data pointer.

To store a " sign on the data line, you can use :
DATA $34

The $-sign tells the compiler that the ASCII value will follow.
You can use this also to store special characters that can't be written by the editor
such as chr(7)

Another way to include special ASCII characters in your string constant is to use
{XXX}. You need to include exactly 3 digits representing the ASCII character. For
example 65 is the ASCII number for the character A.

DATA "TEST{065}"

Will be read as TESTA.

While :
DATA "TEST{65}" will be read as :

TEST{65}. This because only 2 digits were included instead of 3.

{xxx} works only for string constants. It will also work in a normal string
assignment :

s = "{065}" . This will assign A to the string s.

Because the DATA statements allow you to generate an EEP file to store in EEPROM,
the $DATA and $EEPROM directives have been added. Read the description of262 267

502 BASCOM-AVR

© 2008 MCS Electronics

these directives to learn more about the DATA statement.

The DATA statements must not be accessed by the flow of your program because the
DATA statements are converted to the byte representation of the DATA.

When your program flow enters the DATA lines, unpredictable results will occur.
So as in QB, the DATA statement is best be placed at the end of your program or in a
place that program flow will no enter.

For example this is fine:

Print "Hello"
Goto jump
DATA "test"

Jump:
'because we jump over the data lines there is no problem.

The following example will case some problems:
Dim S As String * 10
Print "Hello"
Restore lbl
Read S

DATA "test"

Print S

When the END statement is used it must be placed BEFORE the DATA lines.

Difference with QB
Integer and Word constants must end with the %-sign.
Long constants must end with the &-sign.
Single constants must end with the !-sign.
Double constants must end with the #-sign.

See also
READ , RESTORE , $DATA , $EEPROM

Example
'---

'name : readdata.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : READ,RESTORE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used

697 709 262 267

503BASCOM Language Reference

© 2008 MCS Electronics

crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to
stored data
For Count = 1 To 3 'for number
of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to
stored data
For Count = 1 To 2 'for number
of data items
 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

'demonstration of readlabel
Dim W As Iram Word At 8 Overlay ' location
is used by restore pointer
'note that W does not use any RAM it is an overlayed pointer to the data
pointer
W = Loadlabel(dta1) ' loadlabel
expects the labelname
Read B1
Print B1
End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

504 BASCOM-AVR

© 2008 MCS Electronics

6.152 DAYOFWEEK

Action
Returns the Day of the Week of a Date.

Syntax
Target = DayOfWeek()
Target = DayOfWeek(bDayMonthYear)
Target = DayOfWeek(strDate)
Target = DayOfWeek(wSysDay)
Target = DayOfWeek(lSysSec)

Remarks
Target A Byte – variable, that is assigned with the day of the week

BDayMonthYea
r

A Byte – variable, which holds the Day-value followed by Month
(Byte) and Year (Byte)

StrDate A String, which holds a Date-String in the format specified in the
CONFIG DATE statement

WSysDay A Word – variable, which holds the System Day (SysDay)

LSysSec A Long – variable, which holds the System Second (SysSec)

The Function can be used with five different kind of Input:

1.Without any parameter. The internal Date-values of SOFTCLOCK (_day,
_month, _year) are used.

2.With a user defined date array. It must be arranged in same way (Day, Month,
Year) as the internal SOFTCLOCK date. The first Byte (Day) is the input by
this kind of usage. So the Day of the Week can be calculated of every date.

3.With a Date-String. The date-string must be in the Format specified in the
Config Date Statement

4.With a System Day – Number.
5.With a System Second - Number

The Return-Value is in the range of 0 to 6, Monday starts with 0.

The Function is valid in the 21th century (from 2000-01-01 to 2099-12-31).

See Also
Date and Time routines , CONFIG DATE , CONFIG CLOCK , SYSDAY ,
SYSSEC

Example
'---

'name : datetime_test1,bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show how to use the Date-Time routines from
the DateTime.Lib
'micro : Mega103
'suited for demo : no

852 395 387 780

777

505BASCOM Language Reference

© 2008 MCS Electronics

'commercial addon needed : no
'---

$regfile = "m103def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Clockmode = 1
'use i2c for the clock

#if Clockmode = 1
 Config Clock = Soft ' we use
build in clock
 Disable Interrupts
#else
 Config Clock = User ' we use I2C
for the clock
 'configure the scl and sda pins
 Config Sda = Portd.6
 Config Scl = Portd.5

 'address of ds1307
 Const Ds1307w = &HD0 ' Addresses
of Ds1307 clock
 Const Ds1307r = &HD1
#endif

'configure the date format
Config Date = Ymd , Separator = - ' ANSI-
Format
'This sample does not have the clock started so interrupts are not
enabled
' Enable Interrupts

'dim the used variables
Dim Lvar1 As Long
Dim Mday As Byte
Dim Bweekday As Byte , Strweekday As String * 10
Dim Strdate As String * 8
Dim Strtime As String * 8
Dim Bsec As Byte , Bmin As Byte , Bhour As Byte
Dim Bday As Byte , Bmonth As Byte , Byear As Byte
Dim Lsecofday As Long
Dim Wsysday As Word
Dim Lsyssec As Long
Dim Wdayofyear As Word

' =================== DayOfWeek
===
' Example 1 with internal RTC-Clock

506 BASCOM-AVR

© 2008 MCS Electronics

_day = 4 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Bweekday = Dayofweek()
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of " ; Date$; " is " ; Bweekday ; " = " ;
Strweekday

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 26 : Bmonth = 11 : Byear = 2
Bweekday = Dayofweek(bday)
Strweekday = Lookupstr(bweekday , Weekdays)
Strdate = Date(bday)
Print "Weekday-Number of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " is " ; Bweekday ; " (" ; Date(bday) ; ") = " ; Strweekday

' Example 3 with System Day
Wsysday = 2000 ' that is
2005-06-23
Bweekday = Dayofweek(wsysday)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of System Day " ; Wsysday ; " (" ; Date(wsysday) ;
 ") is " ; Bweekday ; " = " ; Strweekday

' Example 4 with System Second
Lsyssec = 123456789 ' that is
2003-11-29 at 21:33:09
Bweekday = Dayofweek(lsyssec)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of System Second " ; Lsyssec ; " (" ; Date(lsyssec
) ; ") is " ; Bweekday ; " = " ; Strweekday

' Example 5 with Date-String
Strdate = "04-11-02" ' we have
configured Date in ANSI
Bweekday = Dayofweek(strdate)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of " ; Strdate ; " is " ; Bweekday ; " = " ;
Strweekday

' ================= Second of Day
===
' Example 1 with internal RTC-Clock
_sec = 12 : _min = 30 : _hour = 18 ' Load RTC-
Clock for example - testing

Lsecofday = Secofday()
Print "Second of Day of " ; Time$; " is " ; Lsecofday

' Example 2 with defined Clock - Bytes (Second / Minute / Hour)
Bsec = 20 : Bmin = 1 : Bhour = 7
Lsecofday = Secofday(bsec)
Print "Second of Day of Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour

507BASCOM Language Reference

© 2008 MCS Electronics

; " (" ; Time(bsec) ; ") is " ; Lsecofday

' Example 3 with System Second
Lsyssec = 1234456789
Lsecofday = Secofday(lsyssec)
Print "Second of Day of System Second " ; Lsyssec ; "(" ; Time(lsyssec)
; ") is " ; Lsecofday

' Example 4 with Time - String
Strtime = "04:58:37"
Lsecofday = Secofday(strtime)
Print "Second of Day of " ; Strtime ; " is " ; Lsecofday

' ================== System Second
==

' Example 1 with internal RTC-Clock
 ' Load RTC-Clock for example - testing
_sec = 17 : _min = 35 : _hour = 8 : _day = 16 : _month = 4 : _year = 3

Lsyssec = Syssec()
Print "System Second of " ; Time$; " at " ; Date$; " is " ; Lsyssec

' Example 2 with with defined Clock - Bytes (Second, Minute, Hour, Day /
Month / Year)
Bsec = 20 : Bmin = 1 : Bhour = 7 : Bday = 22 : Bmonth = 12 : Byear = 1
Lsyssec = Syssec(bsec)
Strtime = Time(bsec)
Strdate = Date(bday)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec

' Example 3 with System Day

Wsysday = 2000
Lsyssec = Syssec(wsysday)
Print "System Second of System Day " ; Wsysday ; " (" ; Date(wsysday) ;
" 00:00:00) is " ; Lsyssec

' Example 4 with Time and Date String
Strtime = "10:23:50"
Strdate = "02-11-29" ' ANSI-Date
Lsyssec = Syssec(strtime , Strdate)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec ' 91880630

' ==================== Day Of Year
===
' Example 1 with internal RTC-Clock
_day = 20 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Wdayofyear = Dayofyear()
Print "Day Of Year of " ; Date$; " is " ; Wdayofyear

508 BASCOM-AVR

© 2008 MCS Electronics

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 24 : Bmonth = 5 : Byear = 8
Wdayofyear = Dayofyear(bday)
Print "Day Of Year of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " (" ; Date(bday) ; ") is " ; Wdayofyear

' Example 3 with Date - String
Strdate = "04-10-29" ' we have
configured ANSI Format
Wdayofyear = Dayofyear(strdate)
Print "Day Of Year of " ; Strdate ; " is " ; Wdayofyear

' Example 4 with System Second

Lsyssec = 123456789
Wdayofyear = Dayofyear(lsyssec)
Print "Day Of Year of System Second " ; Lsyssec ; " (" ; Date(lsyssec) ;
 ") is " ; Wdayofyear

' Example 5 with System Day
Wsysday = 3000
Wdayofyear = Dayofyear(wsysday)
Print "Day Of Year of System Day " ; Wsysday ; " (" ; Date(wsysday) ; ")
is " ; Wdayofyear

' =================== System Day ======================================
' Example 1 with internal RTC-Clock
_day = 20 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Wsysday = Sysday()
Print "System Day of " ; Date$; " is " ; Wsysday

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 24 : Bmonth = 5 : Byear = 8
Wsysday = Sysday(bday)
Print "System Day of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " (" ; Date(bday) ; ") is " ; Wsysday

' Example 3 with Date - String
Strdate = "04-10-29"
Wsysday = Sysday(strdate)
Print "System Day of " ; Strdate ; " is " ; Wsysday

' Example 4 with System Second
Lsyssec = 123456789
Wsysday = Sysday(lsyssec)
Print "System Day of System Second " ; Lsyssec ; " (" ; Date(lsyssec) ;
") is " ; Wsysday

' =================== Time
==
' Example 1: Converting defined Clock - Bytes (Second / Minute / Hour)
to Time - String
Bsec = 20 : Bmin = 1 : Bhour = 7

509BASCOM Language Reference

© 2008 MCS Electronics

Strtime = Time(bsec)
Print "Time values: Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour ; "
converted to string " ; Strtime

' Example 2: Converting System Second to Time - String
Lsyssec = 123456789
Strtime = Time(lsyssec)
Print "Time of Systemsecond " ; Lsyssec ; " is " ; Strtime

' Example 3: Converting Second of Day to Time - String
Lsecofday = 12345
Strtime = Time(lsecofday)
Print "Time of Second of Day " ; Lsecofday ; " is " ; Strtime

' Example 4: Converting System Second to defined Clock - Bytes (Second /
Minute / Hour)

Lsyssec = 123456789
Bsec = Time(lsyssec)
Print "System Second " ; Lsyssec ; " converted to Sec=" ; Bsec ; " Min="
 ; Bmin ; " Hour=" ; Bhour ; " (" ; Time(lsyssec) ; ")"

' Example 5: Converting Second of Day to defined Clock - Bytes (Second /
Minute / Hour)
Lsecofday = 12345
Bsec = Time(lsecofday)
Print "Second of Day " ; Lsecofday ; " converted to Sec=" ; Bsec ; "
Min=" ; Bmin ; " Hour=" ; Bhour ; " (" ; Time(lsecofday) ; ")"

' Example 6: Converting Time-string to defined Clock - Bytes (Second /
Minute / Hour)
Strtime = "07:33:12"
Bsec = Time(strtime)
Print "Time " ; Strtime ; " converted to Sec=" ; Bsec ; " Min=" ; Bmin ;
 " Hour=" ; Bhour

' ============================= Date
==

' Example 1: Converting defined Clock - Bytes (Day / Month / Year) to
Date - String
Bday = 29 : Bmonth = 4 : Byear = 12
Strdate = Date(bday)
Print "Dat values: Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ; Byear
; " converted to string " ; Strdate

' Example 2: Converting from System Day to Date - String
Wsysday = 1234
Strdate = Date(wsysday)
Print "System Day " ; Wsysday ; " is " ; Strdate

' Example 3: Converting from System Second to Date String
Lsyssec = 123456789
Strdate = Date(lsyssec)
Print "System Second " ; Lsyssec ; " is " ; Strdate

510 BASCOM-AVR

© 2008 MCS Electronics

' Example 4: Converting SystemDay to defined Clock - Bytes (Day /
Month / Year)

Wsysday = 2000
Bday = Date(wsysday)
Print "System Day " ; Wsysday ; " converted to Day=" ; Bday ; " Month="
; Bmonth ; " Year=" ; Byear ; " (" ; Date(wsysday) ; ")"

' Example 5: Converting Date - String to defined Clock - Bytes (Day /
Month / Year)
Strdate = "04-08-31"
Bday = Date(strdate)
Print "Date " ; Strdate ; " converted to Day=" ; Bday ; " Month=" ;
Bmonth ; " Year=" ; Byear

' Example 6: Converting System Second to defined Clock - Bytes (Day /
Month / Year)
Lsyssec = 123456789
Bday = Date(lsyssec)
Print "System Second " ; Lsyssec ; " converted to Day=" ; Bday ; "
Month=" ; Bmonth ; " Year=" ; Byear ; " (" ; Date(lsyssec) ; ")"

' ================ Second of Day elapsed

Lsecofday = Secofday()
_hour = _hour + 1
Lvar1 = Secelapsed(lsecofday)
Print Lvar1

Lsyssec = Syssec()
_day = _day + 1
Lvar1 = Syssecelapsed(lsyssec)
Print Lvar1

Looptest:

' Initialising for testing
_day = 1
_month = 1
_year = 1
_sec = 12
_min = 13
_hour = 14

Do
 If _year > 50 Then
 Exit Do
 End If

 _sec = _sec + 7
 If _sec > 59 Then
 Incr _min
 _sec = _sec - 60
 End If

511BASCOM Language Reference

© 2008 MCS Electronics

 _min = _min + 2
 If _min > 59 Then
 Incr _hour
 _min = _min - 60
 End If

 _hour = _hour + 1
 If _hour > 23 Then
 Incr _day
 _hour = _hour - 24
 End If

 _day = _day + 1

 If _day > 28 Then
 Select Case _month
 Case 1
 Mday = 31
 Case 2
 Mday = _year And &H03
 If Mday = 0 Then
 Mday = 29
 Else
 Mday = 28
 End If
 Case 3
 Mday = 31
 Case 4
 Mday = 30
 Case 5
 Mday = 31
 Case 6
 Mday = 30
 Case 7
 Mday = 31
 Case 8
 Mday = 31
 Case 9
 Mday = 30
 Case 10
 Mday = 31
 Case 11
 Mday = 30
 Case 12
 Mday = 31
 End Select
 If _day > Mday Then
 _day = _day - Mday
 Incr _month
 If _month > 12 Then
 _month = 1
 Incr _year
 End If
 End If
 End If
 If _year > 99 Then
 Exit Do
 End If

Lsecofday = Secofday()
Lsyssec = Syssec()
Bweekday = Dayofweek()

512 BASCOM-AVR

© 2008 MCS Electronics

Wdayofyear = Dayofyear()
Wsysday = Sysday()

Print Time$; " " ; Date$; " " ; Lsecofday ; " " ; Lsyssec ; " " ;
Bweekday ; " " ; Wdayofyear ; " " ; Wsysday

Loop
End

'only when we use I2C for the clock we need to set the clock date time
#if Clockmode = 0
'called from datetime.lib
Dim Weekday As Byte
Getdatetime:
 I2cstart ' Generate
start code
 I2cwbyte Ds1307w ' send
address
 I2cwbyte 0 ' start
address in 1307

 I2cstart ' Generate
start code
 I2cwbyte Ds1307r ' send
address
 I2crbyte _sec , Ack
 I2crbyte _min , Ack ' MINUTES
 I2crbyte _hour , Ack ' Hours
 I2crbyte Weekday , Ack ' Day of
Week
 I2crbyte _day , Ack ' Day of
Month
 I2crbyte _month , Ack ' Month of
Year
 I2crbyte _year , Nack ' Year
 I2cstop
 _sec = Makedec(_sec) : _min = Makedec(_min) : _hour = Makedec(_hour)
 _day = Makedec(_day) : _month = Makedec(_month) : _year = Makedec(
_year)
Return

Setdate:
 _day = Makebcd(_day) : _month = Makebcd(_month) : _year = Makebcd(
_year)
 I2cstart ' Generate
start code
 I2cwbyte Ds1307w ' send
address
 I2cwbyte 4 ' starting
address in 1307
 I2cwbyte _day ' Send Data
to SECONDS
 I2cwbyte _month ' MINUTES
 I2cwbyte _year ' Hours
 I2cstop
Return

Settime:
 _sec = Makebcd(_sec) : _min = Makebcd(_min) : _hour = Makebcd(_hour)
 I2cstart ' Generate
start code

513BASCOM Language Reference

© 2008 MCS Electronics

 I2cwbyte Ds1307w ' send
address
 I2cwbyte 0 ' starting
address in 1307
 I2cwbyte _sec ' Send Data
to SECONDS
 I2cwbyte _min ' MINUTES
 I2cwbyte _hour ' Hours
 I2cstop
Return

#endif

Weekdays:
Data "Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" ,
"Saturday" , "Sunday"

6.153 DAYOFYEAR

Action
Returns the Day of the Year of a Date

Syntax
Target = DayOfYear()
Target = DayOfYear(bDayMonthYear)
Target = DayOfYear(strDate)
Target = DayOfYear(wSysDay)
Target = DayOfYear(lSysSec)

Remarks
Target A Integer, that is assigned with the Day of the Year

BDayMonthYea
r

A Byte, which holds the Day-value followed by Month(Byte) and Year
(Byte)

StrDate A String, which holds a Date-String in the format specified in the
CONFIG DATE statement

WSysDay A Variable (Word) which holds a System Day (SysDay)

LsysSec A Variable (Long) which holds a System Second (SysSec)

The Function can be used with five different kind of Input:

1.Without any parameter. The internal Date-values of SOFTCLOCK (_day,
_month, _year) are used.

2.With a user defined date array. It must be arranged in same way (Day, Month,
Year) as the internal SOFTCLOCK date. The first Byte (Day) is the input by
this kind of usage. So the Day of the Year can be calculated of every date.

3.With a Date-String. The date-string must be in the Format specified in the
Config Date Statement.

4.With a System Day Number (WORD)
5.With a System Second Number (LONG)

The Return-Value is in the Range of 0 to 364 (365 in a leap year). January the first
starts with 0.

514 BASCOM-AVR

© 2008 MCS Electronics

The function is valid in the 21th century (from 2000-01-01 to 2099-12-31).

See also
Date and Time Routines , SysSec , SysDay

Example
See DayOfWeek

6.154 DATE$

Action
Internal variable that holds the date.

Syntax
DATE$ = "mm/dd/yy"
var = DATE$

Remarks
The DATE$ variable is used in combination with the CONFIG CLOCK directive.

The CONFIG CLOCK statement will use the TIMER0 or TIMER2 in asynchrone mode to
create an interrupt that occurs every second. In this interrupt routine the _Sec, _Min
and _Hour variables are updated. The _dat, _month and _year variables are also
updated. The date format is in the same format as in VB.

When you assign DATE$ to a string variable these variables are assigned to the
DATE$ variable.
When you assign the DATE$ variable with a constant or other variable, the _day,
_month and _year variables will be changed to the new date.
The only difference with VB is that all data must be provided when assigning the
date. This is done for minimal code. You can change this behavior of course.

The async timer is only available in the M103, 90S8535, M163 and M32(3), Mega128,
Mega64, Mega8. For other chips it will not work.

As new chips are launched by Atmel, and support is added by MCS, the list
above might not be complete. It is intended to serve as an example for chips with a
timer that can be used in asynchrone mode. So when your micro has a timer that can
be used in asynchrone mode, it should work.

 Do not confuse DATE$ with the DATE function.

ASM
The following ASM routines are called.
When assigning DATE$: _set_date (calls _str2byte)
When reading DATE$: _make_dt (calls _byte2str)

852 777 780

504

515BASCOM Language Reference

© 2008 MCS Electronics

See also
TIME$, CONFIG CLOCK , DATE

Example
'---

'name : megaclock.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows the new TIME$ and DATE$ reserved
variables
'micro : Mega103
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m103def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'With the 8535 and timer2 or the Mega103 and TIMER0 you can
'easily implement a clock by attaching a 32768 Hz xtal to the timer
'And of course some BASCOM code

'This example is written for the STK300 with M103
Enable Interrupts

'[configure LCD]
$lcd = &HC000 'address for
E and RS
$lcdrs = &H8000 'address for
only E
Config Lcd = 20 * 4 'nice
display from bg micro
Config Lcdbus = 4 'we run it
in bus mode and I hooked up only db4-db7
Config Lcdmode = Bus 'tell about
the bus mode

'[now init the clock]
Config Date = Mdy , Separator = / ' ANSI-
Format

Config Clock = Soft 'this is how
simple it is
'The above statement will bind in an ISR so you can not use the TIMER
anymore!
'For the M103 in this case it means that TIMER0 can not be used by the
user anymore

'assign the date to the reserved date$
'The format is MM/DD/YY

793 387 516

516 BASCOM-AVR

© 2008 MCS Electronics

Date$ = "11/11/00"

'assign the time, format in hh:mm:ss military format(24 hours)
'You may not use 1:2:3 !! adding support for this would mean overhead
'But of course you can alter the library routines used

Time$ = "02:20:00"

'---

'clear the LCD display
Cls

Do
 Home 'cursor home
 Lcd Date$; " " ; Time$ 'show the
date and time
Loop

'The clock routine does use the following internal variables:
'_day , _month, _year , _sec, _hour, _min
'These are all bytes. You can assign or use them directly
_day = 1
'For the _year variable only the year is stored, not the century
End

6.155 DATE

Action
Returns a date-value (String or 3 Bytes for Day, Month and Year) depending of the
Type of the Target

Syntax
bDayMonthYear = Date(lSysSec)
bDayMonthYear = Date(lSysDay)
bDayMonthYear = Date(strDate)

strDate = Date(lSysSec)
strDate = Date(lSysDay)
strDate = Date(bDayMonthYear)

Remarks
StrDate A Date-String in the format specified in the

CONFIG DATE statement

LsysSec A LONG – variable which holds the System Second (SysSec =
TimeStamp)

LsysDay A WORD – variable, which holds then System Day (SysDay)

BDayMonthYea
r

A BYTE – variable, which holds Days, followed by Month (Byte) and
Year (Byte)

Converting to String:

The target string must have a length of at least 8 Bytes, otherwise SRAM after the
target-string will be overwritten.

517BASCOM Language Reference

© 2008 MCS Electronics

Converting to Soft clock date format (3 Bytes for Day, Month and Year):

Three Bytes for Day, Month and Year must follow each other in SRAM. The variable-
name of the first Byte, the one for Day must be passed to the function.

See also
Date and Time Routines , DAYOFYEAR , SYSDAY

Example
'---

'name : datetime_test1,bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show how to use the Date-Time routines from
the DateTime.Lib
'micro : Mega103
'suited for demo : no
'commercial addon needed : no
'---

$regfile = "m103def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Clockmode = 1
'use i2c for the clock

#if Clockmode = 1
 Config Clock = Soft ' we use
build in clock
 Disable Interrupts
#else
 Config Clock = User ' we use I2C
for the clock
 'configure the scl and sda pins
 Config Sda = Portd.6
 Config Scl = Portd.5

 'address of ds1307
 Const Ds1307w = &HD0 ' Addresses
of Ds1307 clock
 Const Ds1307r = &HD1
#endif

'configure the date format
Config Date = Ymd , Separator = - ' ANSI-
Format

852 513 780

518 BASCOM-AVR

© 2008 MCS Electronics

'This sample does not have the clock started so interrupts are not
enabled
' Enable Interrupts

'dim the used variables
Dim Lvar1 As Long
Dim Mday As Byte
Dim Bweekday As Byte , Strweekday As String * 10
Dim Strdate As String * 8
Dim Strtime As String * 8
Dim Bsec As Byte , Bmin As Byte , Bhour As Byte
Dim Bday As Byte , Bmonth As Byte , Byear As Byte
Dim Lsecofday As Long
Dim Wsysday As Word
Dim Lsyssec As Long
Dim Wdayofyear As Word

' =================== DayOfWeek
===
' Example 1 with internal RTC-Clock

_day = 4 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Bweekday = Dayofweek()
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of " ; Date$; " is " ; Bweekday ; " = " ;
Strweekday

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 26 : Bmonth = 11 : Byear = 2
Bweekday = Dayofweek(bday)
Strweekday = Lookupstr(bweekday , Weekdays)
Strdate = Date(bday)
Print "Weekday-Number of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " is " ; Bweekday ; " (" ; Date(bday) ; ") = " ; Strweekday

' Example 3 with System Day
Wsysday = 2000 ' that is
2005-06-23
Bweekday = Dayofweek(wsysday)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of System Day " ; Wsysday ; " (" ; Date(wsysday) ;
 ") is " ; Bweekday ; " = " ; Strweekday

' Example 4 with System Second
Lsyssec = 123456789 ' that is
2003-11-29 at 21:33:09
Bweekday = Dayofweek(lsyssec)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of System Second " ; Lsyssec ; " (" ; Date(lsyssec
) ; ") is " ; Bweekday ; " = " ; Strweekday

' Example 5 with Date-String
Strdate = "04-11-02" ' we have

519BASCOM Language Reference

© 2008 MCS Electronics

configured Date in ANSI
Bweekday = Dayofweek(strdate)
Strweekday = Lookupstr(bweekday , Weekdays)
Print "Weekday-Number of " ; Strdate ; " is " ; Bweekday ; " = " ;
Strweekday

' ================= Second of Day
===
' Example 1 with internal RTC-Clock
_sec = 12 : _min = 30 : _hour = 18 ' Load RTC-
Clock for example - testing

Lsecofday = Secofday()
Print "Second of Day of " ; Time$; " is " ; Lsecofday

' Example 2 with defined Clock - Bytes (Second / Minute / Hour)
Bsec = 20 : Bmin = 1 : Bhour = 7
Lsecofday = Secofday(bsec)
Print "Second of Day of Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour
; " (" ; Time(bsec) ; ") is " ; Lsecofday

' Example 3 with System Second
Lsyssec = 1234456789
Lsecofday = Secofday(lsyssec)
Print "Second of Day of System Second " ; Lsyssec ; "(" ; Time(lsyssec)
; ") is " ; Lsecofday

' Example 4 with Time - String
Strtime = "04:58:37"
Lsecofday = Secofday(strtime)
Print "Second of Day of " ; Strtime ; " is " ; Lsecofday

' ================== System Second
==

' Example 1 with internal RTC-Clock
 ' Load RTC-Clock for example - testing
_sec = 17 : _min = 35 : _hour = 8 : _day = 16 : _month = 4 : _year = 3

Lsyssec = Syssec()
Print "System Second of " ; Time$; " at " ; Date$; " is " ; Lsyssec

' Example 2 with with defined Clock - Bytes (Second, Minute, Hour, Day /
Month / Year)
Bsec = 20 : Bmin = 1 : Bhour = 7 : Bday = 22 : Bmonth = 12 : Byear = 1
Lsyssec = Syssec(bsec)
Strtime = Time(bsec)
Strdate = Date(bday)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec

' Example 3 with System Day

Wsysday = 2000

520 BASCOM-AVR

© 2008 MCS Electronics

Lsyssec = Syssec(wsysday)
Print "System Second of System Day " ; Wsysday ; " (" ; Date(wsysday) ;
" 00:00:00) is " ; Lsyssec

' Example 4 with Time and Date String
Strtime = "10:23:50"
Strdate = "02-11-29" ' ANSI-Date
Lsyssec = Syssec(strtime , Strdate)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec ' 91880630

' ==================== Day Of Year
===
' Example 1 with internal RTC-Clock
_day = 20 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Wdayofyear = Dayofyear()
Print "Day Of Year of " ; Date$; " is " ; Wdayofyear

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 24 : Bmonth = 5 : Byear = 8
Wdayofyear = Dayofyear(bday)
Print "Day Of Year of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " (" ; Date(bday) ; ") is " ; Wdayofyear

' Example 3 with Date - String
Strdate = "04-10-29" ' we have
configured ANSI Format
Wdayofyear = Dayofyear(strdate)
Print "Day Of Year of " ; Strdate ; " is " ; Wdayofyear

' Example 4 with System Second

Lsyssec = 123456789
Wdayofyear = Dayofyear(lsyssec)
Print "Day Of Year of System Second " ; Lsyssec ; " (" ; Date(lsyssec) ;
 ") is " ; Wdayofyear

' Example 5 with System Day
Wsysday = 3000
Wdayofyear = Dayofyear(wsysday)
Print "Day Of Year of System Day " ; Wsysday ; " (" ; Date(wsysday) ; ")
is " ; Wdayofyear

' =================== System Day ======================================
' Example 1 with internal RTC-Clock
_day = 20 : _month = 11 : _year = 2 ' Load RTC-
Clock for example - testing
Wsysday = Sysday()
Print "System Day of " ; Date$; " is " ; Wsysday

' Example 2 with defined Clock - Bytes (Day / Month / Year)

521BASCOM Language Reference

© 2008 MCS Electronics

Bday = 24 : Bmonth = 5 : Byear = 8
Wsysday = Sysday(bday)
Print "System Day of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " (" ; Date(bday) ; ") is " ; Wsysday

' Example 3 with Date - String
Strdate = "04-10-29"
Wsysday = Sysday(strdate)
Print "System Day of " ; Strdate ; " is " ; Wsysday

' Example 4 with System Second
Lsyssec = 123456789
Wsysday = Sysday(lsyssec)
Print "System Day of System Second " ; Lsyssec ; " (" ; Date(lsyssec) ;
") is " ; Wsysday

' =================== Time
==
' Example 1: Converting defined Clock - Bytes (Second / Minute / Hour)
to Time - String
Bsec = 20 : Bmin = 1 : Bhour = 7
Strtime = Time(bsec)
Print "Time values: Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour ; "
converted to string " ; Strtime

' Example 2: Converting System Second to Time - String
Lsyssec = 123456789
Strtime = Time(lsyssec)
Print "Time of Systemsecond " ; Lsyssec ; " is " ; Strtime

' Example 3: Converting Second of Day to Time - String
Lsecofday = 12345
Strtime = Time(lsecofday)
Print "Time of Second of Day " ; Lsecofday ; " is " ; Strtime

' Example 4: Converting System Second to defined Clock - Bytes (Second /
Minute / Hour)

Lsyssec = 123456789
Bsec = Time(lsyssec)
Print "System Second " ; Lsyssec ; " converted to Sec=" ; Bsec ; " Min="
 ; Bmin ; " Hour=" ; Bhour ; " (" ; Time(lsyssec) ; ")"

' Example 5: Converting Second of Day to defined Clock - Bytes (Second /
Minute / Hour)
Lsecofday = 12345
Bsec = Time(lsecofday)
Print "Second of Day " ; Lsecofday ; " converted to Sec=" ; Bsec ; "
Min=" ; Bmin ; " Hour=" ; Bhour ; " (" ; Time(lsecofday) ; ")"

' Example 6: Converting Time-string to defined Clock - Bytes (Second /
Minute / Hour)
Strtime = "07:33:12"
Bsec = Time(strtime)
Print "Time " ; Strtime ; " converted to Sec=" ; Bsec ; " Min=" ; Bmin ;
 " Hour=" ; Bhour

522 BASCOM-AVR

© 2008 MCS Electronics

' ============================= Date
==

' Example 1: Converting defined Clock - Bytes (Day / Month / Year) to
Date - String
Bday = 29 : Bmonth = 4 : Byear = 12
Strdate = Date(bday)
Print "Dat values: Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ; Byear
; " converted to string " ; Strdate

' Example 2: Converting from System Day to Date - String
Wsysday = 1234
Strdate = Date(wsysday)
Print "System Day " ; Wsysday ; " is " ; Strdate

' Example 3: Converting from System Second to Date String
Lsyssec = 123456789
Strdate = Date(lsyssec)
Print "System Second " ; Lsyssec ; " is " ; Strdate

' Example 4: Converting SystemDay to defined Clock - Bytes (Day /
Month / Year)

Wsysday = 2000
Bday = Date(wsysday)
Print "System Day " ; Wsysday ; " converted to Day=" ; Bday ; " Month="
; Bmonth ; " Year=" ; Byear ; " (" ; Date(wsysday) ; ")"

' Example 5: Converting Date - String to defined Clock - Bytes (Day /
Month / Year)
Strdate = "04-08-31"
Bday = Date(strdate)
Print "Date " ; Strdate ; " converted to Day=" ; Bday ; " Month=" ;
Bmonth ; " Year=" ; Byear

' Example 6: Converting System Second to defined Clock - Bytes (Day /
Month / Year)
Lsyssec = 123456789
Bday = Date(lsyssec)
Print "System Second " ; Lsyssec ; " converted to Day=" ; Bday ; "
Month=" ; Bmonth ; " Year=" ; Byear ; " (" ; Date(lsyssec) ; ")"

' ================ Second of Day elapsed

Lsecofday = Secofday()
_hour = _hour + 1
Lvar1 = Secelapsed(lsecofday)
Print Lvar1

Lsyssec = Syssec()
_day = _day + 1
Lvar1 = Syssecelapsed(lsyssec)
Print Lvar1

523BASCOM Language Reference

© 2008 MCS Electronics

Looptest:

' Initialising for testing
_day = 1
_month = 1
_year = 1
_sec = 12
_min = 13
_hour = 14

Do
 If _year > 50 Then
 Exit Do
 End If

 _sec = _sec + 7
 If _sec > 59 Then
 Incr _min
 _sec = _sec - 60
 End If

 _min = _min + 2
 If _min > 59 Then
 Incr _hour
 _min = _min - 60
 End If

 _hour = _hour + 1
 If _hour > 23 Then
 Incr _day
 _hour = _hour - 24
 End If

 _day = _day + 1

 If _day > 28 Then
 Select Case _month
 Case 1
 Mday = 31
 Case 2
 Mday = _year And &H03
 If Mday = 0 Then
 Mday = 29
 Else
 Mday = 28
 End If
 Case 3
 Mday = 31
 Case 4
 Mday = 30
 Case 5
 Mday = 31
 Case 6
 Mday = 30
 Case 7
 Mday = 31
 Case 8
 Mday = 31
 Case 9
 Mday = 30

524 BASCOM-AVR

© 2008 MCS Electronics

 Case 10
 Mday = 31
 Case 11
 Mday = 30
 Case 12
 Mday = 31
 End Select
 If _day > Mday Then
 _day = _day - Mday
 Incr _month
 If _month > 12 Then
 _month = 1
 Incr _year
 End If
 End If
 End If
 If _year > 99 Then
 Exit Do
 End If

Lsecofday = Secofday()
Lsyssec = Syssec()
Bweekday = Dayofweek()
Wdayofyear = Dayofyear()
Wsysday = Sysday()

Print Time$; " " ; Date$; " " ; Lsecofday ; " " ; Lsyssec ; " " ;
Bweekday ; " " ; Wdayofyear ; " " ; Wsysday

Loop
End

'only when we use I2C for the clock we need to set the clock date time
#if Clockmode = 0
'called from datetime.lib
Dim Weekday As Byte
Getdatetime:
 I2cstart ' Generate
start code
 I2cwbyte Ds1307w ' send
address
 I2cwbyte 0 ' start
address in 1307

 I2cstart ' Generate
start code
 I2cwbyte Ds1307r ' send
address
 I2crbyte _sec , Ack
 I2crbyte _min , Ack ' MINUTES
 I2crbyte _hour , Ack ' Hours
 I2crbyte Weekday , Ack ' Day of
Week
 I2crbyte _day , Ack ' Day of
Month
 I2crbyte _month , Ack ' Month of
Year
 I2crbyte _year , Nack ' Year
 I2cstop
 _sec = Makedec(_sec) : _min = Makedec(_min) : _hour = Makedec(_hour)

525BASCOM Language Reference

© 2008 MCS Electronics

 _day = Makedec(_day) : _month = Makedec(_month) : _year = Makedec(
_year)
Return

Setdate:
 _day = Makebcd(_day) : _month = Makebcd(_month) : _year = Makebcd(
_year)
 I2cstart ' Generate
start code
 I2cwbyte Ds1307w ' send
address
 I2cwbyte 4 ' starting
address in 1307
 I2cwbyte _day ' Send Data
to SECONDS
 I2cwbyte _month ' MINUTES
 I2cwbyte _year ' Hours
 I2cstop
Return

Settime:
 _sec = Makebcd(_sec) : _min = Makebcd(_min) : _hour = Makebcd(_hour)
 I2cstart ' Generate
start code
 I2cwbyte Ds1307w ' send
address
 I2cwbyte 0 ' starting
address in 1307
 I2cwbyte _sec ' Send Data
to SECONDS
 I2cwbyte _min ' MINUTES
 I2cwbyte _hour ' Hours
 I2cstop
Return

#endif

Weekdays:
Data "Monday" , "Tuesday" , "Wednesday" , "Thursday" , "Friday" ,
"Saturday" , "Sunday"

6.156 DBG

Action
Prints debug info to the hardware UART

Syntax
DBG

Remarks
See $DBG for more information264

526 BASCOM-AVR

© 2008 MCS Electronics

6.157 DCF77TIMEZONE

Action
This function will return the offset to Greenwich Time.

Syntax
res = DCF77TimeZone()

Remarks
Res The target variable that is assigned with the result.

The result will be:
- 0: when there is no valid DCF77 data yet
- 1: when in "Middle Europe Normal Time"
- 2: when in "Middle Europe daylight saving Time"

In Middle Europe, daylight saving is used to make better use of the day light in the
summer.
The last Sunday in March at 02:00 AM the Daylight Saving will start. All clocks are set
from 2:00 to 3:00.
Your weekend, is one hour shorter then.

But the last Sunday of October is better : at 03:00 AM, the Daylight Saving will end
and all clocks are set from 03:00 to 02:00.

When you have a lot of clocks in your house, you can understand why DCF77
synchronized clocks are so popular.

See also
CONFIG DCF77

Example
Print = DCF77TimeZone()

6.158 DEBUG

Action
Instruct compiler to start or stop debugging, or print variable to serial port

Syntax
DEBUG ON | OFF | var

Remarks
ON Enable debugging

OFF Disable debugging

var A variable which values must be printed to the serial port

During development of your program a common issue is that you need to know the
value of a variable.
You can use PRINT to print the value but then it will be in the application as well.

398

527BASCOM Language Reference

© 2008 MCS Electronics

You can use conditional compilation such as :
CONST TEST=1
#IF TEST
 print var
#ENDIF

But that will result in a lot of typing work. The DEBUG option is a combination of
conditional compilation and PRINT. Whenever you activate DEBUG with the ON
parameter, all 'DEBUG var' statements will be compiled.
When you turn DEBUG OFF, all 'DEBUG var' statements will not be compiled.

You can not nest the ON and OFF. The last statements wins.
Typical you will have only one DEBUG ON statement. And you set it to OFF when your
program is working.

An example showing nesting is NOT supported:
DEBUG ON
DEBUG ON ' it is still ON
DEBUG OFF' it is OFF now

An example showing multiple DEBUG:
DEBUG ON
DEBUG var ' this is printed
DEBUG var2 ' this is also printed

DEBUG OFF
DEBUG var3 'this is NOT printed
DEBUG var4 ' this is not printed

DEBUG ON ' turn DEBUG ON
If A = 2 Then
 DEBUG A ' this is printed
End If

See also
DBG

ASM
NONE

Example
DEBUG ON
Dim A As Byte
DEBUG A
End

6.159 DEBOUNCE

Action
Debounce a port pin connected to a switch.

Syntax

528 BASCOM-AVR

© 2008 MCS Electronics

DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y A port pin like PINB.0 , to examine.

State 0 for jumping when PINx.y is low , 1 for jumping when PINx.y is high

Label The label to GOTO when the specified state is detected

SUB The label to GOSUB when the specified state is detected

When you specify the optional parameter SUB, a GOSUB to label is performed instead
of a GOTO.

The DEBOUNCE statement tests the condition of the specified pin and if true there will
be a delay for 25 mS and the condition will be checked again. (eliminating bounce of
a switch)

When the condition is still true and there was no branch before, it branches to
specified the label.

When the condition is not true, or the logic level on the pin is not of the specified
level, the code on the next line will be executed.

When DEBOUNCE is executed again, the state of the switch must have gone back in
the original position before it can perform another branch. So if you are waiting for a
pin to go low, and the pin goes low, the pin must change to high, before a new low
level will result in another branch.

Each DEBOUNCE statement, which uses a different port, uses 1 BIT of the internal
memory to hold its state. And as the bits are stored in SRAM, it means that even
while you use only 1 pin/bit, a byte is used for storage of the bit.

DEBOUNCE will not wait for the input value to met the specified condition. You need
to use BITWAIT if you want to wait until a bit will have a certain value.

So DEBOUNCE will not halt your program while a BITWAIT can halt your program if
the bit will never have the specified value. You can combine BITWAIT and DEBOUNCE
statements by preceding a DEBOUNCE with a BITWAIT statement.

See also
CONFIG DEBOUNCE , BITWAIT

Example
'---

'name : deboun.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates DEBOUNCE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used

403 350

529BASCOM Language Reference

© 2008 MCS Electronics

crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Debounce = 30 'when the
config statement is not used a default of 25mS will be used but we
override to use 30 mS

 'Debounce Pind.0 , 1 , Pr 'try this for branching when high(1)
 Debounce Pind.0 , 0 , Pr , Sub
 Debounce Pind.0 , 0 , Pr , Sub
 ' ^----- label to branch to
 ' ^---------- Branch when P1.0 goes low(0)
 ' ^---------------- Examine P1.0

 'When Pind.0 goes low jump to subroutine Pr
 'Pind.0 must go high again before it jumps again
 'to the label Pr when Pind.0 is low

 Debounce Pind.0 , 1 , Pr 'no branch
 Debounce Pind.0 , 1 , Pr 'will result
in a return without gosub
End

Pr:
 Print "PIND.0 was/is low"
Return

6.160 DECR

Action
Decrements a variable by one.

Syntax
DECR var

Remarks
There are often situations where you want a number to be decreased by 1. It is
simpler to write :
DECR var
compared to :
var = var - 1

See also
INCR

Example
'---

615

530 BASCOM-AVR

© 2008 MCS Electronics

'name : decr.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demostrate decr
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , I As Integer

A = 5 'assign
value to a
Decr A 'decrease
(by one)
Print A 'print it

I = 1000
Decr I
Print I
End

6.161 DECLARE FUNCTION

Action
Declares a user function.

Syntax
DECLARE FUNCTION TEST[([BYREF/BYVAL] var as type)] As type

Remarks
test Name of the function.

Var Name of the variable(s).

Type Type of the variable(s) and of the result. Byte,Word, Integer, Long,
Single or String. Bits are not supported.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.

See the CALL statement for more details.358

531BASCOM Language Reference

© 2008 MCS Electronics

 You must declare each function before writing the function or calling the
function. And the declaration must match the function.
Bits are global and can not be passed to functions or subs.

When you want to pass a string, you pass it with it's name : string. So the size is not
important. For example :
Declare function Test(s as string, byval z as string) as byte

When you set the function result, you need to take care that no other code is
executed after this.
So a good way to set the result would be this :

Function Myfunc(b as byte) as Byte
 local bDummy as byte
 'some code here
 Myfunc=3 ' assign result
 ' no other code is executed
End Function

Also good would be:

Function Myfunc(b as byte) as Byte
 local bDummy as byte
 'some code here
 Myfunc=1 ' assign default result
 Print "this is a test " ; b
 Myfunc=4 ' now again the result is the last code
 ' no other code is executed
End Function

If you execute other code after you assigned the function result, registers will be
trashed. This is no problem if you assigned the function result to a variable. But when
you use a function without assigning it to a variable, some temporarily registers are
used which might be trashed.

Thus this special attention is only needed when you use the function like :
If Myfunc()=3 then 'myfunc is not assigned to a variable but the result is needed for
the test

When you use :
myvar=Myfunc()
Then you will not trash the registers. So in such a case there is no problem to run
code after the function assignment.

To keep it safe, assign the result just before you exit the function.

See also
CALL , SUB

Example
'---

358 777

532 BASCOM-AVR

© 2008 MCS Electronics

'name : function.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of user function
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'A user function must be declare before it can be used.
'A function must return a type
Declare Function Myfunction(byval I As Integer , S As String) As Integer
'The byval paramter will pass the parameter by value so the original
value
'will not be changed by the function

Dim K As Integer
Dim Z As String * 10
Dim T As Integer
'assign the values
K = 5
Z = "123"

T = Myfunction(k , Z)
Print T
End

Function Myfunction(byval I As Integer , S As String) As Integer
 'you can use local variables in subs and functions
 Local P As Integer
 P = I
 'because I is passed by value, altering will not change the original
 'variable named k
 I = 10

 P = Val(s) + I

 'finally assign result
 'Note that the same data type must be used !
 'So when declared as an Integer function, the result can only be
 'assigned with an Integer in this case.
 Myfunction = P
End Function

6.162 DECLARE SUB

Action
Declares a subroutine.

533BASCOM Language Reference

© 2008 MCS Electronics

Syntax
DECLARE SUB TEST[([BYREF/BYVAL] var as type)]

Remarks
test Name of the procedure.

Var Name of the variable(s).

Type Type of the variable(s). Byte, Word, Integer, Long, Single or String.

When BYREF or BYVAL is not provided, the parameter will be passed by reference.
Use BYREF to pass a variable by reference with its address.
Use BYVAL to pass a copy of the variable.

See the CALL statement for more details.

 You must declare each function before writing the function or calling the
function. And the declaration must match the function.
Bits are global and can not be passed with functions or subs.

See also
CALL , SUB , FUNCTION

Example
'---

'name : declare.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrate using declare
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
' Note that the usage of SUBS works different in BASCOM-8051
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' First the SUB programs must be declared

'Try a SUB without parameters
Declare Sub Test2

'SUB with variable that can not be changed(A) and

358

358 777 530

534 BASCOM-AVR

© 2008 MCS Electronics

'a variable that can be changed(B1), by the sub program
'When BYVAL is specified, the value is passed to the subprogram
'When BYREF is specified or nothing is specified, the address is passed
to
'the subprogram

Declare Sub Test(byval A As Byte , B1 As Byte)
Declare Sub Testarray(byval A As Byte , B1 As Byte)
'All variable types that can be passed
'Notice that BIT variables can not be passed.
'BIT variables are GLOBAL to the application
Declare Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S
As String)

'passing string arrays needs a different syntax because the length of
the strings must be passed by the compiler
'the empty () indicated that an array will be passed
Declare Sub Teststr(b As Byte , Dl() As String)

Dim Bb As Byte , I As Integer , W As Word , L As Long , S As String * 10
 'dim used variables
Dim Ar(10) As Byte
Dim Sar(10) As String * 8 'strng array

For Bb = 1 To 10
 Sar(bb) = Str(bb) 'fill the
array
Next
Bb = 1
'now call the sub and notice that we always must pass the first address
with index 1
Call Teststr(bb , Sar(1))

Call Test2 'call sub
Test2 'or use
without CALL
'Note that when calling a sub without the statement CALL, the enclosing
parentheses must be left out
Bb = 1
Call Test(1 , Bb) 'call sub
with parameters
Print Bb 'print value
that is changed

'now test all the variable types
Call Testvar(bb , I , W , L , S)
Print Bb ; I ; W ; L ; S

'now pass an array
'note that it must be passed by reference
Testarray 2 , Ar(1)
Print "ar(1) = " ; Ar(1)
Print "ar(3) = " ; Ar(3)

$notypecheck ' turn off
type checking
Testvar Bb , I , I , I , S
'you can turn off type checking when you want to pass a block of memory
$typecheck 'turn it
back on
End

'End your code with the subprograms

535BASCOM Language Reference

© 2008 MCS Electronics

'Note that the same variables and names must be used as the declared
ones

Sub Test(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print
passed variables
 B1 = 3 'change
value
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

Sub Test2 'sub without
parameters
 Print "No parameters"
End Sub

Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As
String)
 Local X As Byte
 X = 5 'assign
local
 B = X
 I = -1
 W = 40000
 L = 20000
 S = "test"
End Sub

Sub Testarray(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print
passed variables
 B1 = 3 'change
value of element with index 1
 B1(1) = 3 'specify the
index which does the same as the line above
 B1(3) = 3 'modify
other element of array
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

'notice the empty() to indicate that a string array is passed
Sub Teststr(b As Byte , Dl() As String)
 Dl(b) = Dl(b) + "add"
End Sub

6.163 DEFxxx

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b Define BIT

DEFBYTE c Define BYTE

DEFINT I Define INTEGER

DEFWORD x Define WORD

536 BASCOM-AVR

© 2008 MCS Electronics

DEFLNG l Define LONG

DEFSNG s Define SINGLE

DEFDBL z Define DOUBLE

Remarks
While you can DIM each individual variable you use, you can also let the compiler
handle it for you.
All variables that start with a certain letter will then be dimmed as the specified type.

Example
Defbit b : DefInt c 'default type for bit and integers

Set b1 'set bit to 1

c = 10 'let c = 10

6.164 DEFLCDCHAR

Action
Define a custom LCD character.

Syntax
DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

Remarks
char Constant representing the character (0-7).

r1-r8 The row values for the character.

You can use the LCD designer to build the characters.

It is important that a CLS follows the DEFLCDCHAR statement(s).
So make sure you use the DEFLCDCHAR before your CLS statement.

Special characters can be printed with the Chr () function.

LCD Text displays have a 64 byte memory that can be used to show your own custom
characters. Each character uses 8 bytes as the character is an array from 8x8 pixels.
You can create a maximum of 8 characters this way. Or better said : you can show a
maximum of 8 custom characters at the same time. You can redefine characters in
your program but with the previous mentioned restriction.
A custom character can be used to show characters that are not available in the LCD
font table. For example a Û.
You can also use custom characters to create a bar graph or a music note.

See also
Tools LCD designer

Partial Example
Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '

76

361

76

537BASCOM Language Reference

© 2008 MCS Electronics

replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

6.165 DEG2RAD

Action
Converts an angle in to radians.

Syntax
var = DEG2RAD(Source)

Remarks
Var A numeric variable that is assigned with the degrees of variable

Source.

Source The single or double variable to get the degrees of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates DEG2RAD function

'---

Dim S As Single
S = 90

S = Deg2Rad(s)
Print S
S = Rad2deg(s)
Print S
End

690

538 BASCOM-AVR

© 2008 MCS Electronics

6.166 DELAY

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.
The delay time is ca. 1000 microseconds.

Interrupts that occur frequently and/or take a long time to process, will let the
delay last longer.
When you need a very accurate delay, you need to use a timer.

See also
WAIT , WAITMS

Example
'---

'name : delay.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: DELAY, WAIT, WAITMS
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Ddrb = &HFF 'port B as
output
Portb = 255
Print "Starting"
Delay 'lets wait
for a very short time
Print "Now wait for 3 seconds"
Portb = 0
Wait 3
Print "Ready"
Waitms 10 'wait 10

809 811

539BASCOM Language Reference

© 2008 MCS Electronics

milliseconds
Portb = 255
End

6.167 DIM

Action
Dimension a variable.

Syntax
DIM var AS [XRAM/SRAM/ERAM]type [AT location/variable] [OVERLAY]

Remarks
Var Any valid variable name such as b1, i or longname. var can also

be an array : ar(10) for example.

Type Bit, Byte, Word, Integer, Long, Single, Double or String

XRAM Specify XRAM to store variable into external memory

SRAM Specify SRAM to store variable into internal memory (default)

ERAM Specify ERAM to store the variable into EEPROM

OVERLAY Specify that the variable is overlaid in memory.

location The address of name of the variable when OVERLAY is used.

A string variable needs an additional length parameter:
Dim s As XRAM String * 10

In this case, the string can have a maximum length of 10 characters. Internally one
additional byte is needed to store the end of string marker. Thus in the example
above, 11 bytes will be used to store the string.

Note that BITS can only be stored in internal memory.

You may also specify IRAM. IRAM is the place in memory where the registers are
located : absolute address 0 - 31. BASCOM uses most of these addresses, depending
on the instructions/options you use. For a $TINY chip it makes sense to use IRAM
since there is NO SRAM in most tiny AVR chips (TINY15 for example). You may also
use to IRAM to overlay registers in memory.

SCOPE
The scope for DIM is global. So no matter where you use the DIM statements, the
variable will end up as a global visible variable that is visible in all modules,
procedures and functions.
When you need a LOCAL variable that is local to the procedure or function, you can
use LOCAL .
Since LOCAL variables are stored on the frame, it takes more code to dynamic
generate and clean up these variables.

AT
The optional AT parameter lets you specify where in memory the variable must be
stored. When the memory location already is occupied, the first free memory location
will be used. You need to look in the report file to see where the variable is located in

308

644

540 BASCOM-AVR

© 2008 MCS Electronics

memory.

OVERLAY
The OVERLAY option will not use any variable space. It will create a sort of phantom
variable:

Dim x as Long at $60 'long uses 60,61,62 and 63 hex of SRAM

Dim b1 as Byte at $60 OVERLAY
Dim b2 as Byte at $61 OVERLAY

B1 and B2 are no real variables! They refer to a place in memory. In this case to
&H60 and &H61. By assigning the phantom variable B1, you will write to memory
location &H60 that is used by variable X.
So to define it better, OVERLAY does create a normal usable variable, but it will be
stored at the specified memory location which could be already be occupied by
another OVERLAY variable, or by a normal variable.

Take care with the OVERLAY option. Use it only when you understand it.

You can also read the content of B1: Print B1
This will print the content of memory location &H60.

By using a phantom variable you can manipulate the individual bytes of real
variables.

Another example
Dim L as Long at &H60
Dim W as Word at &H62 OVERLAY

W will now point to the upper two bytes of the long.

Using variable name instead of address
As variables can be moved though the program during development it is not always
convenient to specify an address. You can also use the name of the variable :

DIM W as WORD
Dim B as BYTE AT W OVERLAY

Now B is located at the same address as variable W.

For XRAM variables, you need additional hardware : an external RAM and address
decoder chip.

For ERAM variables, it is important to understand that these are not normal variables.
ERAM variables serve as a way to simple read and write the EEPROM memory. You
can use READEEPROM and WRITEEEPROM for that purpose too.

ERAM variables only can be assigned to SRAM variables, and ERAM variables can be
assigned to SRAM variables. You can not use an ERAM variable as you would use a
normal variable.

Dim b as byte, bx as ERAM byte
B= 1
Bx=b ' write to EEPROM

541BASCOM Language Reference

© 2008 MCS Electronics

B=bx ' read from EEPROM

See Also
CONST , LOCAL

Example
'---

'name : dim.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: DIM
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B1 As Bit 'bit can be
0 or 1
Dim A As Byte 'byte range
from 0-255
Dim C As Integer 'integer
range from -32767 - +32768
Dim L As Long
Dim W As Word
Dim S As String * 11 'length can
be up to 11 characters

'new feature : you can specify the address of the variable
Dim K As Integer At &H120
'the next dimensioned variable will be placed after variable s
Dim Kk As Integer

'Assign bits
B1 = 1 'or
Set B1 'use set

'Assign bytes
A = 12
A = A + 1

'Assign integer
C = -12
C = C + 100
Print C

W = 50000

483 644

542 BASCOM-AVR

© 2008 MCS Electronics

Print W

'Assign long
L = 12345678
Print L

'Assign string
S = "Hello world"
Print S
End

6.168 DIR

Action
Returns the filename that matches the specified file mask.

Syntax
sFile = DIR(mask)
sFile = DIR()

Remarks
SFile A string variable that is assigned with the filename.

Mask A file mask with a valid DOS file mask like *.TXT

Use *.* to select all files.

The first function call needs a file mask. All other calls do not need the file mask. In
fact when you want to get the next filename from the directory, you must not provide
a mask after the first call.

Dir() returns an empty string when there are no more files or when no file name is
found that matches the mask.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , DISKSIZE , GET , PUT , FILELEN , FILEDATE ,
FILETIME , FILEDATETIME , WRITE , INPUT

ASM
Calls _Dir ; with file mask _Dir0 ; without file mask

Input X : points to the string with
the mask

Z : points to the target variable

Output

Partial Example

'Lets have a look at the file we created
Print "Dir function demo"

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 546 582 688 571 570

572 571 814 622

543BASCOM Language Reference

© 2008 MCS Electronics

S = Dir("*.*")
'The first call to the DIR() function must contain a file mask
' The * means everything.
'
While Len(s)> 0 ' if there was a file found
 Print S ;" ";Filedate();" ";Filetime();" ";Filelen()
' print file , the date the fime was created/changed , the time and the size of the file
 S = Dir()' get next
Wend

6.169 DISABLE

Action
Disable specified interrupt.

Syntax
DISABLE interrupt

Remarks
Interrupt Description

INT0 External Interrupt 0

INT1 External Interrupt 1

OVF0,TIMER0, COUNTER0 TIMER0 overflow interrupt

OVF1,TIMER1,

COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt

COMPARE1A,OC1A TIMER1 OUTPUT COMPARE A interrupt

COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt

SPI SPI interrupt

URXC Serial RX complete interrupt

UDRE Serial data register empty interrupt

UTXC Serial TX complete interrupt

SERIAL Disables URXC, UDRE and UTXC

ACI Analog comparator interrupt

ADC A/D converter interrupt

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.

To enable the enabling and disabling of individual interrupts use ENABLE
INTERRUPTS.
The ENABLE INTERRUPTS serves as a master switch. It must be enabled/set in order
for the individual interrupts to work.

The interrupts that are available will depend on the used microprocessor. The
available interrupts are shown automatically in the editor.

See also
ENABLE 562

544 BASCOM-AVR

© 2008 MCS Electronics

Example
'---

'name : serint.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : serial interrupt example for AVR
'micro : 90S8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "8535def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Cmaxchar = 20 'number of
characters

Dim B As Bit 'a flag for
signalling a received character
Dim Bc As Byte 'byte
counter
Dim Buf As String * Cmaxchar 'serial
buffer
Dim D As Byte

'Buf = Space(20)
'unremark line above for the MID() function in the ISR
'we need to fill the buffer with spaces otherwise it will contain
garbage

Print "Start"

On Urxc Rec_isr 'define
serial receive ISR
Enable Urxc 'enable
receive isr

Enable Interrupts 'enable
interrupts to occur

Do
 If B = 1 Then 'we received
something
 Disable Serial
 Print Buf 'print
buffer
 Print Bc 'print
character counter

545BASCOM Language Reference

© 2008 MCS Electronics

 'now check for buffer full
 If Bc = Cmaxchar Then 'buffer full
 Buf = "" 'clear
 Bc = 0 'rest
character counter
 End If

 Reset B 'reset
receive flag
 Enable Serial
 End If
Loop

Rec_isr:
 Print "*"
 If Bc < Cmaxchar Then 'does it fit
into the buffer?
 Incr Bc 'increase
buffer counter

 If Udr = 13 Then 'return?
 Buf = Buf + Chr(0)
 Bc = Cmaxchar
 Else
 Buf = Buf + Chr(udr) 'add to
buffer
 End If

 ' Mid(buf , Bc , 1) = Udr
 'unremark line above and remark the line with Chr() to place
 'the character into a certain position
 'B = 1 'set flag
 End If
 B = 1 'set flag
Return

6.170 DISKFREE

Action
Returns the free size of the Disk

Syntax
lFreeSize = DISKFREE()

Remarks
lFreeSize A Long Variable, which is assigned with the available Bytes on the Disk

in Bytes

This functions returns the free size of the disk in Bytes.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,

615 669 370 574 679 638

642 643 566 580 569 718 356 352

546 BASCOM-AVR

© 2008 MCS Electronics

KILL , DISKSIZE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME
 , DIR , FILELEN , WRITE , INPUT

ASM
Calls _GetDiskFreeSize

Input none

Output r16-r19: Long-Value of free Bytes

Partial Example
Dim Gbtemp1 As Byte ' scratch byte
Gbtemp1 =Initfilesystem(1) ' we must init the filesystem once
If Gbtemp1 > 0 Then
 Print#1 ,"Error "; Gbtemp1
Else
 Print#1 ," OK"
Print "Disksize : ";Disksize() ' show disk size in bytes
Print "Disk free: ";Diskfree() ' show free space too
End If

6.171 DISKSIZE

Action
Returns the size of the Disk

Syntax
lSize = DISKSIZE()

Remarks
lSize A Long Variable, which is assigned with the capacity of the disk in

Bytes

This functions returns the capacity of the disk.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME

 , DIR , FILELEN , WRITE , INPUT

ASM
Calls _GetDiskSize

Input none

Output 16-r19: Long-Value of capacity in Bytes

Partial Example

627 546 582 688 570 572

571 542 571 814 622

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 570 572

571 542 571 814 622

547BASCOM Language Reference

© 2008 MCS Electronics

Dim Gbtemp1 As Byte' scratch byte
Gbtemp1 = Initfilesystem(1)' we must init the filesystem once
If Gbtemp1 > 0 Then
 Print#1 ,"Error "; Gbtemp1
Else
 Print#1 ," OK"
Print "Disksize : "; Disksize()' show disk size in bytes
Print "Disk free: "; Diskfree()' show free space too
End If

6.172 DISPLAY

Action
Turn LCD display on or off.

Syntax
DISPLAY ON / OFF

Remarks
The display is turned on at power up.

See also
LCD

Example
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim
'REMOVE the above command for the real program !!
'$sim is used for faster simulation

629

548 BASCOM-AVR

© 2008 MCS Electronics

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

549BASCOM Language Reference

© 2008 MCS Electronics

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '
replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

550 BASCOM-AVR

© 2008 MCS Electronics

6.173 DO-LOOP

Action
Repeat a block of statements until condition is true.

Syntax
DO
 statements
LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.
The DO-LOOP is always performed at least once.

The main part of your code can best be executed within a DO.. LOOP.
You could use a GOTO also but it is not as clear as the DO LOOP.
Main:
 ' code
GOTO Main

Do
 'Code
Loop

Of course in the example above, it is simple to see what happens, but when the code
consist of a lot of lines of code, it is not so clear anymore what the GOTO Main does.

See also
EXIT , WHILE-WEND , FOR-NEXT

Example
'---

'name : do_loop.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: DO, LOOP
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

567 813 576

551BASCOM Language Reference

© 2008 MCS Electronics

Dim A As Byte

A = 1 'assign a
var
Do 'begin a
do..loop
 Print A 'print var
 Incr A 'increase by
one
Loop Until A = 10 'do until
a=10
End

'You can write a never-ending loop with the following code
Do
 'Your code goes here
Loop

6.174 DriveCheck

Action
Checks the Drive, if it is ready for use

Syntax
bErrorCode = DRIVECHECK()

Remarks
bErrorCode A Byte Variable, which is assigned with the return value of the

function

This function checks the drive, if it is ready for use (for example, whether a compact
flash card is inserted). The functions returns 0 if the drive can be used, otherwise an
error code is returned. For Error code see section Error codes.

See also
DriveReset , DriveInit , DriveGetIdentity , DriveWriteSector ,
DriveReadSector

ASM
Calls _DriveCheck

Input none

Output r25: Errorcode C-Flag: Set on Error

Partial Example
Dim bError as Byte
bError = DriveCheck()

553 553 552 555

554

552 BASCOM-AVR

© 2008 MCS Electronics

6.175 DriveGetIdentity

Action
Returns the Parameter information from the Card/Drive

Syntax
bErrorCode = DRIVEGETIDENTIFY(wSRAMPointer)

Remarks
BErrorCode A Byte Variable, which is assigned with the error code of the function

wSRAMPoint
er

A Word Variable, which contains the SRAM address (pointer) , to which
the information of the Drive should be written

The Identify Drive Function returns the parameter information (512 Bytes) from the
Compact Flash Memory Card/Drive and writes it to SRAM starting at the address, to
which the content of the variable wSRAMPointer is pointing. This information are for
example number of sectors of the card, serial number and so on. Refer to the Card/
Drive manual for further information. The functions returns 0 if no error occurred. For
Error code see section Error codes.

Note: For meaning of wSRAMPointer see Note in DriveReadSector

See also
DriveCheck , DriveReset , DriveInit , DriveWriteSector , DriveReadSector

ASM
Calls _DriveGetIdentity

Input Z: SRAM-Address of buffer
*)

Output r25: Errorcode C-Flag: Set on Error

 *) Please note: This is not the address of wSRAMPointer, it is its content, which
is the starting-address of the buffer.

Partial Example
Dim bError as Byte
Dim aBuffer(512) as Byte' Hold Sector to and from CF-Card
Dim wSRAMPointer as Word' Address-Pointer for write

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
wSRAMPointer =VarPtr(aBuffer(1))

' Now read the parameter Information from CF-Card
bError = DriveGetIdentity(wSRAMPointer)

551 553 553 555

554

553BASCOM Language Reference

© 2008 MCS Electronics

6.176 DriveInit

Action
Sets the AVR-Hardware (PORTs, PINs) attached to the Drive and resets the Drive.

Syntax
bErrorCode = DRIVEINIT()

Remarks
BErrorCode A Byte Variable, which is assigned with the error code of the

function

Set the Ports and Pins attaching the Drive for Input/Output and give initial values to
the output-pins. After that the Drive is reset. Which action is done in this function
depends of the drive and its kind of connection to the AVR. The functions returns 0 if
no error occurred. For Error code see section Error codes.

See also
DriveCheck , DriveReset , DriveGetIdentity , DriveWriteSector ,
DriveReadSector

ASM
Calls _DriveInit

Input none

Output r25: Errorcode C-Flag: Set on Error

Partial Example
Dim bError as Byte
bError = DriveInit()

6.177 DriveReset

Action
Resets the Drive.

Syntax
bErrorCode = DRIVERESET()

Remarks
BErrorCode A Byte Variable, which is assigned with the error code of the function

This function resets the drive and brings it to an initial state. The functions returns 0
if no error occurred. For Error code see section Error codes.

See also

551 553 552 555

554

554 BASCOM-AVR

© 2008 MCS Electronics

DriveCheck , DriveInit , DriveGetIdentity , DriveWriteSector ,
DriveReadSector

ASM
Calls _DriveReset

Input none

Output r25: Errorcode C-Flag: Set on Error

Partial Example
Dim bError as Byte
bError = DriveReset()

6.178 DriveReadSector

Action
Read a Sector (512 Bytes) from the (Compact Flashcard) Drive

Syntax
bErrorCode = DRIVEREADSECTOR(wSRAMPointer, lSectorNumber)

Remarks
bErrorCode A Byte Variable, which is assigned with the error code of the

function

wSRAMPointer A Word Variable, which contains the SRAM address (pointer) , to
which the Sector from the Drive should be written

lSectorNumber A Long Variable, which give the sector number on the drive be
transfer.

Reads a Sector (512 Bytes) from the Drive and write it to SRAM starting at the
address, to which the content of the variable wSRAMPointer is pointing. The functions
returns 0 if no error occurred. For Error code see section Error codes.

Note: wSRAMPointer is not the variable, to which the content of the desired drive-
sector should be written, it is the Word-Variable/Value which contains the SRAM
address of the range, to which 512 Bytes should be written from the Drive. This gives
you the flexibility to read and write every SRAM-Range to and from the drive, even it
is not declared as variable. If you know the SRAM-Address (from the compiler report)
of a buffer you can pass this value directly, otherwise you can get the address with
the BASCOM-function VARPTR (see example).

See also
DriveCheck , DriveReset , DriveInit , DriveGetIdentity , DriveWriteSector

ASM
Calls _DriveReadSector

Input Z: SRAM-Address of X: Address of Long-variable with

551 553 552 555

554

551 553 553 552

555

555BASCOM Language Reference

© 2008 MCS Electronics

buffer
*)

sectornumber

Output r25: Errorcode C-Flag: Set on Error

This is not the address of wSRAMPointer, it is its content, which is the starting-
address of the buffer.

Partial Example
Dim bError as Byte
Dim aBuffer(512)as Byte' Hold Sector to and from CF-Card
Dim wSRAMPointer as Word' Address-Pointer for write
Dim lSectorNumber as Long' Sector Number

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
wSRAMPointer =VarPtr(aBuffer(1))

' Set Sectornumber, sector 32 normally holds the Boot record sector of first partition
lSectorNumber = 32

' Now read in sector 32 from CF-Card
bError = DriveReadSector(wSRAMPointer , lSectorNumber)
' Now Sector number 32 is in Byte-Array bBuffer

6.179 DriveWriteSector

Action
Write a Sector (512 Bytes) to the (Compact Flashcard) Drive

Syntax
bErrorCode = DRIVEWRITESECTOR(wSRAMPointer, lSectorNumber)

Remarks
bErrorCode A Byte Variable, which is assigned with the error code of the function

wSRAMPointe
r

A Word Variable, which contains the SRAM address (pointer), from
which the Sector to the Drive should be written

lSectorNumb
er

A Long Variable, which give the sector number on the drive to
transfer.

Writes a Sector (512 Bytes) from SRAM starting at the address, to which the content
of the variable wSRAMPointer is pointing to the Drive to sector number
lSectornumber. The functions returns 0 if no error occurred. For Error code see
section Error codes.

 For the meaning of wSRAMPointer see Note in DriveReadSector

See also
DriveCheck , DriveReset , DriveInit , DriveGetIdentity , DriveReadSector551 553 553 552

554

556 BASCOM-AVR

© 2008 MCS Electronics

ASM
Calls _DriveWriteSector

Input Z: SRAM-Address of
buffer
*)

X: Address of Long-variable with
sectornumber

Output r25: Errorcode C-Flag: Set on Error

 This is not the address of wSRAMPointer, it is its content, which is the starting-
address of the buffer.

Partial Example
Dim bError as Byte
Dim aBuffer(512) as Byte' Hold Sector to and from CF-Card
Dim wSRAMPointer as Word' Address-Pointer for read
Dim lSectorNumber as Long' Sector Number

' give Address of first Byte of the 512 Byte Buffer to Word-Variable
wSRAMPointer =VarPtr(aBuffer(1))

' Set Sectornumber

lSectorNumber = 3

' Now Write in sector 3 from CF-Card
bError = DriveWriteSector(wSRAMPointer , lSectorNumber)

6.180 DTMFOUT

Action
Sends a DTMF tone to the compare1 output pin of timer 1.

Syntax
DTMFOUT number, duration
DTMFOUT string , duration

Remarks
Number A variable or numeric constant that is equivalent with the number of

your phone keypad.

Duration Time in mS the tone will be generated.

string A string variable that holds the digits to be dialed.

The DTMFOUT statement is based on an Atmel application note (314).

It uses TIMER1 to generate the dual tones. As a consequence, timer1 can not be used
in interrupt mode by your application. You may use it for other tasks.

Since the TIMER1 is used in interrupt mode you must enable global interrupts with
the statement ENABLE INTERRUPTS . The compiler could do this automatic but562

557BASCOM Language Reference

© 2008 MCS Electronics

when you use other interrupts as well it makes more sense that you enable them at
the point where you want them to be enabled.

The working range is from 4 MHz to 10 MHz system clock(xtal).

The DTMF output is available on the TIMER1 OCA1 pin. For a 2313 this is PORTB.3.

Take precautions when connecting the output to your telephone line.

 Ring voltage can be dangerous!

System Resources used
TIMER1 in interrupt mode

See also
NONE

ASM
The following routine is called from mcs.lib : _DTMFOUT
R16 holds the number of the tone to generate, R24-R25 hold the duration time in mS.
Uses R9,R10,R16-R23

The DTMF table is remarked in the source and shown for completeness, it is
generated by the compiler however with taking the used crystal in consideration.

Example
'---

'name : dtmfout.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates DTMFOUT statement based on AN
314 from Atmel
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'since the DTMFOUT statement uses the TIMER1 interrupt you must enable

558 BASCOM-AVR

© 2008 MCS Electronics

'global interrupts
'This is not done by the compiler in case you have more ISRs
Enable Interrupts

'the first sample does dtmfout in a loop
Dim Btmp As Byte , Sdtmf As String * 10

Sdtmf = "12345678" ' number to
dial

Do

Dtmfout Sdtmf , 50 ' lets dial a
number
' ^ duration is 50 mS for each digit
Waitms 1000 ' wait for
one second

' As an alternative you can send single digits
' there are 16 dtmf tones
 For Btmp = 0 To 15
 Dtmfout Btmp , 50 ' dtmf out
on PORTB.3 for the 2313 for 500 mS
 'output is on the OC1A output pin
 Waitms 500 ' wait 500
msec
Next
Loop
End

'the keypad of most phones looks like this :
'1 2 3 optional are A
'4 5 6 B
'7 8 9 C
'* 0 # D

'the DTMFOUT translates a numeric value from 0-15 into :
' numeric value phone key
' 0 0
' 1 1
' 2 2
' 3 3
' etc.
' 9 9
' 10 *
' 11 #
' 12 A
' 13 B
' 14 C
' 15 D

6.181 ECHO

Action
Turns the ECHO on or off while asking for serial INPUT.

Syntax
ECHO value

559BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Value ON to enable ECHO and OFF to disable ECHO.

When you use INPUT to retrieve values for variables, all info you type can be echoed
back. In this case you will see each character you enter. When ECHO is OFF, you will
not see the characters you enter.

In versions 1.11.6.2 and earlier the ECHO options were controlled by an additional
parameter on the INPUT statement line like : INPUT "Hello " , var NOECHO

This would suppress the ECHO of the typed data. The new syntax works by setting
ECHO ON and OFF. For backwards compatibility, using NOECHO on the INPUT
statement line will also work. In effect it will turn echo off and on automatic.

By default, ECHO is always ON.

See also
INPUT

ASM
The called routines from mcs.lib are _ECHO_ON and _ECHO_OFF

The following ASM is generated when you turn ECHO OFF.
Rcall Echo_Off
This will set bit 3 in R6 that holds the ECHO state.

When you turn the echo ON the following code will be generated
Rcall Echo_On

Example
'---

'name : input.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INPUT, INPUTHEX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

622

560 BASCOM-AVR

© 2008 MCS Electronics

Dim V As Byte , B1 As Byte
Dim C As Integer , D As Byte
Dim S As String * 15

Input "Use this to ask a question " , V
Input B1 'leave out
for no question

Input "Enter integer " , C
Print C

Inputhex "Enter hex number (4 bytes) " , C
Print C
Inputhex "Enter hex byte (2 bytes) " , D
Print D

Input "More variables " , C , D
Print C ; " " ; D

Input C Noecho 'supress
echo

Input "Enter your name " , S
Print "Hello " ; S

Input S Noecho 'without
echo
Print S
End

6.182 ELSE

Action
Executed if the IF-THEN expression is false.

Syntax
ELSE

Remarks
You don't have to use the ELSE statement in an IF THEN .. END IF structure.
You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN
...
ELSEIF a = 2 THEN
..
ELSEIF b1 > a THEN
...
ELSE
...
END IF

See also
IF , END IF , SELECT-CASE613 613 719

561BASCOM Language Reference

© 2008 MCS Electronics

Example
'---

'name : if_then.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: IF, THEN, ELSE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , B1 As Byte

Input "Number " , A 'ask for
number
If A = 1 Then 'test number
 Print "You got it!"
End If

If A = 0 Then 'test again
 Print "Wrong" 'thats wrong
Else 'print this
if a is not 0
 Print "Almost?"
End If

Rem You Can Nest If Then Statements Like This
B1 = 0
If A = 1 Then
 If B1 = 0 Then
 Print "B1=0"
 End If
Else
 Print "A is not 0"
End If

Input "Number " , A
If A = 1 Then '
 Print "Ok"
Elseif A = 2 Then 'use elseif
for more tests
 Print "2" : A = 3
Elseif A = 3 Then
 Print "3"
End If

If A.1 = 1 Then Print "Bit 1 set" 'test for a

562 BASCOM-AVR

© 2008 MCS Electronics

bit
End

6.183 ENABLE

Action
Enable specified interrupt.

Syntax
ENABLE interrupt

Remarks
Interrupt Description

INT0 External Interrupt 0

INT1 External Interrupt 1

OVF0,TIMER0,
COUNTER0

TIMER0 overflow interrupt

OVF1,TIMER1,

COUNTER1

TIMER1 overflow interrupt

CAPTURE1, ICP1 INPUT CAPTURE TIMER1 interrupt

COMPARE1A,OC1A or

COMPARE1, OC1

TIMER1 OUTPUT COMPARE A interrupt

In case of only one compare interrupt

COMPARE1B,OC1B TIMER1 OUTPUT COMPARE B interrupt

SPI SPI interrupt

URXC Serial RX complete interrupt

UDRE Serial data register empty interrupt

UTXC Serial TX complete interrupt

SERIAL Disables URXC, UDRE and UTXC

ACI Analog comparator interrupt

ADC A/D converter interrupt

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.

Other chips might have additional interrupt sources such as INT2, INT3 etc.

See also
DISABLE

Partial Example
Enable Interrupts 'allow interrupts to be set
Enable Timer1 'enables the TIMER1 interrupt

543

563BASCOM Language Reference

© 2008 MCS Electronics

6.184 ENCODER

Action
Reads pulses from a rotary encoder.

Syntax
Var = ENCODER(pin1, pin2, LeftLabel, RightLabel , wait)

Remarks
Var The target variable that is assigned with the result

Pin1 and pin2 These are the names of the PIN registers to which the output of the
encoder is connected. Both pins must be on the same PIN register.
So Pinb.0 and Pinb.7 is valid while PinB.0 and PinA.0 is not.

LeftLabel The name of the label that will be called/executed when a transition
to the left is encoded.

RightLabel The name of the label that will be called/executed when a transition
to the right is encountered.

wait A value of 0 will only check for a rotation/pulse. While a value of 1
will wait until a user actual turns the encoder. A value of 1 will thus
halt your program.

There are some conditions you need to fulfill :
· The label that is called by the encoder must be terminated by a RETURN

statement.
· The pin must work in the input mode. By default all pins work in input mode.
· The pull up resistors must be activated by writing a logic 1 to the port

registers as the examples shows.

Rotary encoders come in many flavors. Some encoders also have a build in switch.

A sample of an encoder

564 BASCOM-AVR

© 2008 MCS Electronics

Since the microprocessor has internal pull up resistors, you do not need external pull
up resistors for most encoders.

Example
'---

'name : encoder.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of encoder function
'micro : Mega128
'suited for demo : yes
'commercial addon needed : no
'An encoder has 2 outputs and a ground
'We connect the outputs to pinb.0 and pinb.1
'You may choose different pins as long as they are at the same PORT
'The pins must be configured to work as input pins
'This function works for all PIN registers
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Print "Encoder test"
Dim B As Byte
'we have dimmed a byte because we need to maintain the state of the
encoder

Portb = &B11 ' activate
pull up registers

Do
 B = Encoder(pinb.0 , Pinb.1 , Links , Rechts , 1)
 ' ^--- 1 means wait for
change which blocks programflow
 ' ^--------^---------- labels which are
called
 ' ^-------^---------------------------- port PINs
 Print B

565BASCOM Language Reference

© 2008 MCS Electronics

 Waitms 10
Loop
End

'so while you can choose PINB0 and PINB7,they must be both member of
PINB
'this works on all PIN registers

Links:
 Print "left rotation"
Return

Rechts:
 Print "right rotation"
Return
End

6.185 END

Action
Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

When an END statement is encountered, all interrupts are disabled and a never-
ending loop is generated.
When a STOP is encountered the interrupts will not be disabled. Only a never ending
loop will be created.

In an embedded application you probably do not want to end the application. But
there are cases where you do want to end the application. For example when you
control some motors, and you determine a failure, you do not want to use a
Watchdog reset because then the failure will occur again. In that case you want to
display an error, and wait for service personal to fix the failure.

It is important to notice that without the END statement, your program can behave
strange in certain cases. For example :
Print "Hello"

Note that there is no END statement. So what will happen? The program will print
"Hello". But as the compiler places the library code behind the program code, the
micro will execute the library code ! But without being called. As most library code
are assembler sub routines that end with a RET, your program will most likely crash,
or reset and repeat for ever.

See also
STOP

Example

775

566 BASCOM-AVR

© 2008 MCS Electronics

Print "Hello" 'print this
End 'end program execution and disable all interrupts

6.186 EOF

Action
Returns the End of File Status.

Syntax
bFileEOFStatus = EOF(#bFileNumber)

Remarks
bFileEOFStatus (Byte) A Byte Variable, which assigned with the EOF Status

bFileNumber (Byte) Number of the opened file

This functions returns information about the End of File Status

Return
value

Status

0 NOT EOF

255 EOF

In case of an error (invalid file number) 255 (EOF) is returned too.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileEOF

Input r24: Filenumber

Output r24: EOF Status r25: Error code

C-Flag: Set on Error

Partial Example
Ff =Freefile()' get file handle
Open "test.txt" For Input As #ff ' we can use a constant for the file too
Print Lof(#ff); " length of file"
Print Fileattr(#ff); " file mode"' should be 1 for input
Do
 LineInput #ff , S ' read a line
 ' line input is used to read a line of text from a file
 Print S ' print on terminal emulator
Loop Until Eof(#ff)<> 0

615 669 370 574 679 638

642 643 580 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

567BASCOM Language Reference

© 2008 MCS Electronics

'The EOF() function returns a non-zero number when the end of the file is reached
'This way we know that there is no more data we can read
Close #ff

6.187 EXIT

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND, SUB..END SUB or FUNCTION..END
FUNCTION.

Syntax
EXIT FOR
EXIT DO
EXIT WHILE
EXIT SUB
EXIT FUNCTION

Remarks
With the EXIT statement you can exit a structure at any time.

Example
'---

'name : exit.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: EXIT
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B1 As Byte , A As Byte

B1 = 50 'assign var
For A = 1 To 100 'for next
loop
 If A = B1 Then 'decision
 Exit For 'exit loop
 End If
Next
Print "Exit the FOR..NEXT when A was " ; A

A = 1

568 BASCOM-AVR

© 2008 MCS Electronics

Do
 Incr A
 If A = 10 Then
 Exit Do
 End If
Loop
Print "Loop terminated"
End

6.188 EXP

Action
Returns e(the base of the natural logarithm) to the power of a single or double
variable.

Syntax
Target = EXP(source)

Remarks
Target The single or double that is assigned with the Exp() of the target.

Source The source to get the Exp of.

See also
LOG , LOG10

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega88
'suited for demo : no, but without the DOUBLE, it works for
DEMO too in M48
'commercial addon needed : no
'purpose : demonstrates EXP function
'---

$regfile = "m88def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim X As Single

X = Exp(1.1)
Print X

647 648

569BASCOM Language Reference

© 2008 MCS Electronics

'prints 3.004166124
X = 1.1
X = Exp(x)
Print X
'prints 3.004164931

Dim D As Double

D = Exp(1.1)
Print D
'prints 3.00416602394643
D = 1.1
D = Exp(d)
Print D
'prints 3.00416602394638
End

6.189 FILEATTR

Action
Returns the file open mode.

Syntax
bFileAttribut = FILEATTR(bFileNumber)

Remarks
bFileAttribut (Byte) File open mode, See table

bFileNumber (Byte) Number of the opened file

This functions returns information about the File open mode

Return value Open mode

1 INPUT

2 OUTPUT

8 APPEND

32 BINARY

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileAttr

Input r24: Filenumber

Output 24: File open mode r25: Errorcode

C-Flag: Set on Error

615 669 370 574 679 638

642 643 566 580 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

570 BASCOM-AVR

© 2008 MCS Electronics

Partial Example
'open the file in BINARY mode
Open "test.biN" For Binary As #2
Print Fileattr(#2); " file mode"' should be 32 for binary
Put #2 , Sn ' write a single
Put #2 , Stxt ' write a string
Close #2

6.190 FILEDATE

Action
Returns the date of a file

Syntax
sDate = FILEDATE ()
sDate = FILEDATE (file)

Remarks
Sdate A string variable that is assigned with the date.

File The name of the file to get the date of.

This function works on any file when you specify the filename. When you do not
specify the filename, it works on the current selected file of the DIR() function.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , DISKSIZE , GET , PUT , FILELEN , FILETIME ,
FILEDATETIME , DIR , WRITE , INPUT

ASM
Calls _FileDateS ; with filename _FileDateS0 ; for current file from DIR

()

Input X : points to the string with
the mask

Z : points to the target variable

Output

Partial Example
Print "File demo"
Print Filelen("josef.img");" length" ' length of file
Print Filetime("josef.img");" time" ' time file was changed
Print Filedate("josef.img");" date" ' file date

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 546 582 688 571 572

571 542 814 622

571BASCOM Language Reference

© 2008 MCS Electronics

6.191 FILEDATETIME

Action
Returns the file date and time of a file

Syntax
Var = FILEDATETIME ()
Var = FILEDATETIME (file)

Remarks
Var A string variable or byte array that is assigned with the file date and time

of the specified file

File The name of the file to get the date time of.

When the target variable is a string, it must be dimensioned with a length of at least
17 bytes.
When the target variable is a byte array, the array size must be at least 6 bytes.

When you use a numeric variable, the internal file date and time format will be used.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILELEN , FILEDATE , FILETIME ,
DIR , WRITE , INPUT

ASM
Calls _FileDateTimeS _FileDateTimeS0

Input

Output

Calls _FileDateTimeB _FileDateTimeB0

Input

Output

Example
See fs_subfunc_decl_lib.bas in the samples dir.

6.192 FILELEN

Action
Returns the size of a file

Syntax
lSize = FILELEN ()
lSize = FILELEN (file)

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 571 570 572

542 814 622

572 BASCOM-AVR

© 2008 MCS Electronics

Remarks
lSize A Long Variable, which is assigned with the file size in bytes of the file.

File A string or string constant to get the file length of.

This function works on any file when you specify the filename. When you do not
specify the filename, it works on the current selected file of the DIR() function.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME

 , DIR , WRITE , INPUT

ASM
Calls _FileLen

Input

Output

Partial Example
Print "File demo"
Print Filelen("josef.img");" length" ' length of file
Print Filetime("josef.img");" time" ' time file was changed
Print Filedate("josef.img");" date" ' file date

6.193 FILETIME

Action
Returns the time of a file

Syntax
sTime = FILETIME ()
sTime = FILETIME (file)

Remarks
Stime A string variable that is assigned with the file time.

File The name of the file to get the time of.

This function works on any file when you specify the filename. When you do not
specify the filename, it works on the current selected file of the DIR() function.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILELEN , FILEDATE , FILEDATETIME

 , DIR , WRITE , INPUT

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 570 572

571 542 814 622

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 571 570

571 542 814 622

573BASCOM Language Reference

© 2008 MCS Electronics

ASM
Calls _FileTimeS ; with file param _FileTimeS0 ; current file

Input X : points to the string with
the mask

Z : points to the target variable

Output

Example
Print "File demo"
Print Filelen("josef.img");" length" ' length of file
Print Filetime("josef.img");" time" ' time file was changed
Print Filedate("josef.img");" date" ' file date

6.194 FIX

Action
Returns for values greater then zero the next lower value, for values less then zero
the next upper value.

Syntax
var = FIX(x)

Remarks
Var A single variable that is assigned with the FIX of variable x.

X The single to get the FIX of.

See Also
INT , ROUND , SGN

Example
'---
'name : round_fix_int.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : ROUND,FIX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify the used micro
$crystal = 4000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 32 ' default use 32 for the hardware stack
$swstack = 10 ' default use 10 for the SW stack
$framesize = 40 ' default use 40 for the frame space

Dim S As Single , Z As Single
For S = -10 To 10 Step 0.5
 Print S ; Spc(3) ; Round(s) ; Spc(3) ; Fix(s) ; Spc(3) ; Int(s)
Next
End

625 714 740

574 BASCOM-AVR

© 2008 MCS Electronics

6.195 FLUSH

Action
Write current buffer of File to Card and updates Directory

Syntax
FLUSH #bFileNumber
FLUSH

Remarks
BFileNumber Filenumber, which identifies an opened file such as #1 or #ff

This function writes all information of an open file, which is not saved yet to the Disk.
Normally the Card is updated, if a file will be closed or changed to another sector.

When no file number is specified, all open files will be flushed.

See also
INITFILESYSTEM , OPEN , CLOSE , PRINT , LINE INPUT , LOC , LOF ,
EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileFlush _FilesAllFlush

Input r24: filenumber

Output r25: Errorcode C-Flag: Set on Error

Partial Example
$include "startup.inc"

'open the file in BINARY mode
Open "test.biN" For Binary As #2
Put #2 , B ' write a byte
Put #2 , W ' write a word
Put #2 , L ' write a long
Ltemp = Loc(#2) + 1 ' get the position of the next byte
Print Ltemp ;" LOC"' store the location of the file pointer
Print Lof(#2);" length of file"
Print Fileattr(#2);" file mode"' should be 32 for binary
Put #2 , Sn ' write a single
Put #2 , Stxt ' write a string

Flush #2 ' flush to disk
Close #2

615 669 370 679 638 642 643

566 580 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

575BASCOM Language Reference

© 2008 MCS Electronics

6.196 FORMAT

Action
Formats a numeric string.

Syntax
target = FORMAT(source, "mask")

Remarks
target The string that is assigned with the formatted string.

source The source string that holds the number.

mask The mask for formatting the string.

When spaces are in the mask, leading spaces will be added when the
length of the mask is longer than the source string.
" " '8 spaces when source is "123" it will be " 123".
When a + is in the mask (after the spaces) a leading + will be assigned
when the number does not start with the - sign.
"+" with number "123" will be "+123".
When zero's are provided in the mask, the string will be filled with
leading zero;s.
" +00000" with 123 will be " +00123"
An optional decimal point can be inserted too:
"000.00" will format the number 123 to "001.23"
Combinations can be made but the order must be : spaces, + , 0 an
optional point and zero's.

When you do not want to use the overhead of the single or double, you can use the
LONG. You can scale the value by a factor 100.
Then use FORMAT to show the value.
For example : Dim L as Long, X as Long , Res as Long
L = 1
X = 2
Res = L / X
Now this would result in 0 because an integer or Long does not support floating point.
But when you scale L with a factor 100, you get :
L= 100
X = 2
Res = L / X

Now Res will be 50. To show it the proper way we can use FORMAT. Format works
with strings so the variables need to be converted to string first.

Dim S1 as string * 16 : s1 = Str(Res)
Print Format(s1,"000.00")

See also
FUSING

Example
'---

581

576 BASCOM-AVR

© 2008 MCS Electronics

'name : format.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : FORMAT
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 10
Dim I As Integer

S = "12345"
S = Format(s , "+")
Print S

S = "123"
S = Format(s , "00000")
Print S

S = "12345"
S = Format(s , "000.00")
Print S

S = "12345"
S = Format(s , " +000.00")
Print S
End

6.197 FOR-NEXT

Action
Execute a block of statements a number of times.

Syntax
FOR var = start TO end [STEP value]

Remarks
var The variable counter to use

start The starting value of the variable var

end The ending value of the variable var

value The value var is increased/decreased with each time NEXT is
encountered.

577BASCOM Language Reference

© 2008 MCS Electronics

· For incremental loops, you must use TO.
· For decremental loops, you must use a negative step size.
· You must end a FOR structure with the NEXT statement.
· The use of STEP is optional. By default, a value of 1 is used.

When you know in advance how many times a piece of code must be executed, the
FOR..NEXT loop is convenient to use.
You can exit a FOR .. NEXT loop with the EXIT FOR statement.

It is important that the if you use variables for START and END, that these are of the
same data type. So for example:
Dim x, as byte, st as byte, ed as byte
FOR x = st TO ED ' this is ok since all variables are of the same data type

Dim x as Byte, st as Word, Ed as Long
FOR x = st TO ED ' this is NOT ok since all variables are of different data type.

The reason is that when the condition is evaluated, it will create a compare on 2
bytes, while you actually want to have a word since the end variable is a word.

There are also other alternatives. You can use a Do.. Loop for example :

Dim Var As Byte
Do
 'code
 Incr Var
Loop Until Var = 10

There are various way to get the result you need.

See also
EXIT FOR

Example
'---

'name : for_next.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: FOR, NEXT
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack

567

578 BASCOM-AVR

© 2008 MCS Electronics

$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , B1 As Byte , C As Integer

For A = 1 To 10 Step 2
 Print "This is A " ; A
Next A

Print "Now lets count down"
For C = 10 To -5 Step -1
 Print "This is C " ; C
Next

Print "You can also nest FOR..NEXT statements."
For A = 1 To 10
 Print "This is A " ; A
 For B1 = 1 To 10
 Print "This is B1 " ; B1
 Next ' note that
you do not have to specify the parameter
Next A
End

6.198 FOURTHLINE

Action
Set LCD cursor to the start of the fourth line.

Syntax
FOURTHLINE

Remarks
Only valid for LCD displays with 4 lines.

See also
HOME , UPPERLINE , LOWERLINE , THIRDLINE , LOCATE

Example
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first letter also works

607 806 652 793 647

579BASCOM Language Reference

© 2008 MCS Electronics

6.199 FRAC

Action
Returns the fraction of a single.

Syntax
var = FRAC(single)

Remarks
var A numeric single variable that is assigned with the fraction of

variable single.

single The single variable to get the fraction of.

The fraction is the right side after the decimal point of a single.

See Also
INT

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates FRAC function
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim X As Single

X = 1.123456
Print X
Print Frac(x)
End

625

580 BASCOM-AVR

© 2008 MCS Electronics

6.200 FREEFILE

Action
Returns a free Filenumber.

Syntax
bFileNumber = FREEFILE()

Remarks
bFileNumber A byte variable , which can be used for opening next file

This function gives you a free file number, which can be used for file – opening
statements. In contrast to VB this file numbers start with 128 and goes up to 255.
Use range 1 to 127 for user defined file numbers to avoid file number conflicts with
the system numbers from FreeFile()

This function is implemented for compatility with VB.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _GetFreeFileNumber

Input none

Output r24: Filenumber r25: Errorcode

C-Flag: Set on Error

Partial Example
Ff =Freefile() ' get file handle
Open"test.txt" For Input As #ff ' we can use a constant for the file too
Print Lof(#ff);" length of file"
Print Fileattr(#ff);" file mode" ' should be 1 for input
Do
 LineInput #ff , S ' read a line
 ' line input is used to read a line of text from a file
 Print S ' print on terminal emulator
Loop UntilEof(ff)<> 0
'The EOF() function returns a non-zero number when the end of the file is reached
'This way we know that there is no more data we can read
Close #ff

615 669 370 574 679 638

642 643 566 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

581BASCOM Language Reference

© 2008 MCS Electronics

6.201 FUSING

Action
FUSING returns a formatted string of a single value.

Syntax
target = FUSING(source, "mask")

Remarks
target The string that is assigned with the formatted string.

source The source variable of the type SINGLE that will be converted

mask The mask for formatting the string.

The mask is a string constant that always must start with #.
After the decimal point you can provide the number of digits you want
the string to have:
#.### will give a result like 123.456. Rounding is used when you use
the # sign. So 123.4567 will be converted into 123.457

When no rounding must be performed, you can use the & sign instead
of the # sign. But only after the DP.
#.&&& will result in 123.456 when the single has the value 123.4567

When the single is zero, 0.0 will be returned, no matter how the mask is set up.

See also
FORMAT , STR

Example
'---

'name : fusing.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : FUSING
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As Single , Z As String * 10

575 775

582 BASCOM-AVR

© 2008 MCS Electronics

'now assign a value to the single
S = 123.45678
'when using str() you can convert a numeric value into a string
Z = Str(s)
Print Z 'prints
123.456779477

Z = Fusing(s , "#.##")

'now use some formatting with 2 digits behind the decimal point with
rounding
Print Fusing(s , "#.##") 'prints
123.46

'now use some formatting with 2 digits behind the decimal point without
rounding
Print Fusing(s , "#.&&") 'prints
123.45

'The mask must start with #.
'It must have at least one # or & after the point.
'You may not mix & and # after the point.
End

6.202 GET

Action
Reads a byte from the hardware or software UART.
Reads data from a file opened in BINARY mode.

Syntax
GET #channel, var
GET #channel, var , [pos] [, length]

Remarks
GET in combination with the software/hardware UART reads one byte from the UART.
GET in combination with the AVR-DOS file system is very flexible and versatile. It
works on files opened in BINARY mode and you can reads all data types.

#channel A channel number, which identifies an opened file. This can be a hard
coded constant or a variable.

Var The variable or variable array that will be assigned with the data from
the file

Pos This is an optional parameter that may be used to specify the position
where the reading must start from. This must be a long variable.

Length This is an optional parameter that may be used to specify how many
bytes must be read from the file.

By default you only need to provide the variable name. When the variable is a byte, 1
byte will be read. When the variable is a word or integer, 2 bytes will be read. When
the variable is a long or single, 4 bytes will be read. When the variable is a string, the
number of bytes that will be read is equal to the dimensioned size of the string. DIM
S as string * 10 , would read 10 bytes.

Note that when you specify the length for a string, the maximum length is 254. The

583BASCOM Language Reference

© 2008 MCS Electronics

maximum length for a non-string array is 65535.

Partial Example :

GET #1 , var ,,2 ' read 2 bytes, start at current position
GET #1, var , PS ' start at position stored in long PS
GET #1, var , PS, 2 ' start at position stored in long PS and read 2 bytes

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , DISKSIZE , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
current position goto new position first

Byte:

_FileGetRange_1

Input:

 r24: File number

 X: Pointer to variable

 T-Flag cleared

_FileGetRange_1

Input:

 r24: File number

 X: Pointer to variable

 r16-19 (A): New position (1-based)

 T-Flag Set

Word/Integer:

_FileGetRange_2

Input:

 r24: File number

 X: Pointer to variable

 T-Flag cleared

_FileGetRange_2

Input:

 r24: File number

 X: Pointer to variable

 r16-19 (A): New position (1-based)

 T-Flag Set

Long/Single:

_FileGetRange_4

Input:

 r24: File number

 X: Pointer to variable

 T-Flag cleared

_FileGetRange_4

Input:

 r24: File number

 X: Pointer to variable

 r16-19 (A): New position (1-based)

 T-Flag Set

String (<= 255 Bytes) with fixed length

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 546 688 570 572

571 542 571 814 622

584 BASCOM-AVR

© 2008 MCS Electronics

_FileGetRange_Bytes

Input:

 r24: File number

 r20: Count of Bytes

 X: Pointer to variable

 T-Flag cleared

_FileGetRange_Bytes

Input:

 r24: File number

r20: Count of bytes

 X: Pointer to variable

 r16-19 (A): New position (1-based)

 T-Flag Set

Array (> 255 Bytes) with fixed length

_FileGetRange

Input:

 r24: File number

 r20/21: Count of Bytes

 X: Pointer to variable

 T-Flag cleared

_FileGetRange

Input:

 r24: File number

 r20/21: Count of bytes

 X: Pointer to variable

 r16-19 (A): New position (1-based)

 T-Flag Set

Output from all kind of usage:
 r25: Error Code
 C-Flag on Error
 X: requested info

Partial Example
'for the binary file demo we need some variables of different types
Dim B As Byte , W As Word , L As Long , Sn As Single , Ltemp As Long
Dim Stxt As String * 10
B = 1 : W = 50000 : L = 12345678 : Sn = 123.45 : Stxt = "test"

'open the file in BINARY mode
Open "test.biN"for Binary As #2
Put#2 , B ' write a byte
Put#2 , W ' write a word
Put#2 , L ' write a long
Ltemp = Loc(#2) + 1 ' get the
position of the next byte
Print Ltemp ; " LOC" ' store the
location of the file pointer
Print Seek(#2) ; " = LOC+1"

Print Lof(#2) ; " length of file"
Print Fileattr(#2) ; " file mode" ' should be
32 for binary
Put #2 , Sn ' write a
single
Put #2 , Stxt ' write a
string

585BASCOM Language Reference

© 2008 MCS Electronics

Flush #2 ' flush to
disk
Close #2

'now open the file again and write only the single
Open "test.bin" For Binary As #2
L = 1 'specify the file position
B = Seek(#2 , L) ' reset is
the same as using SEEK #2,L
Get#2 , B ' get the byte
Get#2 , W ' get the word
Get#2 , L ' get the long
Get#2 , Sn ' get the single
Get#2 , Stxt ' get the string
Close #2

6.203 GETADC

Action
Retrieves the analog value from the specified channel.

Syntax
var = GETADC(channel [,offset])

Remarks
Var The variable that is assigned with the A/D value. This should be a Word

or other 16 bit variable.

Channel The channel to measure. Might be higher then 7 on some chips. The
Mega2560 has 16 channels. So the range is 0-15 on a Mega2560.

Offset An optional numeric variable of constant that specifies gain or mode.
This option has effect on newer AVR micro’s only. The offset will be
added by the channel value and inserted into the ADMUX register. This
way you can control gain.

The GETADC() function only will work on microprocessors that have an A/D converter.
The pins of the A/D converter input can be used for digital I/O too.
But it is important that no I/O switching is done while using the A/D converter.

Make sure you turn on the AD converter with the START ADC statement or by
setting the proper bit in the ADC configuration register.

Some micro’s have more then 7 channels. This is supported as well. The ADCSRB
register contains a bit named MUX5 that must be set when a channel higher then 7 is
used. The compiler (lib routine) will handle this automatic. This is true for new chips
like Mega1280, Mega2560 and probably other new chips with 100 pins.

An example on how to read singled ended input on a Mega1280:
 W = Getadc(0 , 64) ' from data sheet : 100000 ADC8
 W = Getadc(1, 64) ' from data sheet : 100001 ADC9
This will read channel 0 and 1. The offset is 64 in order to use singled ended input.
ADC8 is portK.0

GetADC() returns a word variable since the A/D converter data registers consist of 2
registers. The resolution depends on the chip.

769

586 BASCOM-AVR

© 2008 MCS Electronics

The variable ADCD can be used to access the data register directly. The compiler will
handle access to the byte registers automatically.

See also
CONFIG ADC

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,16,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :
'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off

380

587BASCOM Language Reference

© 2008 MCS Electronics

'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar
AREF pin

'Using the additional param on chip that do not have the internal
reference will have no effect.

6.204 GETATKBD

Action
Reads a key from a PC AT keyboard.

Syntax
var = GETATKBD()

Remarks
var The variable that is assigned with the key read from the

keyboard.

It may be a byte or a string variable.
When no key is pressed a 0 will be returned.

The GETAKBD() function needs 2 input pins and a translation table for the keys. You
can read more about this at the CONFIG KEYBOARD compiler directive.

The Getatkbd function will wait for a pressed key. When you want to escape from the
waiting loop you can set the ERR bit from an interrupt routine for example.

Getatkbd is using 2 bits from register R6 : bit 4 and 5 are used to hold the shift and
control key status.

AT KEYBOARD SCANCODES

Table reprinted with permission of Adam Chapweske

http://panda.cs.ndsu.nodak.edu/~achapwes

 KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [54 FO,54

B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,
F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,
F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,
F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,
F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,
F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,
F0,7A

H 33 F0,33 TAB 0D F0,0D U ARROW E0,75 E0,
F0,75

423

588 BASCOM-AVR

© 2008 MCS Electronics

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,
F0,6B

J 3B F0,3B L SHFT 12 FO,12 D ARROW E0,72 E0,
F0,72

K 42 F0,42 L CTRL 14 FO,14 R ARROW E0,74 E0,
F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,
F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,
F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 05 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 06 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 01 F0,01] 5B F0,5B

3 26 F0,26 F10 09 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 ' 52 F0,52

5 2E F0,2E F12 07 F0,07 , 41 F0,41

6 36 F0,36 PRNT

SCRN

E0,12
,

E0,7C

E0,F0,

7C,E0,
F0,12

. 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE E1,14
,77,

E1,
F0,14
,
F0,77

-NONE-

These are the usable scan codes from the keyboard. If you want to implement F1 ,
you look at the generated scan code : 05 hex. So in the table, at position 5+1=6, you
write the value for F1.

In the sample program below, you can find the value 200. When you now press F1,
the value form the table will be used so 200 will be returned.

See also

589BASCOM Language Reference

© 2008 MCS Electronics

CONFIG KEYBOARD , GETATKBDRAW

Example
'---

'name : getatkbd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PC AT-KEYBOARD Sample
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "8535def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'For this example :
'connect PC AT keyboard clock to PIND.2 on the 8535
'connect PC AT keyboard data to PIND.4 on the 8535

'The GetATKBD() function does not use an interrupt.
'But it waits until a key was pressed!

'configure the pins to use for the clock and data
'can be any pin that can serve as an input
'Keydata is the label of the key translation table
Config Keyboard = Pind.2 , Data = Pind.4 , Keydata = Keydata

'Dim some used variables
Dim S As String * 12
Dim B As Byte

'In this example we use SERIAL(COM) INPUT redirection
$serialinput = Kbdinput

'Show the program is running
Print "hello"

Do
 'The following code is remarked but show how to use the GetATKBD()
function
 ' B = Getatkbd() 'get a byte and store it into byte variable
 'When no real key is pressed the result is 0
 'So test if the result was > 0
 ' If B > 0 Then
 ' Print B ; Chr(b)
 ' End If

 'The purpose of this sample was how to use a PC AT keyboard
 'The input that normally comes from the serial port is redirected to
the
 'external keyboard so you use it to type

423 591

590 BASCOM-AVR

© 2008 MCS Electronics

 Input "Name " , S
 'and show the result
 Print S
 'now wait for the F1 key , we defined the number 200 for F1 in the
table
 Do
 B = Getatkbd()
 Loop Until B <> 0
 Print B
Loop
End

'Since we do a redirection we call the routine from the redirection
routine
'
Kbdinput:
'we come here when input is required from the COM port
'So we pass the key into R24 with the GetATkbd function
' We need some ASM code to save the registers used by the function
$asm
push r16 ; save used register
push r25
push r26
push r27

Kbdinput1:
rCall _getatkbd ; call the function
tst r24 ; check for zero
breq Kbdinput1 ; yes so try again
pop r27 ; we got a valid key so restore registers
pop r26
pop r25
pop r16
$end Asm
'just return
Return

'The tricky part is that you MUST include a normal call to the routine
'otherwise you get an error
'This is no clean solution and will be changed
B = Getatkbd()

'This is the key translation table

Keydata:
'normal keys lower case
Data 0 , 0 , 0 , 0 , 0 , 200 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , &H5E , 0
Data 0 , 0 , 0 , 0 , 0 , 113 , 49 , 0 , 0 , 0 , 122 , 115 , 97 , 119 ,
50 , 0
Data 0 , 99 , 120 , 100 , 101 , 52 , 51 , 0 , 0 , 32 , 118 , 102 , 116 ,
114 , 53 , 0
Data 0 , 110 , 98 , 104 , 103 , 121 , 54 , 7 , 8 , 44 , 109 , 106 , 117
, 55 , 56 , 0
Data 0 , 44 , 107 , 105 , 111 , 48 , 57 , 0 , 0 , 46 , 45 , 108 , 48 ,
112 , 43 , 0
Data 0 , 0 , 0 , 0 , 0 , 92 , 0 , 0 , 0 , 0 , 13 , 0 , 0 , 92 , 0 , 0
Data 0 , 60 , 0 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 ,
0 , 0

'shifted keys UPPER case
Data 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Data 0 , 0 , 0 , 0 , 0 , 81 , 33 , 0 , 0 , 0 , 90 , 83 , 65 , 87 , 34 ,
0

591BASCOM Language Reference

© 2008 MCS Electronics

Data 0 , 67 , 88 , 68 , 69 , 0 , 35 , 0 , 0 , 32 , 86 , 70 , 84 , 82 ,
37 , 0
Data 0 , 78 , 66 , 72 , 71 , 89 , 38 , 0 , 0 , 76 , 77 , 74 , 85 , 47 ,
40 , 0
Data 0 , 59 , 75 , 73 , 79 , 61 , 41 , 0 , 0 , 58 , 95 , 76 , 48 , 80 ,
63 , 0
Data 0 , 0 , 0 , 0 , 0 , 96 , 0 , 0 , 0 , 0 , 13 , 94 , 0 , 42 , 0 , 0
Data 0 , 62 , 0 , 0 , 0 , 8 , 0 , 0 , 49 , 0 , 52 , 55 , 0 , 0 , 0 , 0
Data 48 , 44 , 50 , 53 , 54 , 56 , 0 , 0 , 0 , 43 , 51 , 45 , 42 , 57 ,
0 , 0

6.205 GETATKBDRAW

Action
Reads a key from a PC AT keyboard.

Syntax
var = GETATKBDRAW()

Remarks
var The variable that is assigned with the key read from the

keyboard.

It may be a byte or a string variable.
When no key is pressed a 0 will be returned.

The GETATKBDRAW() function needs 2 input pins and a translation table for the keys.
You can read more about this at the CONFIG KEYBOARD compiler directive.

The GetatkbdRAW function will return RAW data from a PS/2 keyboard or Mouse.

While GetatKBD is intended to wait for pressed keys, GetATkbdRAW just returns raw
PS/2 data so you can use your own code to process the data.

See Also
GETATKBD , CONFIG KEYBOARD

Example
See GETATKBD.BAS

6.206 GETDSTIP

Action
Returns the IP address of the peer.

Syntax
Result = GETDSTIP(socket)

Remarks

423

587 423

592 BASCOM-AVR

© 2008 MCS Electronics

Result A LONG variable that will be assigned with the IP address of the peer or
destination IP address.

Socket The socket number (0-3)

When you are in server mode, it might be desirable to detect the IP address of the
connecting client.
You can use this for logging, security, etc.

The IP number MSB, is stored in the LS byte of the variable.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN ,
GETDSTPORT

Partial Example
Dim L as Long
L = GetdstIP(i) ' store current IP number of socket i

6.207 GETDSTPORT

Action
Returns the port number of the peer.

Syntax
Result = GETDSTPort(socket)

Remarks
Result A WORD variable that is assigned with the port number of the peer or

destination port number.

Socket The socket number.

When you are in server mode, it might be desirable to detect the port number of the
connecting client.
You can use this for logging, security, etc.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN , GETDSTIP

Partial Example
Dim P as Word
P = GetdstPORT(i)' store current port number of socket i

456 600 752 756

787 788 372 755

592

456 600 752 756

787 788 372 755

591

593BASCOM Language Reference

© 2008 MCS Electronics

6.208 GETKBD

Action
Scans a 4x4 matrix keyboard and return the value of the key pressed.

Syntax
var = GETKBD()

Remarks
Var The numeric variable that is assigned with the value read

from the keyboard

The GETKBD() function can be attached to a port of the uP.
You can define the port with the CONFIG KBD statement.
A schematic for PORTB is shown below

Note that the port pins can be used for other tasks as well. But you might need to set
the port direction of those pins after you have used getkbd(). For example the LCD
pins are set to output at the start of your program. A call to getkbd() would set the
pins to input.

By setting DDR.x register you can set the pins to the proper state again.
As an alternative you can use CONFIG PIN or CONFIG PORT.

When no key is pressed 16 will be returned.

When using the 2 additional rows, 24 will be returned when no key is pressed.

On the STK200 this might not work since other hardware is connected too that
interferes.

You can use the Lookup() function to convert the byte into another value. This
because the GetKBD() function does not return the same value as the key pressed. It
will depend on which keyboard you use.

Sometimes it can happen that it looks like a key is pressed while you do not press a

650

594 BASCOM-AVR

© 2008 MCS Electronics

key. This is caused by the scanning of the pins which happens at a very high
frequency.

It will depend on the used keyboard. You can add series resistors with a value of 470-
1K

The routine will wait for 100 mS by default after the code is retrieved. With CONFIG
KBD you can set this delay.

See also
CONFIG KBD

Example
'---

'name : getkbd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : GETKBD
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'specify which port must be used
'all 8 pins of the port are used
Config Kbd = Portb

'dimension a variable that receives the value of the pressed key
Dim B As Byte

'loop for ever
Do
 B = Getkbd()
 'look in the help file on how to connect the matrix keyboard
 'when you simulate the getkbd() it is important that you press/click
the keyboard button
 ' before running the getkbd() line !!!
 Print B
 'when no key is pressed 16 will be returned
 'use the Lookup() function to translate the value to another one
' this because the returned value does not match the number on the
keyboad
Loop
End

421

595BASCOM Language Reference

© 2008 MCS Electronics

6.209 GETRC

Action
Retrieves the value of a resistor or a capacitor.

Syntax
var = GETRC(pin , number)

Remarks
Var The word variable that is assigned with the value.

Pin The PIN name for the R/C is connection.

Number The port pin for the R/C is connection.

The name of the input port (PIND for example) must be passed even when all the
other pins are configured for output. The pin number must also be passed. This may
be a constant or a variable.

A circuit is shown below:

The capacitor is charged and the time it takes to discharge it is measured and stored
in the variable. Now when you vary either the resistor or the capacitor, different
values will be returned. This function is intended to return a relative position of a
resistor wiper, not to return the value of the resistor. But with some calculations it
can be retrieved.

See also
NONE

Example
'---

'name : getrc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates how to get the value of a
resistor
'micro : AT90S8535
'suited for demo : yes
'commercial addon needed : no
' The library also shows how to pass a variable for use with individual
port
' pins. This is only possible in the AVR architecture and not in the
8051

596 BASCOM-AVR

© 2008 MCS Electronics

'---

$regfile = "8535def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'The function works by charging a capacitor and uncharge it little by
little
'A word counter counts until the capacitor is uncharged.
'So the result is an indication of the position of a pot meter not the
actual
'resistor value

'This example used the 8535 and a 10K ohm variable resistor connected to
PIND.4
'The other side of the resistor is connected to a capacitor of 100nF.
'The other side of the capacitor is connected to ground.
'This is different than BASCOM-8051 GETRC! This because the architecture
is different.

'The result of getrc() is a word so DIM one
Dim W As Word
Do
 'the first parameter is the PIN register.
 'the second parameter is the pin number the resistor/capacitor is
connected to
 'it could also be a variable!
 W = Getrc(pind , 4)
 Print W
 Wait 1
Loop

6.210 GETRC5

Action
Retrieves the RC5 remote code from a IR transmitter.

Syntax
GETRC5(address, command)

Uses
TIMER0

Remarks
address The RC5 address

command The RC5 command.

597BASCOM Language Reference

© 2008 MCS Electronics

This statement is based on the AVR 410 application note. Since a timer is needed for
accurate delays and background processing TIMER0 is used by this statement.

Also the interrupt of TIMER0 is used by this statement.
TIMER0 can be used by your application since the values are preserved by the
statement but a delay can occur. The interrupt can not be reused.

GETRC5 supports extended RC5 code reception.

The SFH506-36 is used from Siemens. Other types can be used as well. The
TSOP1736 has been tested with success.

For a good operation use the following values for the filter.

Most audio and video systems are equipped with an infra-red remote control.

The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button is
pressed on the remote control transmitter.
Five system bits hold the system address so that only the right system responds to
the code.

598 BASCOM-AVR

© 2008 MCS Electronics

Usually, TV sets have the system address 0, VCRs the address 5 and so on. The
command sequence is six bits long, allowing up to 64 different commands per
address.

The bits are transmitted in bi-phase code (also known as Manchester code).

For extended RC5 code, the extended bit is bit 6 of the command.
The toggle bit is stored in bit 7 of the command.

See also
CONFIG RC5 , RC5SEND , RC6SEND

Example
'---

'name : rc5.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : based on Atmel AVR410 application note
'micro : 90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'use byte library for smaller code
$lib "mcsbyte.lbx"

'This example shows how to decode RC5 remote control signals
'with a SFH506-35 IR receiver.

'Connect to input to PIND.2 for this example
'The GETRC5 function uses TIMER0 and the TIMER0 interrupt.
'The TIMER0 settings are restored however so only the interrupt can not
'be used anymore for other tasks

'tell the compiler which pin we want to use for the receiver input

Config Rc5 = Pind.2

'the interrupt routine is inserted automatic but we need to make it
occur
'so enable the interrupts
Enable Interrupts

'reserve space for variables

443 691 695

599BASCOM Language Reference

© 2008 MCS Electronics

Dim Address As Byte , Command As Byte
Print "Waiting for RC5..."

Do
 'now check if a key on the remote is pressed
 'Note that at startup all pins are set for INPUT
 'so we dont set the direction here
 'If the pins is used for other input just unremark the next line
 'Config Pind.2 = Input
 Getrc5(address , Command)

 'we check for the TV address and that is 0
 If Address = 0 Then
 'clear the toggle bit
 'the toggle bit toggles on each new received command
 'toggle bit is bit 7. Extended RC5 bit is in bit 6
 Command = Command And &B01111111
 Print Address ; " " ; Command
 End If
Loop
End

6.211 GETTCPREGS

Action
Read a register value from the W3100A

Syntax
var = GETTCPREGS(address, bytes)

Remarks
Address The address of the W3100A register.

bytes The number of bytes to read.

Most W3100A options are implemented with BASCOM statements or functions. When
there is a need to read from the W3100A register you can use the GETTCPREGS
function. It can read multiple bytes. It is important that you specify the highest
address. This because the registers must be read starting with the highest address.

See also
SETTCPREGS

ASM
NONE

Example
See SETTCPREGS

726

726

600 BASCOM-AVR

© 2008 MCS Electronics

6.212 GETSOCKET

Action
Creates a socket for TCP/IP communication.

Syntax
Result = GETSOCKET(socket, mode, port, param)

Remarks
Result A byte that is assigned with the socket number you requested. When

the operation fails, it will return 255.

Mode The socket mode. Use sock_stream(1), sock_dgrm(2), sock_ipl_raw
(3), sock) or macl_raw(4). The modes are defined with constants.

For TCP/IP communication you need to specify sock_stream or the
equivalent value 1.

For UDP communication you need to specify sock_dgrm or the
equivalent value 2.

Port This is the local port that will be used for the communication. You may
specify any value you like but each socket must have it’s own local port
number.

When you use 0, the value of LOCAL_PORT will be used.

LOCAL_PORT is assigned with CONFIG TCPIP.

After the assignment, LOCAL_PORT will be increased by 1. So the
simplest way is to setup a local port with CONFIG TCPIP, and then use
0 for port.

Param Optional parameter. Use 0 for default.

128 : send/receive broadcast message in UDP
64 : use register value with designated timeout value
32 : when not using no delayed ack
16: when not using silly window syndrome

Consult the W3100A documentation for more information.

After the socket has been initialized you can use SocketConnect to connect to a client,
or SocketListen to act as a server.

See also
CONFIG TCPIP , SOCKETCONNECT , SOCKETSTAT , TCPWRITE ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN

Partial Example

I = Getsocket(0 , Sock_stream , 5000 , 0)' get a new socket

456 752 756 787

788 786 372 755

601BASCOM Language Reference

© 2008 MCS Electronics

6.213 GLCDCMD

Action
Sends a command byte to the SED graphical LCD display.

Syntax
GLCDCMD byte

Remarks
byte A variable or numeric constant to send to the display.

With GLCDCMD you can write command bytes to the display. This is convenient to
control the display when there is no specific statement available.

You need to include the glibSED library with :
$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD , LCDAT , GLCDDATA

Example
NONE

6.214 GLCDDATA

Action
Sends a data byte to the SED graphical LCD display.

Syntax
GLCDDATA byte

Remarks
byte A variable or numeric constant to send to the display.

With GLCDDATA you can write data bytes to the display. This is convenient to control
the display when there is no specific statement available.
You need to include the glibSED library with :

$LIB "glibsed.lbx"

See also
CONFIG GRAPHLCD , LCDAT , GLCDCMD

Example

426 632 601

426 632 601

602 BASCOM-AVR

© 2008 MCS Electronics

NONE

6.215 GOSUB

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks
Label The name of the label where to branch to.

With GOSUB, your program jumps to the specified label, and continues execution at
that label.
When it encounters a RETURN statement, program execution will continue after the
GOSUB statement.

See also
GOTO , CALL , RETURN

Example
'---

'name : gosub.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: GOTO, GOSUB and RETURN
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Goto Continue
Print "This code will not be executed"

Continue: 'end a label
with a colon
Print "We will start execution here"
Gosub Routine
Print "Back from Routine"
End

603 358 710

603BASCOM Language Reference

© 2008 MCS Electronics

Routine: 'start a
subroutine
 Print "This will be executed"
Return 'return from
subroutine

6.216 GOTO

Action
Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOSUB

Example
Dim A As Byte
Start: 'a label must end with a colon
A = A + 1 'increment a
If A < 10 Then 'is it less than 10?
 Goto Start 'do it again
End If 'close IF
Print "Ready" 'that is it

6.217 GRAY2BIN

Action
Returns the numeric value of a Gray code.

Syntax
var1 = GRAY2BIN(var2)

Remarks
var1 Variable that will be assigned with the binary value of the Grey code.

var2 A variable in Grey format that will be converted.

Gray code is used for rotary encoders. Gray2bin() works for byte, integer, word and
long variables.

602

604 BASCOM-AVR

© 2008 MCS Electronics

See also
BIN2GRAY

ASM
Depending on the data type of the target variable the following routine will be called
from mcs.lbx:
_Bin2grey for bytes , _Bin2Grey2 for integer/word and _Bin2grey4 for longs.

Example
'---

'name : graycode.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show the Bin2Gray and Gray2Bin functions
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'Bin2Gray() converts a byte,integer,word or long into grey code.
'Gray2Bin() converts a gray code into a binary value

Dim B As Byte ' could be
word,integer or long too

Print "BIN" ; Spc(8) ; "GREY"
For B = 0 To 15
 Print B ; Spc(10) ; Bin2gray(b)
Next

Print "GREY" ; Spc(8) ; "BIN"
For B = 0 To 15
 Print B ; Spc(10) ; Gray2bin(b)
Next
End

6.218 HEX

Action
Returns a string representation of a hexadecimal number.

Syntax
var = HEX(x)

349

605BASCOM Language Reference

© 2008 MCS Electronics

Remarks
var A string variable.

X A numeric variable of data type Byte, Integer, Word, Long,
Single or Double.

See also
HEXVAL , VAL , STR , BIN , BINVAL

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim B As Byte , J As Integer , W As Word , L As Long
B = 1 : J = &HF001
W = &HF001
L = W

Print B ; Spc(3) ; Hex(b)
Print J ; Spc(3) ; Hex(j)
Print W ; Spc(3) ; Hex(w)
Print L ; Spc(3) ; Hex(l)
End

6.219 HEXVAL

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax
var = HEXVAL(x)

Remarks
Var The numeric variable that must be assigned.

X The hexadecimal string that must be converted.

In VB you can use the VAL() function to convert hexadecimal strings.

605 806 775 347 348

606 BASCOM-AVR

© 2008 MCS Electronics

But since that would require an extra test for the leading &H signs that are required
in VB, a separate function was designed.

See also
HEX , VAL , STR , BIN , BINVAL

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim L As Long

Dim S As String * 8
Do
 Input "Hex value " , S
 L = Hexval(s)
 Print L ; Spc(3) ; Hex(l)
Loop

6.220 HIGH

Action
Retrieves the most significant byte of a variable.

Syntax
var = HIGH(s)

Remarks
Var The variable that is assigned with the MSB of var S.

S The source variable to get the MSB from.

See also
LOW , HIGHW

Example
Dim I As Integer , Z As Byte
I = &H1001
Z = High(i) ' is 10 hex

604 806 775 347 348

651 607

607BASCOM Language Reference

© 2008 MCS Electronics

or 16 dec
End

6.221 HIGHW

Action
Retrieves the most significant word of a long variable.

Syntax
var = HIGHW(s)

Remarks
Var The variable that is assigned with the MS word of var S.

S The source variable to get the MSB from.

There is no LowW() function. This because when you assign a Long to a word or
integer, only the lower part is assigned. For this reason you do not need a Loww()
function. W=L will do the same.

See also
LOW , HIGH

Example
Dim X As Word , L As Long
L = &H12345678
X = Highw(l)
Print Hex(x)

6.222 HOME

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER | LOWER | THIRD | FOURTH

Remarks
If only HOME is used than the cursor will be set to the upper line.
You may also specify the first letter of the line like: HOME U

See also
CLS , LOCATE

For a complete example see LCD

Partial Example

651 606

366 647

629

608 BASCOM-AVR

© 2008 MCS Electronics

Locate 2 , 1 'set cursor
position
Lcd "*" 'display this
Home Upper 'select line
1 and return home

6.223 I2CINIT

Action
Initializes the SCL and SDA pins.

Syntax
I2CINIT

Remarks
By default the SCL and SDA pins are in the right state when you reset the chip. Both
the PORT and the DDR bits are set to 0 in that case.
When you need to change the DDR and/or PORT bits you can use I2CINIT to bring the
pins in the proper state again.

ASM
The I2C routines are located in i2c.lib. _i2c_init is called.

See also
I2CSEND , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE , I2C_TWI
Library for using TWI

Example
Config Sda = Portb.5
Config Scl = Portb.7
I2cinit

Dim X As Byte , Slave As Byte
X = 0 'reset
variable
Slave = &H40 'slave
address of a PCF 8574 I/O IC
I2creceive Slave , X 'get the
value
Print X 'print it

6.224 I2CRECEIVE

Action
Receives data from an I2C serial slave device.

Syntax
I2CRECEIVE slave, var
I2CRECEIVE slave, var , b2W, b2R

609 610 610 610 610

826

609BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Slave A byte, Word/Integer variable or constant with the slave address

from the I2C-device.

Var A byte or integer/word variable that will receive the information from
the I2C-device.

b2W The number of bytes to write.

Be cautious not to specify too many bytes!

b2R The number of bytes to receive.

Be cautious not to specify too many bytes!

You must specify the base address of the slave chip because the read/write bit is set/
reset by the software.
When an error occurs, the internal ERR variable will return 1. Otherwise it will be set
to 0.

ASM
The I2C routines are located in the i2c.lib/i2c.lbx files.

See also
I2CSEND , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Example
Config Sda = Portb.5
Config Scl = Portb.7
Dim X As Byte , Slave As Byte
X = 0 'reset
variable
Slave = &H40 'slave
address of a PCF 8574 I/O IC
I2creceive Slave , X 'get the
value
Print X 'print it

Dim Buf(10)as Byte
Buf(1) = 1 : Buf(2) = 2
I2creceive Slave , Buf(1) , 2 , 1 'send two
bytes and receive one byte
Print Buf(1) 'print the
received byte
End

6.225 I2CSEND

Action
Send data to an I2C-device.

Syntax
I2CSEND slave, var
I2CSEND slave, var , bytes

609 610 610 610 610

610 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Slave The slave address off the I2C-device.

Var A byte, integer/word or numbers that holds the value, which will be, send
to the I2C-device.

Bytes The number of bytes to send.

When an error occurs, the internal ERR variable will return 1. Otherwise it will be set
to 0.

ASM
The I2C routines are located in the i2c.lib/i2c.lbx files.

See also
I2CRECEIVE , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Example
Config Sda = Portb.5
Config Scl = Portb.7
Dim X As Byte , A As Byte , Bytes As Byte
X = 5 'assign
variable to 5
Dim Ax(10)as Byte
Const Slave = &H40 'slave
address of a PCF 8574 I/O IC
I2csend Slave , X 'send the
value or

For A = 1 To 10
 Ax(a) = A 'Fill
dataspace
Next
Bytes = 10
I2csend Slave , Ax(1) , Bytes
End

6.226 I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Action
I2CSTART generates an I2C start condition.
I2CSTOP generates an I2C stop condition.
I2CRBYTE receives one byte from an I2C-device.
I2CWBYTE sends one byte to an I2C-device.

Syntax
I2CSTART
I2CSTOP
I2CRBYTE var, ack/nack
I2CWBYTE val

608 610 610 610 610

611BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Var A variable that receives the value from the I2C-device.

ack/nack Specify ACK if there are more bytes to read.

Specify NACK if it is the last byte to read.

Val A variable or constant to write to the I2C-device.

These statements are provided as an addition to the I2CSEND and I2CRECEIVE
statements.
While I2CSEND and I2CRECEIVE are well suited for most tasks, a slave chip might
need a special sequence that is not possible with the I2C routines.
When an error occurs, the internal ERR variable will return 1. Otherwise it will be set
to 0.

ASM
The I2C routines are located in the i2c.lib/i2c.lbx files.

See also
I2CSEND , I2CRECEIVE , I2CSTART , I2CSTOP , I2CRBYTE , I2CWBYTE

Example
'---

'name : i2c.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: I2CSEND and I2CRECEIVE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Scl = Portb.4
Config Sda = Portb.5

Declare Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
Declare Sub Read_eeprom(byval Adres As Byte , Value As Byte)

Const Addressw = 174 'slave write
address
Const Addressr = 175 'slave read
address

609 608 610 610 610

610

612 BASCOM-AVR

© 2008 MCS Electronics

Dim B1 As Byte , Adres As Byte , Value As Byte 'dim byte

Call Write_eeprom(1 , 3) 'write value
of three to address 1 of EEPROM

Call Read_eeprom(1 , Value) : Print Value 'read it
back
Call Read_eeprom(5 , Value) : Print Value 'again for
address 5

'-------- now write to a PCF8474 I/O expander -------
I2csend &H40 , 255 'all outputs
high
I2creceive &H40 , B1 'retrieve
input
Print "Received data " ; B1 'print it
End

Rem Note That The Slaveaddress Is Adjusted Automaticly With I2csend &
I2creceive
Rem This Means You Can Specify The Baseaddress Of The Chip.

'sample of writing a byte to EEPROM AT2404
Sub Write_eeprom(byval Adres As Byte , Byval Value As Byte)
 I2cstart 'start
condition
 I2cwbyte Addressw 'slave
address
 I2cwbyte Adres 'asdress of
EEPROM
 I2cwbyte Value 'value to
write
 I2cstop 'stop
condition
 Waitms 10 'wait for 10
milliseconds
End Sub

'sample of reading a byte from EEPROM AT2404
Sub Read_eeprom(byval Adres As Byte , Value As Byte)
 I2cstart 'generate
start
 I2cwbyte Addressw 'slave
adsress
 I2cwbyte Adres 'address of
EEPROM
 I2cstart 'repeated
start
 I2cwbyte Addressr 'slave
address (read)
 I2crbyte Value , Nack 'read byte
 I2cstop 'generate
stop
End Sub

' when you want to control a chip with a larger memory like the 24c64 it
requires an additional byte

613BASCOM Language Reference

© 2008 MCS Electronics

' to be sent (consult the datasheet):
' Wires from the I2C address that are not connected will default to 0 in
most cases!

' I2cstart 'start
condition
' I2cwbyte &B1010_0000 'slave
address
' I2cwbyte H 'high
address
' I2cwbyte L 'low address
' I2cwbyte Value 'value to
write
' I2cstop 'stop
condition
' Waitms 10

6.227 IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Remarks
In the idle mode, the system clock is removed from the CPU but not from the
interrupt logic, the serial port or the timers/counters.

The idle mode is terminated either when an interrupt is received(from the watchdog,
timers, external level triggered or ADC) or upon system reset through the RESET pin.

Most new chips have many options for Power down/Idle. It is advised to consult the
data sheet to see if a better mode is available.

See also
POWERDOWN

Example
IDLE

6.228 IF-THEN-ELSE-END IF

Action
Allows conditional execution or branching, based on the evaluation of a Boolean
expression.

Syntax
IF expression THEN

[ELSEIF expression THEN]

[ELSE]

678

614 BASCOM-AVR

© 2008 MCS Electronics

END IF

Remarks
Expression Any expression that evaluates to true or false.

The one line version of IF can be used :
IF expression THEN statement [ELSE statement]
The use of [ELSE] is optional.

Tests like IF THEN can also be used with bits and bit indexes.
IF var.bit = 1 THEN
 ^--- bit is a variable or numeric constant in the range from 0-255

You can use OR or AND to test on multiple conditions. The conditions are evaluated
from left to right.
IF A=1 OR A=2 OR A=3 OR B>10 THEN
IF A=1 AND A>3 THEN

Dim Var As Byte, Idx As Byte
Var = 255
Idx = 1
If Var.idx = 1 Then
 Print "Bit 1 is 1"
EndIf

See also
ELSE

Example
Dim A As Integer
A = 10
If A = 10 Then 'test
expression
 Print "This part is executed." 'this will
be printed
Else
 Print "This will never be executed." 'this not
End If
If A = 10 Then Print "New in BASCOM"
If A = 10 Then Goto Label1 Else print "A<>10"
Label1:

Rem The following example shows enhanced use of IF THEN
If A.15 = 1 Then 'test for
bit
 Print "BIT 15 IS SET"
EndIf
Rem the following example shows the 1 line use of IF THEN [ELSE]
If A.15 = 0 Then Print "BIT 15 is cleared" Else Print "BIT 15 is set"

560

615BASCOM Language Reference

© 2008 MCS Electronics

6.229 INCR

Action
Increments a variable by one.

Syntax
INCR var

Remarks
Var Any numeric variable.

See also
DECR

Example
'---

'name : incr.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INCR
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte

A = 5 'assign
value to a
Incr A 'inc (by
one)
Print A 'print it
End

6.230 INITFILESYSTEM

Action
Initialize the file system

529

616 BASCOM-AVR

© 2008 MCS Electronics

Syntax
bErrorCode = INITFILESYSTEM (bPartitionNumber)

Remarks
bErrorCode (Byte) Error Result from Routine, Returns 0 if no Error

bPartitionNumber (Byte) Partition number on the Flashcard Drive (normally 1)

Reads the Master boot record and the partition boot record (Sector) from the flash
card and initializes the file system.
This function must be called before any other file-system function is used.

See also
OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC , LOF , EOF ,
FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL , DISKFREE
, DISKSIZE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME ,
DIR , FILELEN , WRITE , INPUT

ASM
Calls _GetFileSystem

Input r24: partitionnumber (1-based)

Output r25: Errorcode C-Flag: Set on Error

Partial Example
Dim bErrorCode as Byte
bErrorCode = InitFileSystem(1)
If bErrorCode > 0 then
 Print "Error: "; bErrorCode
Else
 Print "Filesystem successfully initialized"
End If

6.231 INITLCD

Action
Initializes the LCD display.

Syntax
INITLCD

Remarks
The LCD display is initialized automatic at start up when LCD statements are used by
your code.
If fore some reason you would like to initialize it again you can use the INITLCD
statement.
For example in environments with static electricity, the display can give strange
output.
You can initialize the display then once in a while. When the display is initialized, the

669 370 574 679 638 642 643 566

580 569 718 356 352 627 545

546 582 688 570 572 571

542 571 814 622

617BASCOM Language Reference

© 2008 MCS Electronics

display content is cleared also.

The LCD routines depend on the fact that the WR pin of the LCD is connected to
ground. But when you connect it to as port pin, you can use INITLCD after you have
set the WR pin to logic 0.

ASM
The generated ASM code :
Rcall _Init_LCD

See also
LCD

Example
NONE

6.232 INKEY

Action
Returns the ASCII value of the first character in the serial input buffer.

Syntax
var = INKEY()
var = INKEY(#channel)

Remarks
Var Byte, Integer, Word, Long or String variable.

Channel A constant number that identifies the opened channel if
software UART mode

If there is no character waiting, a zero will be returned.
Use the IsCharWaiting() function to check if there is a byte waiting.

The INKEY routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a comport of your computer.

As zero(0) will be returned when no character is waiting, the usage is limited when
the value of 0 is used in the serial transmission. You can not make a difference
between a byte with the value 0 and the case where no data is available.
In that case you can use IsCharwaiting to deterimine if there is a byte waiting.

See also
WAITKEY , ISCHARWAITING

Example
'---

275

810 626

618 BASCOM-AVR

© 2008 MCS Electronics

'name : inkey.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INKEY , WAITKEY
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , S As String * 2
Do
 A = Inkey() 'get ascii
value from serial port
 's = Inkey()
 If A > 0 Then 'we got
something
 Print "ASCII code " ; A ; " from serial"
 End If
Loop Until A = 27 'until ESC
is pressed

A = Waitkey() 'wait for a
key
's = waitkey()
Print Chr(a)

'wait until ESC is pressed
Do
Loop Until Inkey() = 27

'When you need to receive binary data and the bibary value 0 ,
'you can use the IScharwaiting() function.
'This will return 1 when there is a char waiting and 0 if there is no
char waiting.
'You can get the char with inkey or waitkey then.
End

6.233 INP

Action
Returns a byte read from a hardware port or any internal or external memory
location.

Syntax
var = INP(address)

619BASCOM Language Reference

© 2008 MCS Electronics

Remarks
var Numeric variable that receives the value.

address The address where to read the value from. (0- &HFFFF)

The PEEK() function will read only the lowest 32 memory locations (registers).
The INP() function can read from any memory location since the AVR has a linear
memory model.

When you want to read from XRAM memory you must enable external memory access
in the Compiler Chip Options .

See also
OUT , PEEK , POKE

Example
'---

'name : peek.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates PEEk, POKE, CPEEK, INP and OUT
'micro : Mega162
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m162def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32
registers in AVR
 B1 = Peek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

87

673 674 675

620 BASCOM-AVR

© 2008 MCS Electronics

Out &H8000 , 1 'write 1
into XRAM at address 8000
B1 = Inp(&H8000) 'return
value from XRAM
Print B1
End

6.234 INPUTBIN

Action
Read binary data from the serial port.

Syntax
INPUTBIN var1 [,var2]
INPUTBIN #channel , var1 [,var2]

Remarks
var1 The variable that is assigned with the characters from the serial port.

var2 An optional second (or more) variable that is assigned with the data from
the serial input stream.

The channel is for use with the software UART routine and must be used with OPEN
and CLOSE.

The number of bytes to read depends on the variable you use.
When you use a byte variable, 1 character is read from the serial port.
An integer will wait for 2 characters and an array will wait until the whole array is
filled.

Note that the INPUTBIN statement doesn't wait for a <RETURN> but just for the
number of bytes.

You may also specify an additional numeric parameter that specifies how many bytes
will be read. This is convenient when you are filling an array.

Inputbin ar(1) , 4 ' will fill 4 bytes starting at index 1.

See also
PRINTBIN

Example
Dim A As Byte , C As Integer
Inputbin A , C 'wait for 3 characters
End

6.235 INPUTHEX

Action
Allows hexadecimal input from the keyboard during program execution.

669 669

681

621BASCOM Language Reference

© 2008 MCS Electronics

Syntax
INPUTHEX [" prompt"] , var[, varn]

Remarks
prompt An optional string constant printed before the prompt character.

Var,varn A numeric variable to accept the input value.

The INPUTHEX routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your
computer.

This way you can use a terminal emulator and the keyboard as input device.
You can also use the build in terminal emulator.
The input entered may be in lower or upper case (0-9 and A-F)

If var is a byte then the input can be maximum 2 characters long.
If var is an integer/word then the input can be maximum 4 characters long.
If var is a long then the input can be maximum 8 characters long.

In VB you can specify &H with INPUT so VB will recognize that a hexadecimal string
is being used.
BASCOM implements a new statement: INPUTHEX. This is only to save code as
otherwise also code would be needed for decimal conversion.

See also
INPUT , ECHO , INPUTBIN

Example
'---

'name : input.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INPUT, INPUTHEX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim V As Byte , B1 As Byte
Dim C As Integer , D As Byte
Dim S As String * 15

622 558 620

622 BASCOM-AVR

© 2008 MCS Electronics

Input "Use this to ask a question " , V
Input B1 'leave out
for no question

Input "Enter integer " , C
Print C

Inputhex "Enter hex number (4 bytes) " , C
Print C
Inputhex "Enter hex byte (2 bytes) " , D
Print D

Input "More variables " , C , D
Print C ; " " ; D

Input C Noecho 'supress
echo

Input "Enter your name " , S
Print "Hello " ; S

Input S Noecho 'without
echo
Print S
End

6.236 INPUT

Action
Allows input from the keyboard or file during program execution.

Syntax
INPUT [" prompt"] , var[, varn]
INPUT #ch, var[, varn]

Remarks
Prompt An optional string constant printed before the prompt character.

Var,varn A variable to accept the input value or a string.

Ch A channel number, which identifies an opened file. This can be a hard
coded constant or a variable.

The INPUT routine can be used when you have an RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your
computer.
This way you can use a terminal emulator and the keyboard as an input device.
You can also use the built-in terminal emulator.

For usage with the AVR-DOS file system, you can read variables from an opened file.
Since these variables are stored in ASCII format, the data is converted to the proper
format automatically.
When you use INPUT with a file, the prompt is not supported.

Difference with VB
In VB you can specify &H with INPUT so VB will recognize that a hexadecimal string
is being used.

623BASCOM Language Reference

© 2008 MCS Electronics

BASCOM implements a new statement : INPUTHEX.

See also
INPUTHEX , PRINT , ECHO , WRITE , INPUTBIN

Example
'---

'name : input.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INPUT, INPUTHEX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim V As Byte , B1 As Byte
Dim C As Integer , D As Byte
Dim S As String * 15

Input "Use this to ask a question " , V
Input B1 'leave out
for no question

Input "Enter integer " , C
Print C

Inputhex "Enter hex number (4 bytes) " , C
Print C
Inputhex "Enter hex byte (2 bytes) " , D
Print D

Input "More variables " , C , D
Print C ; " " ; D

Input C Noecho 'supress
echo

Input "Enter your name " , S
Print "Hello " ; S

Input S Noecho 'without
echo
Print S
End

620 679 558 814 620

624 BASCOM-AVR

© 2008 MCS Electronics

6.237 INSTR

Action
Returns the position of a sub string in a string.

Syntax
var = INSTR(start , string , substr)
var = INSTR(string , substr)

Remarks
Var Numeric variable that will be assigned with the position of the sub

string in the string. Returns 0 when the sub string is not found.

Start An optional numeric parameter that can be assigned with the first
position where must be searched in the string. By default (when not
used) the whole string is searched starting from position 1.

String The string to search.

Substr The search string.

No constant can be used for string it must be a string variable.
Only substr can be either a string or a constant.

See also
SPLIT

Example
'---

'name : instr.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : INSTR function demo
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'dimension variables
Dim Pos As Byte
Dim S As String * 8 , Z As String * 8

'assign string to search

766

625BASCOM Language Reference

© 2008 MCS Electronics

S = "abcdeab" ' Z = "ab"

'assign search string
Z = "ab"

'return first position in pos
Pos = Instr(s , Z)
'must return 1

'now start searching in the string at location 2
Pos = Instr(2 , S , Z)
'must return 6

Pos = Instr(s , "xx")
'xx is not in the string so return 0
End

6.238 INT

Action
Returns the integer part of a single or double.

Syntax
var = INT(source)

Remarks
Var A numeric variable that is assigned with the integer of variable

source.

Source The source variable to get the integer of.

The fraction is the right side after the decimal point of a single.
The integer is the left side before the decimal point.

1234.567 1234 is the integer part, .567 is the fraction

See Also
FRAC , FIX , ROUND

Example
'---

'name : round_fix_int.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : ROUND,FIX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency

579 573 714

626 BASCOM-AVR

© 2008 MCS Electronics

$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As Single , Z As Single
For S = -10 To 10 Step 0.5
 Print S ; Spc(3) ; Round(s) ; Spc(3) ; Fix(s) ; Spc(3) ; Int(s)
Next
End

6.239 IP2STR

Action
Convert an IP number into it’s string representation.

Syntax
Var = IP2STR(num)

Remarks
An IP number is represented with dots like 192.168.0.1.
The IP2STR function converts an IP number into a string.
This function is intended to be used in combination with the BASCOM TCP/IP routines.

Var The string variable that is assigned with the IP number

Num A variable that contains the ip number is numeric format.

See also
CONFIG TCPIP

6.240 ISCHARWAITING

Action
Returns one(1) when a character is waiting in the hardware UART buffer.

Syntax
var = ISCHARWAITING()
var = ISCHARWAITING(#channel)

Remarks
Var Byte, Integer, Word or Long variable.

Channel A constant number that identifies the opened channel.

If there is no character waiting, a zero will be returned.

456

627BASCOM Language Reference

© 2008 MCS Electronics

If there is a character waiting, a one (1) will be returned.
The character is not retrieved or altered by the function.

While the Inkey() will get the character from the HW UART when there is a character
in the buffer, it will return a zero when the character is zero. This makes it unusable
to work with binary data that might contain the value 0.

With IsCharWaiting() you can first check for the presence of a character and when the
function returns 1, you can retrieve the character with Inkey or Waitkey.

See also
WAITKEY , INKEY

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , S As String * 2
Do
 A = Ischarwaiting()
 If A = 1 Then 'we got
something
 A = Waitkey() 'get it
 Print "ASCII code " ; A ; " from serial"
 End If
Loop Until A = 27 'until ESC
is pressed

6.241 KILL

Action
Delete a file from the Disk

Syntax
KILL sFileName

Remarks
sFileName A String variable or string expression, which denotes the file to delete

This function deletes a file from the disk. A file in use can't be deleted. WildCards in
Filename are not supported. Check the DOS-Error in variable gDOSError.

See also

810 617

628 BASCOM-AVR

© 2008 MCS Electronics

INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC
, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,

DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _DeleteFile

Input X: Pointer to string with
filename

Output r25: Errorcode C-Flag: Set on Error

Partial Example
'We can use the KILL statement to delete a file.
'A file mask is not supported
Print "Kill (delete) file demo"
Kill "test.txt"

6.242 LCASE

Action
Converts a string in to all lower case characters.

Syntax
Target = LCASE(source)

Remarks
Target The string that is assigned with the lower case string of string target.

Source The source string.

See also
UCASE

ASM
The following ASM routines are called from MCS.LIB : _LCASE
The generated ASM code : (can be different depending on the micro used)
;##### Z = Lcase(s)
Ldi R30,$60
Ldi R31,$00 ; load constant in register
Ldi R26,$6D
Rcall _Lcase

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency

615 669 370 574 679 638

642 643 566 580 569 718 356 352

545 546 582 688 570 572

571 542 571 814 622

797

629BASCOM Language Reference

© 2008 MCS Electronics

$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 12 , Z As String * 12
S = "Hello World"
Z = Lcase(s)
Print Z
Z = Ucase(s)
Print Z
End

6.243 LCD

Action
Send constant or variable to LCD display.

Syntax
LCD x

Remarks
X Variable or constant to display.

More variables can be displayed separated by the ; -sign

LCD a ; b1 ; "constant"

The LCD statement behaves just like the PRINT statement. So SPC () can be
used too.
The only difference with PRINT is that no CR+LF is added when you send data to the
LCD.

See also
$LCD , $LCDRS , CONFIG LCD , SPC , CLS , INITLCD , SHIFTLCD
, SHIFTCURSOR , CURSOR

Example
'---

'name : lcd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: LCD, CLS, LOWERLINE, SHIFTLCD,
SHIFTCURSOR, HOME
' CURSOR, DISPLAY
'micro : Mega8515
'suited for demo : yes
'commercial addon needed : no
'---

679 763

275 280 426 763 366 616 748

743 498

630 BASCOM-AVR

© 2008 MCS Electronics

$regfile = "m8515.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$sim
'REMOVE the above command for the real program !!
'$sim is used for faster simulation

'note : tested in PIN mode with 4-bit

'Config Lcdpin = Pin , Db4 = Portb.1 , Db5 = Portb.2 , Db6 = Portb.3 ,
Db7 = Portb.4 , E = Portb.5 , Rs = Portb.6
Config Lcdpin = Pin , Db4 = Porta.4 , Db5 = Porta.5 , Db6 = Porta.6 ,
Db7 = Porta.7 , E = Portc.7 , Rs = Portc.6
'These settings are for the STK200 in PIN mode
'Connect only DB4 to DB7 of the LCD to the LCD connector of the STK D4-
D7
'Connect the E-line of the LCD to A15 (PORTC.7) and NOT to the E line of
the LCD connector
'Connect the RS, V0, GND and =5V of the LCD to the STK LCD connector

Rem with the config lcdpin statement you can override the compiler
settings

Dim A As Byte
Config Lcd = 16 * 2 'configure
lcd screen

'other options are 16 * 4 and 20 * 4, 20 * 2 , 16 * 1a
'When you dont include this option 16 * 2 is assumed
'16 * 1a is intended for 16 character displays with split addresses over
2 lines

'$LCD = address will turn LCD into 8-bit databus mode
' use this with uP with external RAM and/or ROM
' because it aint need the port pins !

Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1
Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the

631BASCOM Language Reference

© 2008 MCS Electronics

text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this
Wait 1 'wait a
moment

Home Upper 'select line
1 and return home
Lcd "Replaced." 'replace the
text
Wait 1 'wait a
moment

Cursor Off Noblink 'hide cursor
Wait 1 'wait a
moment
Cursor On Blink 'show cursor
Wait 1 'wait a
moment
Display Off 'turn
display off
Wait 1 'wait a
moment
Display On 'turn
display on
'-----------------NEW support for 4-line LCD------
Thirdline
Lcd "Line 3"
Fourthline
Lcd "Line 4"
Home Third 'goto home
on line three
Home Fourth
Home F 'first
letteer also works
Locate 4 , 1 : Lcd "Line 4"
Wait 1

'Now lets build a special character
'the first number is the characternumber (0-7)
'The other numbers are the rowvalues
'Use the LCD tool to insert this line

Deflcdchar 1 , 225 , 227 , 226 , 226 , 226 , 242 , 234 , 228 '

632 BASCOM-AVR

© 2008 MCS Electronics

replace ? with number (0-7)
Deflcdchar 0 , 240 , 224 , 224 , 255 , 254 , 252 , 248 , 240 '
replace ? with number (0-7)
Cls 'select data
RAM
Rem it is important that a CLS is following the deflcdchar statements
because it will set the controller back in datamode
Lcd Chr(0) ; Chr(1) 'print the
special character

'----------------- Now use an internal routine ------------
_temp1 = 1 'value into
ACC
!rCall _write_lcd 'put it on
LCD
End

6.244 LCDAT

Action
Send constant or variable to a SED or other graphical display.

Syntax
LCDAT y , x , var [, inv]
LCDAT y , x , var [, FG, BG]

Remarks
X X location. In the range from 0-63. The SED displays columns

are 1 pixel width. Other displays might have a bigger range
such as 132 or 255.

Y Y location. The row in pixels. The maximum value depends on
the display.

Var The constant or variable to display

inv Optional number. Value 0 will show the data normal. Any
other value will invert the data.

For COLOR DISPLAYS

FG Foreground color

BG Background color

You need to include the glibSED library with :
$LIB "glibsed.lbx"

Other libraries must be included with a different directive.

See also
CONFIG GRAPHLCD , SETFONT , GLCDCMD , GLCDDATA

Example
'---

'name : sed1520.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates the SED1520 based graphical
display support

426 723 601 601

633BASCOM Language Reference

© 2008 MCS Electronics

'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 7372800 ' used
crystal frequency
$baud = 115200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'I used a Staver to test

'some routines to control the display are in the glcdSED.lib file
'IMPORTANT : since the SED1520 uses 2 chips, the columns are split into
2 of 60.
'This means that data after column 60 will not print correct. You need
to locate the data on the second halve
'For example when you want to display a line of text that is more then 8
chars long, (8x8=64) , byte 8 will not draw correctly
'Frankly i find the KS0108 displays a much better choice.

$lib "glcdSED1520.lbx"

'First we define that we use a graphic LCD

Config Graphlcd = 120 * 64sed , Dataport = Porta , Controlport = Portd ,
Ce = 5 , Ce2 = 7 , Cd = 3 , Rd = 4

'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE =CS Chip Enable/ Chip select
'CE2= Chip select / chip enable of chip 2
'CD=A0 Data direction
'RD=Read

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'clear the screen
Cls
Wait 2
'specify the font we want to use
Setfont Font8x8

'You can use locate but the columns have a range from 1-132

'When you want to show somthing on the LCD, use the LDAT command
'LCDAT Y , COL, value
Lcdat 1 , 1 , "1231231"
Lcdat 3 , 80 , "11"
'lcdat accepts an additional param for inversing the text
'lcdat 1,1,"123" , 1 ' will inverse the text

634 BASCOM-AVR

© 2008 MCS Electronics

Wait 2
Line(0 , 0) -(30 , 30) , 1
Wait 2

Showpic 0 , 0 , Plaatje 'show a
comnpressed picture
End 'end program

'we need to include the font files
$include "font8x8.font"
'$include "font16x16.font"

Plaatje:
'include the picture data
$bgf "smile.bgf"

6.245 LCDCONTRAST

Action
Set the contrast of a TEXT LCD.

Syntax
LCDCONTRAST x

Remarks
X A variable or constant in the range from 0-3.

Some LCD text displays support changing the contrast. Noritake displays have this
option for example.

See also
NONE

Example
NONE

6.246 LEFT

Action
Return the specified number of leftmost characters in a string.

Syntax
var = LEFT(var1 , n)

Remarks
Var The string that is assigned.

635BASCOM Language Reference

© 2008 MCS Electronics

Var1 The source string.

n The number of characters to get from the source string.

See also
RIGHT , MID

Partial Example
Dim S As String * 15 , Z As String * 15
S ="ABCDEFG"
Z = Left(s , 5)
Print Z 'ABCDE
Z = Right(s , 3) : Print Z
Z = Mid(s , 2 , 3) : Print Z
End

6.247 LEN

Action
Returns the length of a string.

Syntax
var = LEN(string)

Remarks
var A numeric variable that is assigned with the length of string.

string The string to calculate the length of.

Strings can be maximum 254 bytes long.

See Also
VAL

Partial Example
Dim S As String * 15 , Z As String * 15
S ="ABCDEFG"
Print Len(s)

6.248 LINE

Action
Draws a line on a graphic display.

Syntax
LINE(x0,y0) – (x1,y1), color

Remarks

711 662

806

636 BASCOM-AVR

© 2008 MCS Electronics

X0 Starting horizontal location of the line.

Y0 Starting vertical location of the line.

X1 Horizontal end location of the line

Y1 Vertical end location of the line.

color The color to use. Use 0 or a non zero value.

See Also
LINE , CONFIG GRAPHLCD , BOX , BOXFILL

Example
'---

'name : t6963_240_128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : T6963C graphic display support demo 240 *
128
'micro : Mega8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8535.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'---
' (c) 2001-2003 MCS Electronics
' T6963C graphic display support demo 240 * 128
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
'2 GND GND
'3 +5V +5V
'4 -9V -9V potmeter
'5 /WR PORTC.0
'6 /RD PORTC.1
'7 /CE PORTC.2
'8 C/D PORTC.3
'9 NC not conneted
'10 RESET PORTC.4
'11-18 D0-D7 PA
'19 FS PORTC.5
'20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,

635 416 353 355

637BASCOM Language Reference

© 2008 MCS Electronics

Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2
'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor Off

Wait 1
'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30

Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"
Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "write this to the lower line"

Wait 2

Cls Text

'use the new LINE statement to create a box
'LINE(X0,Y0) - (X1,Y1), on/off
Line(0 , 0) -(239 , 127) , 255 ' diagonal
line
Line(0 , 127) -(239 , 0) , 255 ' diagonal
line
Line(0 , 0) -(240 , 0) , 255 ' horizontal
upper line
Line(0 , 127) -(239 , 127) , 255 'horizontal
lower line
Line(0 , 0) -(0 , 127) , 255 ' vertical
left line
Line(239 , 0) -(239 , 127) , 255 ' vertical
right line

Wait 2
' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it
on
For X = 0 To 140
 Pset X , 20 , 255 ' set the
pixel
Next

638 BASCOM-AVR

© 2008 MCS Electronics

For X = 0 To 140
 Pset X , 127 , 255 ' set the
pixel
Next

Wait 2

'circle time
'circle(X,Y), radius, color
'X,y is the middle of the circle,color must be 255 to show a pixel and 0
to clear a pixel
For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Wait 1
 Circle(20 , 20) , X , 0 'remove
circle
 Wait 1
Next

Wait 2

For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Waitms 200
Next
Wait 2
'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Test:
Showpic 0 , 0 , Plaatje
Showpic 0 , 64 , Plaatje ' show 2
since we have a big display
Wait 2
Cls Text ' clear the
text
End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"

'You could insert other picture data here

6.249 LINE INPUT

Action
Read a Line from an opened File.

Syntax
LINEINPUT #bFileNumber, sLineText

Remarks
BfileNumber (Byte) File number, which identifies an opened file

SlineText (String) A string, which is assigned with the next line from the file.

639BASCOM Language Reference

© 2008 MCS Electronics

Only valid for files opened in mode INPUT. Line INPUT works only with strings. It is
great for working on text files.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LOC , LOF ,
EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileLineInput

Input r24: filenumber X: Pointer to String to be written from file

r25: Stringlength

Output r25: Errorcode C-Flag: Set on Error

Example
'Ok we want to check if the file contains the written lines
Ff = Freefile()' get file handle
Open "test.txt" For Input As #ff ' we can use a constant for the file too
Print Lof(#ff); " length of file"
Print Fileattr(#ff); " file mode"' should be 1 for input
Do
 LineInput#ff , S ' read a line
 ' line input is used to read a line of text from a file
 Print S ' print on terminal emulator
Loop Until Eof(ff)<> 0
'The EOF() function returns a non-zero number when the end of the file is reached
'This way we know that there is no more data we can read
Close #ff

6.250 LTRIM

Action
Returns a copy of a string with leading blanks removed

Syntax
var = LTRIM(org)

Remarks
Var String that receives the result.

Org The string to remove the leading spaces from

See also
RTRIM , TRIM

615 669 370 574 679 642 643

566 580 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

715 796

640 BASCOM-AVR

© 2008 MCS Electronics

ASM
NONE

Partial Example
Dim S As String * 6
S =" AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

6.251 LOAD

Action
Load specified TIMER with a reload value.

Syntax
LOAD TIMER , value

Remarks
TIMER TIMER0 , TIMER1 or TIMER2(or valid timer name)

Value The variable or value to load.

The TIMER0 does not have a reload mode. But when you want the timer to generate
an interrupt after 10 ticks for example, you can use the LOAD statement.

It will do the calculation : (256-value)

So LOAD TIMER0, 10 will load the TIMER0 with a value of 246 so that it will overflow
after 10 ticks.
TIMER1 is a 16 bit counter so it will be loaded with the value of 65536-value.

See Also
NONE

Example
NONE

6.252 LOADADR

Action
Loads the address of a variable into a register pair.

Syntax
LOADADR var , reg

Remarks

641BASCOM Language Reference

© 2008 MCS Electronics

var A variable which address must be loaded into the register pair X, Y or Z.

reg The register X, Y or Z.

The LOADADR statement serves as an assembly helper routine.

Example
Dim S As String * 12
Dim A As Byte

$ASM
loadadr S , X ; load address into R26 and R27
ld _temp1, X ; load value of location R26/R27 into R24(_temp1)
$END ASM

6.253 LOADLABEL

Action
Assigns a word variable with the address of a label.

Syntax
Var = LOADLABEL(label)

Remarks
var The variable that is assigned with the address of the label.

lbl The name of the label

In some cases you might need to know the address of a point in your program. To
perform a Cpeek() for example.
You can place a label at that point and use LoadLabel to assign the address of the
label to a variable.

6.254 LOADWORDADR

Action
Loads the Z-register and sets RAMPZ if available.

Syntax
LOADWORDADR label

Remarks
label The name of the label which address will be loaded into R30-R31 which

form the Z-register.

The code that will be generated :
LDI R30,Low(label * 2)
LDI R31,High(label * 2)
LDI R24,1 or CLR R24

642 BASCOM-AVR

© 2008 MCS Electronics

STS RAMPZ, R24

As the AVR uses a word address, to find a byte address we multiply the address with
2. RAMPZ forms together with pointer Z an address register. As the LS bit of Z is used
to identify the lower or the upper BYTE of the address, it is extended with the RAMPZ
to address more then 15 bits. For example the Mega128 has 128KB of space and
needs the RAMPZ register set to the right value in order to address the upper or lower
64KB of space.

See also
LOADLABEL , LOADADR

Example
LOADWORDADR label

6.255 LOC

Action
Returns the position of last read or written Byte of the file

Syntax
lLastReadWritten = LOC (#bFileNumber)

Remarks
bFileNumber (Byte) File number, which identifies an opened file

lLastReadWritten (Long) Variable, assigned with the Position of last read or
written Byte (1-based)

This function returns the position of the last read or written Byte. If an error occurs, 0
is returned. Check DOS-Error in variable gbDOSError. If the file position pointer is
changed with the command SEEK, this function can not be used till the next read/
write operation.

This function differs from VB. In VB the byte position is divided by 128.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOF

 , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileLoc

Input r24: filenumber X: Pointer to Long-variable, which gets th result

Outpu
t

r25: Errorcode C-Flag: Set on Error

641 640

615 669 370 574 679 638

643 566 580 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

643BASCOM Language Reference

© 2008 MCS Electronics

Example
'open the file in BINARY mode
Open "test.biN" For Binary As #2
Put #2 , B ' write a byte
Put #2 , W ' write a word
Put #2 , L ' write a long
Ltemp = Loc(#2)+ 1 ' get the position of the next byte
Print Ltemp ;" LOC"' store the location of the file pointer
Print Lof(#2);" length of file"
Print Fileattr(#2);" file mode"' should be 32 for binary
Put #2 , Sn ' write a single
Put #2 , Stxt ' write a string

Flush #2 ' flush to disk
Close #2

6.256 LOF

Action
Returns the length of the File in Bytes

Syntax
lFileLength = LOF (#bFileNumber)

Remarks
bFileNumber (Byte) Filenumber, which identifies an opened file

LFileLength (Long) Variable, which assigned with the Length of the file (1-
based)

This function returns the length of an opened file. If an error occurs, 0 is returned.
Check DOS-Error in variable gbDOSError.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Calls _FileLOF

Input r24: filenumber X: Pointer to Long-variable, which gets th result

Output r25: Errorcode C-Flag: Set on Error

Example
'open the file in BINARY mode
Open "test.biN" For Binary As #2
Put #2 , B ' write a byte
Put #2 , W ' write a word

615 669 370 574 679 638

642 566 580 569 718 356 352 627

545 546 582 688 570 572

571 542 571 814 622

644 BASCOM-AVR

© 2008 MCS Electronics

Put #2 , L ' write a long
Ltemp = Loc(#2)+ 1 ' get the position of the next byte
Print Ltemp ;" LOC"' store the location of the file pointer
Print Lof(#2);" length of file"
Print Fileattr(#2);" file mode"' should be 32 for binary
Put #2 , Sn ' write a single
Put #2 , Stxt ' write a string

Flush #2 ' flush to disk
Close #2

6.257 LOCAL

Action
Dimensions a variable LOCAL to the function or sub program.

Syntax
LOCAL var As Type

Remarks
Var The name of the variable

Type The data type of the variable.

There can be only LOCAL variables of the type BYTE, INTEGER, WORD, LONG,
SINGLE, DOUBLE or STRING.

A LOCAL variable is a temporary variable that is stored on the frame.
When the SUB or FUNCTION is terminated, the memory will be released back to the
frame.
BIT variables are not possible because they are GLOBAL to the system.

The AT , ERAM, SRAM, XRAM directives can not be used with a local DIM statement.
Also local arrays are not possible.

Notice that a LOCAL variable is not initialized. It will contain a value that will depend
on the value of the FRAME data. So you can not assume the variable is 0. If you like it
to be 0, you need to assign it.
A normal DIM-med variable is also not initialized to 0. The reason all variables are 0
(and strings are ""), is that the RAM memory is cleared. With the $NORAMCLEAR
option you can turn this behaviour off.
So to conclude, a LOCAL variable will behave the same as a normal variable with
the $NORAMCLEAR option enabled.

While it would be simple to initialize the LOCAL variables to 0, in most/all cases, you will assign a
value to it anyway, so it would be a waste of code space.

See also
DIM

ASM
NONE

294

539

645BASCOM Language Reference

© 2008 MCS Electronics

Example
'---

'name : declare.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrate using declare
'micro : Mega48
'suited for demo : yes
'commercial add on needed : no
' Note that the usage of SUBS works different in BASCOM-8051
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' First the SUB programs must be declared

'Try a SUB without parameters
Declare Sub Test2

'SUB with variable that can not be changed(A) and
'a variable that can be changed(B1), by the sub program
'When BYVAL is specified, the value is passed to the subprogram
'When BYREF is specified or nothing is specified, the address is passed
to
'the subprogram

Declare Sub Test(byval A As Byte , B1 As Byte)
Declare Sub Testarray(byval A As Byte , B1 As Byte)
'All variable types that can be passed
'Notice that BIT variables can not be passed.
'BIT variables are GLOBAL to the application
Declare Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S
As String)

'passing string arrays needs a different syntax because the length of
the strings must be passed by the compiler
'the empty () indicated that an array will be passed
Declare Sub Teststr(b As Byte , Dl() As String)

Dim Bb As Byte , I As Integer , W As Word , L As Long , S As String * 10
 'dim used variables
Dim Ar(10) As Byte
Dim Sar(10) As String * 8 'strng array

For Bb = 1 To 10
 Sar(bb) = Str(bb) 'fill the
array
Next
Bb = 1
'now call the sub and notice that we always must pass the first address

646 BASCOM-AVR

© 2008 MCS Electronics

with index 1
Call Teststr(bb , Sar(1))

Call Test2 'call sub
Test2 'or use
without CALL
'Note that when calling a sub without the statement CALL, the enclosing
parentheses must be left out
Bb = 1
Call Test(1 , Bb) 'call sub
with parameters
Print Bb 'print value
that is changed

'now test all the variable types
Call Testvar(bb , I , W , L , S)
Print Bb ; I ; W ; L ; S

'now pass an array
'note that it must be passed by reference
Testarray 2 , Ar(1)
Print "ar(1) = " ; Ar(1)
Print "ar(3) = " ; Ar(3)

$notypecheck ' turn off
type checking
Testvar Bb , I , I , I , S
'you can turn off type checking when you want to pass a block of memory
$typecheck 'turn it
back on
End

'End your code with the subprograms
'Note that the same variables and names must be used as the declared
ones

Sub Test(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print
passed variables
 B1 = 3 'change
value
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

Sub Test2 'sub without
parameters
 Print "No parameters"
End Sub

Sub Testvar(b As Byte , I As Integer , W As Word , L As Long , S As
String)
 Local X As Byte
 X = 5 'assign
local
 B = X
 I = -1
 W = 40000
 L = 20000
 S = "test"
End Sub

647BASCOM Language Reference

© 2008 MCS Electronics

Sub Testarray(byval A As Byte , B1 As Byte) 'start sub
 Print A ; " " ; B1 'print
passed variables
 B1 = 3 'change
value of element with index 1
 B1(1) = 3 'specify the
index which does the same as the line above
 B1(3) = 3 'modify
other element of array
 'You can change A, but since a copy is passed to the SUB,
 'the change will not reflect to the calling variable
End Sub

'notice the empty() to indicate that a string array is passed
Sub Teststr(b As Byte , Dl() As String)
 Dl(b) = Dl(b) + "add"
End Sub

6.258 LOCATE

Action
Moves the LCD cursor to the specified position.

Syntax
LOCATE y , x

Remarks
X Constant or variable with the position. (1-64*)

Y Constant or variable with the line (1 - 4*)

* Depending on the used display

See also
CONFIG LCD , LCD , HOME , CLS

Partial Example
LCD "Hello"
Locate 1,10
LCD "*"

6.259 LOG

Action
Returns the natural logarithm of a single variable.

Syntax
Target = LOG(source)

Remarks

426 629 607 366

648 BASCOM-AVR

© 2008 MCS Electronics

Target The single or double that is assigned with the LOG() of single target.

Source The source single or doubler to get the LOG of.

See also
EXP , LOG10

Example
Show sample

6.260 LOG10

Action
Returns the base 10 logarithm of a single variable.

Syntax
Target = LOG10(source)

Remarks
Target The single or double that is assigned with the base 10 logarithm of single/

double target.

Source The source single or double to get the base 10 LOG of.

See also
EXP , LOG

Example
Show sample

6.261 LOOKDOWN

Action
Returns the index of a series of data.

Syntax
var = LOOKDOWN(value, label, entries)

Remarks
Var The returned index value

Value The value to search for

Label The label where the data starts

entries The number of entries that must be searched

When you want to look in BYTE series the VALUE variable must be dimensioned as a

568 648

842

568 647

842

649BASCOM Language Reference

© 2008 MCS Electronics

BYTE. When you want to look in INTEGER or WORD series the VALUE variable must be
dimensioned as an INTEGER.

The LookDown function is the counterpart of the LookUp function.
Lookdown will search the data for a value and will return the index when the value is
found. It will return –1 when the data is not found.

See also
LOOKUPSTR , LOOKUP

Example
'---

'name : lookdown.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : LOOKDOWN
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim Idx As Integer , Search As Byte , Entries As Byte

'we want to search for the value 3
Search = 3
'there are 5 entries in the table
Entries = 5

'lookup and return the index
Idx = Lookdown(search , Label , Entries)
Print Idx

Search = 1
Idx = Lookdown(search , Label , Entries)
Print Idx

Search = 100
Idx = Lookdown(search , Label , Entries)
Print Idx ' return -1
if not found

'looking for integer or word data requires that the search variable is
'of the type integer !

651 650

650 BASCOM-AVR

© 2008 MCS Electronics

Dim Isearch As Integer
Isearch = 400
Idx = Lookdown(isearch , Label2 , Entries)
Print Idx ' return 3
End

Label:
Data 1 , 2 , 3 , 4 , 5

Label2:
Data 1000% , 200% , 400% , 300%

6.262 LOOKUP

Action
Returns a value from a table.

Syntax
var = LOOKUP(value, label)

Remarks
Var The returned value

Value A value with the index of the table

Label The label where the data starts

The value can be up to 65535. 0 will return the first entry.

See also
LOOKUPSTR

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B1 As Byte , I As Integer
B1 = Lookup(2 , Dta)
Print B1 ' Prints 3
(zero based)

I = Lookup(0 , Dta2) ' print 1000
Print I
End

651

651BASCOM Language Reference

© 2008 MCS Electronics

Dta:
Data 1 , 2 , 3 , 4 , 5
Dta2:
Data 1000% , 2000%

6.263 LOOKUPSTR

Action
Returns a string from a table.

Syntax
var = LOOKUPSTR(value, label)

Remarks
Var The string returned

Value A value with the index of the table. The index is zero-based. That is, 0 will
return the first element of the table.

Label The label where the data starts

The index value can have a maximum value of 255.

See also
LOOKUP , LOOKDOWN

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 4 , Idx As Byte
Idx = 0 : S = Lookupstr(idx , Sdata)
Print S 'will print
'This'
End

Sdata:
Data "This" , "is" , "a test"

6.264 LOW

Action
Retrieves the least significant byte of a variable.

650 648

652 BASCOM-AVR

© 2008 MCS Electronics

Syntax
var = LOW(s)

Remarks
Var The variable that is assigned with the LSB of var S.

S The source variable to get the LSB from.

You can also assign a byte to retrieve the LSB of a Word or Long.
For example :
B = L , where B is a byte and L is a Long.

See also
HIGH , HIGHW

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Integer , Z As Byte
I = &H1001
Z = Low(i) ' is 1
End

6.265 LOWERLINE

Action
Reset the LCD cursor to the lower line.

Syntax
LOWERLINE

Remarks
NONE

See also
UPPERLINE , THIRDLINE , FOURTHLINE , HOME

Partial Example

606 607

806 793 578 607

653BASCOM Language Reference

© 2008 MCS Electronics

Lcd "Test"
Lowerline
Lcd "Hello"
End

6.266 MACRO

Action
This statement allow you to define a Macro.

Syntax
MACRO name
 macrodef
END MACRO

Remarks
name The name of the macro. Each macro need to have a unique name.

macrodef The code you want to have inserted when you use the macro.

Macro's must be defined before they can be used. When a macro is defined but not
used in your code, it will not be compiled. You can use $INCLUDE to include a large
number of macro's.

When the compiler encounters the name of a defined macro, it will insert the defined
code at that place. While it looks similar to a sub routine, there are differences. A sub
routine for example is called and has a RETURN(RET).

See also
SUB , GOSUB

Example
Macro Usb_reset_data_toggle

 Ueconx.rstdt = 1
End Macro

Macro Usb_disable_stall_handshake

 Ueconx.stallrqc = 1
End Macro

Macro Set_power_down_mode

 Smcr = 0
 Smcr = Bits(se , Sm1)
 sleep
End Macro

Usb_reset_data_toggle ' this will insert UECONRX.RSTD=1
Set_power_down_mode ' this will insert the following code :
 Smcr = 0
 Smcr = Bits(se , Sm1)
 sleep

777 602

654 BASCOM-AVR

© 2008 MCS Electronics

6.267 MAKEBCD

Action
Convert a variable into its BCD value.

Syntax
var1 = MAKEBCD(var2)

Remarks
var1 Variable that will be assigned with the converted value.

Var2 Variable that holds the decimal value.

When you want to use an I2C clock device, which stores its values as BCD values you
can use this function to convert variables from decimal to BCD.
For printing the BCD value of a variable, you can use the BCD() function which
converts a BCD number into a BCD string.

See also
MAKEDEC , BCD , MAKEINT

Example
Dim A As Byte
A = 65
Lcd A
Lowerline
Lcd Bcd(a)
A = Makebcd(a)
Lcd " " ; A
End

6.268 MAKEINT

Action
Compact two bytes into a word or integer.

Syntax
varn = MAKEINT(LSB , MSB)

Remarks
Varn Variable that will be assigned with the converted value.

LSB Variable or constant with the LS Byte.

MSB Variable or constant with the MS Byte.

The equivalent code is:
varn = (256 * MSB) + LSB

See also

655 345 654

655BASCOM Language Reference

© 2008 MCS Electronics

LOW , HIGH , MAKEBCD , MAKEDEC

Example
Dim A As Integer , I As Integer
A = 2
I = Makeint(a , 1) 'I = (1 *
256) + 2 = 258
End

6.269 MAKEDEC

Action
Convert a BCD byte or Integer/Word variable to its DECIMAL value.

Syntax
var1 = MAKEDEC(var2)

Remarks
var1 Variable that will be assigned with the converted value.

var2 Variable that holds the BCD value.

When you want to use an I2C clock device, which stores its values as BCD values you
can use this function to convert variables from BCD to decimal.

See also
MAKEBCD , MAKEBCD , MAKEINT

Example
Dim A As Byte
A = 65
Print A
Print Bcd(a)
A = Makedec(a)
Print Spc(3) ; A
End

6.270 MAKEMODBUS

Action
Creates a MODBUS master/client frame.

Syntax
PRINT [#x,] MAKEMODBUS(slave, function, address, varbts)

Remarks
slave The slave to address. This is a variable or constant with a valid MODBUS

slave to address.

651 606 654 655

654 654 654

656 BASCOM-AVR

© 2008 MCS Electronics

function The function number. This must be a constant. At the moment the following
functions are supported :
· 03 : read register(s)
· 06 : write single register
· 16 : write multiple registers

address The starting address of the register

varbts For a function that sends data like function 6 and 16, this must be a
variable.
For function 06 which can only write a single register, this can be a byte or
integer or word.
For function 16 it may be a long, single or double.
For function 6 and 16 the address of the variable is passed to the function.
For function 3 you may also specify the number of bytes to receive.
Or you can use a variable. When you specify a byte, a word will be used
anyway since a word (2 bytes) is the minimum in MODBUS protocol.
But when sending data, you can send content of a byte. For the MSB the
value 0 will be sent in that case.

The MAKEMODBUS function need to be used in combination with the PRINT
statement. It can only be used with the hardware UART(1-4).
The MODBUS protocol is an industry standard. The protocol can be used with RS-232,
RS-485 or TCP/IP or CAN.
The current BASCOM implementation only works with RS-232 or RS485.
In MODBUS we use client/master and server/slave. You may see it as a web server
and a web browser. The web server is the client/slave that reacts on the master/web
browser.
A slave will only respond when it is addressed. All other slaves just keep listening till
they are addressed.
An addressed slave will process the data and send a response.
In MODBUS the data is sent with MSB first and LSB last. The special CRC16 checksum
is sent LSB first and MSB last.
When multiple registers are sent with function 16, the data is split up into words, and
for each word, the MSB-LSB order is used.
For example a LONG is 4 bytes. LSB, NSB1, NSB2, MSB. It would be sent as : NSB1,
LSB, MSB, NSB2.
In order to use the MODBUS functionality, you need to include the MODBUS.LBX with
the $LIB directive.
Notice that BASCOM only supports the MODBUS master. A MODBUS server that
supports the above functions will be available from MCS.

See also
PRINT

Example
'---
'name : rs485-modbus-master.bas
'copyright : (c) 1995-2008, MCS Electronics
'purpose : demo file for MAKEMODBUS
'micro : Mega162
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m162def.dat" ' specify the used micro
$crystal = 8000000

679

657BASCOM Language Reference

© 2008 MCS Electronics

$baud = 19200 ' use baud rate
$hwstack = 42 ' default use 42 for the hardware stack
$swstack = 40 ' default use 40 for the SW stack
$framesize = 40 ' default use 40 for the frame space

$lib "modbus.lbx" ' specify the additional library
Config Print1 = Portb.1 , Mode = Set ' specify RS-485 and direction pin

Rs485dir Alias Portb.1 'make an alias
Config Rs485dir = Output 'set direction register to output
Rs485dir = 0 ' set the pin to 0 for listening

Portc.0 = 1 ' a pin is used with a switch

'The circuit from the help is used. See Using MAX485
' TX RX
' COM0 PD.1 PD.0 rs232 used for debugging
' COM1 PB.3 PB.2 rs485 used for MODBUS halve duplex
' PB.1 data direction rs485

'configure the first UART for RS232
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 , Databits = 8 , Clockpol = 0

'configure the second UAR for RS485/MODBUS. Make sure all slaves/servers use the same settings
Config Com2 = 9600 , Synchrone = 0 , Parity = Even , Stopbits = 1 , Databits = 8 , Clockpol = 0

'use OPEN/CLOSE for using the second UART
Open "COM2:" For Binary As #1

'dimension some variables
Dim B As Byte
Dim W As Word
Dim L As Long

W = &H4567 'assign a value
L = &H12345678 'assign a value

Print "RS-485 MODBUS master"
Do
 If Pinc.0 = 0 Then ' test switch
 Waitms 500 ' delay
 Print "send request to slave/server"
 ' Send one of the following three messages
 ' Print #1 , Makemodbus(2 , 3 , 8 , 2); ' slave 2, function 3, start address 8, 2 bytes
 ' Print #1 , Makemodbus(2 , 6 , 8 , W); ' slave 2, function 6, address 8 , value of w
 Print #1 , Makemodbus(2 , 16 , 8 , L); ' slave 2, function 16, address 8 , send a long
 End If
 If Ischarwaiting(#1) <> 0 Then 'was something returned?
 B = Waitkey(#1) 'then get it
 Print Hex(b) ; ","; 'print the info
 End If
Loop

End

658 BASCOM-AVR

© 2008 MCS Electronics

6.271 MAKETCP

Action
Creates a TCP/IP formatted long variable.

Syntax
var = MAKETCP(b1,b2,b3,b4 [opt])
var = MAKETCP(num)

Remarks
var The target variable of the type LONG that is assigned with the IP number

b1-b4 Four variables of numeric constants that form the IP number.
b1 is the MSB of the IP/long
b4 is the LSB of the IP/long
example var = MakeTCP(192,168,0, varx).

We can also use reverse order with the optional parameter :
example var = MakeTCP(var3,0,168, 192, 1).
A value of 1 will use reverse order while a value of 0 will result in normal
order.

When you use a constant, provide only one parameter :
example var = MakeTCP(192.168.0.2). Notice the dots !

MakeTCP is a helper routine for the TCP/IP library.

See also
CONFIG TCPIP , IP2STR

Example
NONE

6.272 MAX

Action
Returns the maximum value of a byte or word array.

Syntax
var1 = MAX(var2)
MAX(ar(1), m ,idx)

Remarks
var1 Variable that will be assigned with the maximum value.

var2 The first address of the array.

The MAX statement can return the index too

Ar(1) Starting element to get the maximum value and index of.

M Returns the maximum value of the array.

456 626

659BASCOM Language Reference

© 2008 MCS Electronics

Idx Return the index of the array that contains the maximum value. Returns 0
if there is no maximum value.

The MIN() and MAX() functions work on BYTE and WORD arrays only.

See also
MIN

Example
'---

'name : minmax.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show the MIN and MAX functions
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' These functions only works on BYTE and WORD arrays at the moment !!!!!

'Dim some variables
Dim Wb As Byte , B As Byte
Dim W(10) As Word ' or use a
BYTE array

'fill the word array with values from 1 to 10
For B = 1 To 10
 W(b) = B
Next

Print "Max number " ; Max(w(1))
Print "Min number " ; Min(w(1))

Dim Idx As Word , M1 As Word
Min(w(1) , M1 , Idx)
Print "Min number " ; M1 ; " index " ; Idx

Max(w(1) , M1 , Idx)
Print "Max number " ; M1 ; " index " ; Idx
End

661

660 BASCOM-AVR

© 2008 MCS Electronics

6.273 MEMCOPY

Action
Copies a block of memory

Syntax
bts = MEMCOPY(source, target , bytes[, option])

Remarks
bts The total number of bytes copied. This must be a word or integer

source The first address of the source variable that will be copied.

target The first address of the target variable that will be copied to.

bytes The number of bytes to copy from "source" to "target"

option An optional numeric constant with one of the following values :
1 - only the source address will be increased after each copied byte
2 - only the target address will be increased after each copied byte
3 - both the source and target address will be copied after each copied
byte

By default, option 3 is used as this will copy a block of memory from one memory
location to another location. But it also possible to fill an entire array of memory block
with the value of 1 memory location. For example to clear a whole block or preset it
with a value.
And with option 2, you can for example get a number of samples from a register like
PINB and store it into an array.

See also
NONE

ASM
NONE

Example
'---
'name : MEMCOPY.BAS
'copyright : (c) 1995-2006, MCS Electronics
'purpose : show memory copy function
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
'--
$regfile = "m88def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 16 ' default
use 10 for the SW stack
$framesize = 40

661BASCOM Language Reference

© 2008 MCS Electronics

Dim Ars(10) As Byte 'source
bytes
Dim Art(10) As Byte 'target
bytes
Dim J As Byte 'index
For J = 1 To 10 'fill array
 Ars(j) = J
Next

J = Memcopy(ars(1) , Art(1) , 4) 'copy 4
bytes

Print J ; " bytes copied"
For J = 1 To 10
 Print Art(j)
Next

J = Memcopy(ars(1) , Art(1) , 10 , 2) 'assign them
all with element 1

Print J ; " bytes copied"
For J = 1 To 10
 Print Art(j)
Next

Dim W As Word , L As Long
W = 65511
J = Memcopy(w , L , 2) 'copy 2
bytes from word to long
End

6.274 MIN

Action
Returns the minimum value of a byte or word array.

Syntax
var1 = MIN(var2)
MIN(ar(1), m , idx)

Remarks
var1 Variable that will be assigned with the minimum value.

var2 The first address of the array.

The MIN statement can return the index too

Ar(1) Starting element to get the minimum value and index of

M Returns the minimum value of the array

Idx Return the index of the array that contains the minimum value. Returns 0 if
there is no minimum value.

The MIN() ans MAX() functions work on BYTE and WORD arrays only.

See also

662 BASCOM-AVR

© 2008 MCS Electronics

MAX

Example
'---

'name : minmax.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show the MIN and MAX functions
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' These functions only works on BYTE and WORD arrays at the moment !!!!!

'Dim some variables
Dim Wb As Byte , B As Byte
Dim W(10) As Word ' or use a
BYTE array

'fill the word array with values from 1 to 10
For B = 1 To 10
 W(b) = B
Next

Print "Max number " ; Max(w(1))
Print "Min number " ; Min(w(1))

Dim Idx As Word , M1 As Word
Min(w(1) , M1 , Idx)
Print "Min number " ; M1 ; " index " ; Idx

Max(w(1) , M1 , Idx)
Print "Max number " ; M1 ; " index " ; Idx
End

6.275 MID

Action
The MID function returns part of a string (a sub string).
The MID statement replaces part of a string variable with another string.

Syntax
var = MID(var1 ,st [, l])

658

663BASCOM Language Reference

© 2008 MCS Electronics

MID(var ,st [, l]) = var1

Remarks
var The string that is assigned.

Var1 The source string.

st The starting position.

l The number of characters to get/set.

See also
LEFT , RIGHT

Example
Dim S As String * 15 , Z As String * 15
S ="ABCDEFG"
Z = Left(s , 5)
Print Z 'ABCDE
Z = Right(s , 3) : Print Z
Z = Mid(s , 2 , 3) : Print Z
End

6.276 NBITS

Action
Set all except the specified bits to 1.

Syntax
Var = NBITS(b1 [,bn])

Remarks
Var The BYTE/PORT variable that is assigned with the constant.

B1 , bn A list of bit numbers that NOT must be set to 1.

While it is simple to assign a value to a byte, and there is special Boolean notation
&B for assigning bits, the Bits() and NBits() function makes it simple to assign a few
bits.

B = &B01111101 : how many zero’s are there?
This would make it more readable: B = NBits(1, 7)
You can read from the code that bit 1 and bit 7 are NOT set to 1.
It does not save code space as the effect is the same.

The NBITS() function will set all bits to 1 except for the specified bits.
It can only be used on bytes and port registers.
Valid bits are in range from 0 to 7.

See Also
BITS

634 711

351

664 BASCOM-AVR

© 2008 MCS Electronics

Example
'---

'name : bits-nbits.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo for Bits() AND Nbits()
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B As Byte

'while you can use &B notation for setting bits, like B = &B1000_0111
'there is also an alternative by specifying the bits to set
B = Bits(0 , 1 , 2 , 7) 'set only
bit 0,1,2 and 7
Print B

'and while bits() will set all bits specified to 1, there is also Nbits
()
'the N is for NOT. Nbits(1,2) means, set all bits except 1 and 2
B = Nbits(7) 'do not set
bit 7
Print B
End

6.277 ON INTERRUPT

Action
Execute subroutine when the specified interrupt occurs.

Syntax
ON interrupt label [NOSAVE]

Remarks
Interrupt INT0, INT1, INT2, INT3, INT4,INT5, TIMER0 ,TIMER1, TIMER2, ADC ,

EEPROM , CAPTURE1, COMPARE1A, COMPARE1B,COMPARE1. Or you can
use the AVR
name convention:

OC2 , OVF2, ICP1, OC1A, OC1B, OVF1, OVF0, SPI, URXC,
UDRE, UTXC, ADCC, ERDY and ACI.

665BASCOM Language Reference

© 2008 MCS Electronics

Label The label to jump to if the interrupt occurs.

NOSAVE When you specify NOSAVE, no registers are saved and restored in the
interrupt routine. So when you use this option make sure to save and
restore all used registers.

When you omit NOSAVE all used registers will be saved. These are
SREG , R31 to R16 and R11 to R0 with exception of R6,R8 and R9 .

R12 – R15 are not saved. When you use floating point math in the ISR
(not recommended) you must save and restore R12-R15 yourself in the
ISR.
My_Isr:
Push R12 ' save registers
Push R13
Push R14
Push R15

Single = single + 1 ' we use FP

Pop R15 ' restore registers
Pop R14
Pop R13
Pop R12
RETURN

You must return from the interrupt routine with the RETURN statement.

The first RETURN statement that is encountered that is outside a condition will
generate a RETI instruction. You may have only one such RETURN statement in your
interrupt routine because the compiler restores the registers and generates a RETI
instruction when it encounters a RETURN statement in the ISR. All other RETURN
statements are converted to a RET instruction.

The possible interrupt names can be looked up in the selected microprocessor register
file. 2313def.dat for example shows that for the compare interrupt the name is
COMPARE1. (look at the bottom of the file)

What are interrupts good for?

An interrupt will halt your program and will jump to a specific part of your program.
You can make a DO .. LOOP and poll the status of a pin for example to execute some
code when the input on a pin changes.

But with an interrupt you can perform other tasks and when then pin input changes a
special part of your program will be executed. When you use INPUT "Name ", v for
example to get a user name via the RS-232 interface it will wait until a RETURN is
received. When you have an interrupt routine and the interrupt occurs it will branch
to the interrupt code and will execute the interrupt code. When it is finished it will
return to the Input statement, waiting until a RETURN is entered.

Maybe a better example is writing a clock program. You could update a variable in
your program that updates a second counter. But a better way is to use a TIMER
interrupt and update a seconds variable in the TIMER interrupt handler.

There are multiple interrupt sources and it depends on the used chip which are
available.

666 BASCOM-AVR

© 2008 MCS Electronics

To allow the use of interrupts you must set the global interrupt switch with a ENABLE
INTERRUPTS statement. This only allows that interrupts can be used. You must also
set the individual interrupt switches on!

ENABLE TIMER0 for example allows the TIMER0 interrupt to occur.

With the DISABLE statement you turn off the switches.

When the processor must handle an interrupt it will branch to an address at the start
of flash memory. These addresses can be found in the DAT files.

The compiler normally generates a RETI instruction on these addresses so that in the
event that an interrupt occurs, it will return immediately.

When you use the ON ... LABEL statement, the compiler will generate code that
jumps to the specified label. The SREG and other registers are saved at the LABEL
location and when the RETURN is found the compiler restores the registers and
generates the RETI so that the program will continue where it was at the time the
interrupt occurred.

When an interrupt is services no other interrupts can occur because the processor(not
the compiler) will disable all interrupts by clearing the master interrupt enable bit.
When the interrupt is services the interrupt is also cleared so that it can occur again
when the conditions are met that sets the interrupt.

It is not possible to give interrupts a priority. The interrupt with the lowest address
has the highest interrupt!

Finally some tips :

* when you use a timer interrupt that occurs each 10 uS for example, be sure that
the interrupt code can execute in 10 uS. Otherwise you would loose time.

* it is best to set just a simple flag in the interrupt routine and to determine it's
status in the main program. This allows you to use the NOSAVE option that saves
stack space and program space. You only have to Save and Restore R24 and SREG in
that case.

* Since you can not PUSH a hardware register, you need to load it first:

PUSH R24 ; since we are going to use R24 we better save it

IN r24, SREG ; get content of SREG into R24
PUSH R24 ; we can save a register

;here goes your asm code
POP R24 ;get content of SREG

OUT SREG, R24 ; save into SREG
POP R24 ; get r24 back

See Also
On VALUE

Partial Example
Enable Interrupts

667

667BASCOM Language Reference

© 2008 MCS Electronics

Enable Int0 'enable the
interrupt
On Int0 Label2 Nosave 'jump to
label2 on INT0
Do'endless loop
 nop
Loop
End

Label2:
Dim A AsByte
If A > 1 Then
 Return 'generates a
RET because it is inside a condition
EndIf
Return 'generates a
RETI because it is the first RETURN
Return 'generates a
RET because it is the second RETURN

6.278 ON VALUE

Action
Branch to one of several specified labels, depending on the value of a variable.

Syntax
ON var [GOTO] [GOSUB] label1 [, label2] [,CHECK]

Remarks
Var The numeric variable to test.

This can also be a SFR such as PORTB.

label1,
label2

The labels to jump to depending on the value of var.

CHECK An optional check for the number of provided labels.

Note that the value is zero based. So when var is 0, the first specified label is
jumped/branched.
It is important that each possible value has an associated label.
When there are not enough labels, the stack will get corrupted. For example :
ON value label1, label2

And value = 2, there is no associated label.

You can use the optional CHECK so the compiler will check the value against the
number of provided labels. When there are not enough labels for the value, there will
be no GOTO or GOSUB and the next line will be executed.

See Also
ON INTERRUPT

ASM
The following code will be generated for a non-MEGA micro with ON value GOTO.
Ldi R26,$60 ; load address of variable
Ldi R27,$00 ; load constant in register

664

668 BASCOM-AVR

© 2008 MCS Electronics

Ld R24,X
Clr R25

Ldi R30, Low(ON_1_ * 1) ; load Z with address of the label
Ldi R31, High(ON_1_ * 1)

Add zl,r24 ; add value to Z
Adc zh,r25

Ijmp ; jump to address stored in Z

ON_1_:

Rjmp lbl1 ; jump table
Rjmp lbl2
Rjmp lbl3

The following code will be generated for a non-MEGA micro with ON value GOSUB.

;##### On X Gosub L1 , L2
Ldi R30,Low(ON_1_EXIT * 1)
Ldi R31,High(ON_1_EXIT * 1)
Push R30 ;push return address
Push R31
Ldi R30,Low(ON_1_ * 1) ;load table address
Ldi R31,High(ON_1_ * 1)
Ldi R26,$60
Ld R24,X
Clr R25

Add zl,r24 ; add to address of jump table
Adc zh,r25
Ijmp ; jump !!!

ON_1_:
Rjmp L1
Rjmp L2
ON_1_EXIT:

As you can see a jump is used to call the routine. Therefore the return address is first
saved on the stack.

Example
'---

'name : ongosub.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : ON .. GOSUB/GOTO
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used

669BASCOM Language Reference

© 2008 MCS Electronics

crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte
Input "Enter value 0-2 " , A 'ask for
input
Rem Note That The Starting Value Begins With 0
On A Gosub L0 , L1 , L2
Print "Returned"

If Portb < 2 Then 'you can
also use the portvalue
 On Portb Goto G0 , G1
End If
End_prog:
End

L0:
 Print "0 entered"
Return

L1:
 Print "1 entered"
Return

L2:
 Print "2 entered"
Return

G0:
 Print "P1 = 0"
 Goto End_prog

G1:
 Print "P1 = 1"
 Goto End_prog

6.279 OPEN

Action
Opens a device.

Syntax
OPEN "device" for MODE As #channel
OPEN file FOR MODE as #channel

Remarks
Device The default device is COM1 and you don't need to open a channel to use

INPUT/OUTPUT on this device.

670 BASCOM-AVR

© 2008 MCS Electronics

With the implementation of the software UART, the compiler must know to
which pin/device you will send/receive the data.
So that is why the OPEN statement must be used. It tells the compiler
about the pin you use for the serial input or output and the baud rate you
want to use.
COMB.0:9600,8,N,2 will use PORT B.0 at 9600 baud with 2 stop bits.

The format for COM1 and COM2 is : COM1: or COM2:

There is no speed/baud rate parameter since the default baud rate will be
used that is specified with $BAUD or $BAUD1

The format for the software UART is: COMpin:speed,8,N,stopbits[,
INVERTED]
Where pin is the name of the PORT-pin.
Speed must be specified and stop bits can be 1 or 2.
7 bit data or 8 bit data may be used.
For parity N, O or E can be used.

An optional parameter ,INVERTED can be specified to use inverted RS-
232.
Open "COMD.1:9600,8,N,1,INVERTED" For Output As #1 , will use pin
PORTD.1 for output with 9600 baud, 1 stop bit and with inverted RS-232.

For the AVR-DOS file system, Device can also be a string or filename
constant like

"readme.txt" or sFileName

MODE You can use BINARY or RANDOM for COM1 and COM2, but for the software
UART pins, you must specify INPUT or OUTPUT.

For the AVR-DOS file system, MODE may be INPUT, OUTPUT, APPEND or
BINARY.

Channel The number of the channel to open. Must be a positive constant >0.

For the AVR-DOS file system, the channel may be a positive constant or a
numeric variable. Note that the AVD-DOS file system uses real file
handles. The software UART does not use real file handles.

UART

The statements that support the device are PRINT , INPUT , INPUTHEX ,
INKEY and WAITKEY

Every opened device must be closed using the CLOSE #channel statement. Of course,
you must use the same channel number.

In DOS the #number is a DOS file number that is passed to low level routines. In
BASCOM the channel number is only used to identify the channel but there are no file
handles. So opening a channel, will not use a channel. And closing the channel is only
needed to make the syntax compatible with VB.

679 622 620

617 810

671BASCOM Language Reference

© 2008 MCS Electronics

What is the difference?
In VB you can close the channel in a subroutine like this:

OPEN "com1:" for binary as #1
Call test
Close #1
End

Sub test
 Print #1, "test"
End Sub

This will work since the file number is a real variable in the OS.
In BASCOM it will not work : the CLOSE must come after the last I/O statement:

OPEN "com1:" for binary as #1
Call test
End

Sub test
 Print #1, "test"
End Sub
Close #1

The INPUT statement in combination with the software UART, will not echo characters
back because there is no default associated pin for this.

AVR-DOS
The AVR-DOS file system uses real file handles. This means that the CLOSE
statement can be used at any place in your program just as with VB.

See also
CLOSE , CRYSTAL , PRINT , LINE INPUT , LOC , LOF , EOF

Example
'---

'name : open.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates software UART
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 10000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

370 497 679 638 642 643 566

672 BASCOM-AVR

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B As Byte

'Optional you can fine tune the calculated bit delay
'Why would you want to do that?
'Because chips that have an internal oscillator may not
'run at the speed specified. This depends on the voltage, temp etc.
'You can either change $CRYSTAL or you can use
'BAUD #1,9610

'In this example file we use the DT006 from www.simmstick.com
'This allows easy testing with the existing serial port
'The MAX232 is fitted for this example.
'Because we use the hardware UART pins we MAY NOT use the hardware UART
'The hardware UART is used when you use PRINT, INPUT or other related
statements
'We will use the software UART.
Waitms 100

'open channel for output
Open "comd.1:19200,8,n,1" For Output As #1
Print #1 , "serial output"

'Now open a pin for input
Open "comd.0:19200,8,n,1" For Input As #2
'since there is no relation between the input and output pin
'there is NO ECHO while keys are typed
Print #1 , "Number"
'get a number
Input #2 , B
'print the number
Print #1 , B

'now loop until ESC is pressed
'With INKEY() we can check if there is data available
'To use it with the software UART you must provide the channel
Do
 'store in byte
 B = Inkey(#2)
 'when the value > 0 we got something
 If B > 0 Then
 Print #1 , Chr(b) 'print the
character
 End If
Loop Until B = 27

Close #2
Close #1

'OPTIONAL you may use the HARDWARE UART
'The software UART will not work on the hardware UART pins
'so you must choose other pins
'use normal hardware UART for printing
'Print B

673BASCOM Language Reference

© 2008 MCS Electronics

'When you dont want to use a level inverter such as the MAX-232
'You can specify ,INVERTED :
'Open "comd.0:300,8,n,1,inverted" For Input As #2
'Now the logic is inverted and there is no need for a level converter
'But the distance of the wires must be shorter with this
End

6.280 OUT

Action
Sends a byte to a hardware port or internal or external memory address.

Syntax
OUT address, value

Remarks
Address The address where to send the byte to in the range

of 0-FFFF hex.

Value The variable or value to output.

The OUT statement can write a value to any AVR memory location.

It is advised to use Words for the address. An integer might have a negative value
and will write of course to a word address. So it will be 32767 higher as supposed.
This because an integer has it's most significant bit set when it is negative.

 To write to XRAM locations you must enable the External RAM access in the
Compiler Chip Options .

You do not need to use OUT when setting a port variable. Port variables and other
registers of the micro can be set like this : PORTB = value , where PORTB is the name
of the register.

Take special care when using register variables. The address-part of the OUT
statement, expects a numeric variable or constant. When you use a hardware register
like for example PORTB, what will happen is that the value of PORTB will be used.
Just as when you use a variable, it will use the variable value.
So when the goal is to just write to a hardware register, you need to use the normal
assignment : PORTB=3

See also
INP , PEEK , POKE

Example
Out &H8000 , 1 'send 1 to the databus(d0-d7) at hex address 8000
End

87

618 674 675

674 BASCOM-AVR

© 2008 MCS Electronics

6.281 PEEK

Action
Returns the content of a register.

Syntax
var = PEEK(address)

Remarks
Var Numeric variable that is assigned with the content of the memory

location address

Address Numeric variable or constant with the address location.(0-31)

Peek() will read the content of a register.
Inp() can read any memory location

See also
POKE , CPEEK , INP , OUT

Example
'---

'name : peek.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates PEEk, POKE, CPEEK, INP and OUT
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m162def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Integer , B1 As Byte
'dump internal memory
For I = 0 To 31 'only 32
registers in AVR
 B1 = Peek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

675 487 618 673

675BASCOM Language Reference

© 2008 MCS Electronics

'now dump a part ofthe code-memory(program)
For I = 0 To 255
 B1 = Cpeek(i) 'get byte
from internal memory
 Print Hex(b1) ; " ";
Next
'note that you can not write into codememory!!

Out &H8000 , 1 'write 1
into XRAM at address 8000
B1 = Inp(&H8000) 'return
value from XRAM
Print B1
End

6.282 POKE

Action
Write a byte to an internal register.

Syntax
POKE address , value

Remarks
Address Numeric variable with the address of the memory location to set. (0-31)

Value Value to assign. (0-255)

See also
PEEK , CPEEK , INP , OUT

Example
Poke 1 , 1 'write 1 to R1
End

6.283 POPALL

Action
Restores all registers that might be used by BASCOM.

Syntax
POPALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are
unable to tell which registers are used by BASCOM because it depends on the used
statements and interrupt routines that can run on the background.

That is why Pushall saves all used registers and POPALL restores all registers.

674 487 618 673

676 BASCOM-AVR

© 2008 MCS Electronics

See also
PUSHALL

6.284 POWER

Action
Returns the power of a single or double variable and its argument

Syntax
var = POWER(source, raise)

Remarks
Var A numeric variable that is assigned with the power of variable

source ^ raise.

Source The single or double variable to get the power of.

The POWER function works for positive floating point variables only.
When you use a ^ b , the sign will be preserved.

While Excel does not allow raising a negative single, QB does allow it.
The Power functions uses less code compared with the code that is generated when
you use ^ for floating point values.
It is important that you use single variables for both single and raise. Constants are
not accepted.

In version 1.11.9.2 the power function is improved so that it returns the same result
as Excel. Previously it returned the same number as QB/VB. For example : -2 ^ 2
would be returned as -4, but -2 ^ 3 would be returned as -8 which is wring since -2 ^
3 = -2 x -2 x -2=4 x -2 = -8. Minus times a minutes makes a positive number. So it
depends on the sign of the base and if the number of raise if even or odd.

The exception handling was also improved.

Base Raise Result

0 0 NAN

NAN x NAN

x NAN NAN

Infinity x NAN

x Infinity NAN

0 x<0 Infinity

0 x>0 0

x 0 1

x<0 x<>int(x) NAN

See Also
EXP ,LOG , LOG10 , SQR

Example

687

568 647 648 768

677BASCOM Language Reference

© 2008 MCS Electronics

Show sample

Example for Double Exceptions

$regfile = "m128def.dat"
$crystal = 4000000

Dim D1 As Double , D2 As Double , D3 As Double
Dim dInf as Double, dNAN as Double

d1 = -1: dNAN = log(d1)
d1 = 1: d2 = 0: dInf = D1 / D2

Print "POWER() - Test"
Print "=============="

D1 = 0: D2 = 0: GoSub ShowPowerTest

D1 = dNAN: D2 = 3: GoSub ShowPowerTest

D1 = 3: D2 = dNAN: GoSub ShowPowerTest

D1 = dInf: D2 = 4: GoSub ShowPowerTest

D1 = 4: D2 = dInf: GoSub ShowPowerTest

D1 = 0: D2 = -2: GoSub ShowPowerTest

D1 = 0: D2 = 3: GoSub ShowPowerTest

D1 = 5: D2 = 0: GoSub ShowPowerTest

D1 = -2: D2 = -3.5: GoSub ShowPowerTest

D1 = -2: D2 = 3.5: GoSub ShowPowerTest

D1 = -2: D2 = -3: GoSub ShowPowerTest

D1 = -2: D2 = -4: GoSub ShowPowerTest

D1 = -2: D2 = -5: GoSub ShowPowerTest

D1 = -2: D2 = 3: GoSub ShowPowerTest

D1 = -2: D2 = 4: GoSub ShowPowerTest

D1 = -2: D2 = 5: GoSub ShowPowerTest

end

842

678 BASCOM-AVR

© 2008 MCS Electronics

ShowPowerTest:

D3 = POWER(D1, D2)

Print "POWER(" ; D1 ; " , " ; D2 ; ") = " ; D3

Return

--------------------------Simulator Output -------------------
POWER() - Test

==============

POWER(0 , 0) = NAN

POWER(NAN , 3) = NAN

POWER(3 , NAN) = NAN

POWER(Infinity , 4) = NAN

POWER(4 , Infinity) = NAN

POWER(0 , -2) = Infinity

POWER(0 , 3) = 0

POWER(5 , 0) = 1

POWER(-2 , -3.5) = NAN

POWER(-2 , 3.5) = NAN

POWER(-2 , -3) = -125E-3

POWER(-2 , -4) = 62.5E-3

POWER(-2 , -5) = -31.25E-3

POWER(-2 , 3) = -8

POWER(-2 , 4) = 16

POWER(-2 , 5) = -32

6.285 POWERDOWN

Action
Put processor into power down mode.

Syntax
POWERDOWN

679BASCOM Language Reference

© 2008 MCS Electronics

Remarks
In the power down mode, the external oscillator is stopped. The user can use the
WATCHDOG to power up the processor when the watchdog timeout expires. Other
possibilities to wake up the processor is to give an external reset or to generate an
external level triggered interrupt.

Most new chips have many options for Power down/Idle. It is advised to consult the
data sheet to see if a better mode is available.

See also
IDLE , POWERSAVE

Example
Powerdown

6.286 POWERSAVE

Action
Put processor into power save mode.

Syntax
POWERSAVE

Remarks
The POWERSAVE mode is only available in the 8535, Mega8, Mega163.

Most new chips have many options for Power down/Idle. It is advised to consult the
data sheet to see if a better mode is available.

See also
IDLE , POWERDOWN

Example
Powersave

6.287 PRINT

Action
Send output to the RS-232 port.
Writes a string to a file.

Syntax
PRINT [#channel ,] var ; " constant"

Remarks

613 679

613 678

680 BASCOM-AVR

© 2008 MCS Electronics

Var The variable or constant to print.

You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed and carriage return will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.
The RS-232 interface can be connected to a serial communication port of your
computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

AVR-DOS
The AVR-DOS file system also supports PRINT. But in that case, only strings can be
written to disk.
When you need to print to the second hardware UART, or to a software UART, you
need to specify a channel : PRINT #1, "test"
The channel must be opened first before you can print to it. Look at OPEN and CLOSE
for more details about the optional channel. For the first hardware UART, there is no
need to use channels.
PRINT " test" will always use the first hardware UART.

See also
INPUT ,OPEN , CLOSE , SPC

Example
'---

'name : print.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: PRINT, HEX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , B1 As Byte , C As Integer , S As String * 4
A = 1
Print "print variable a " ; A
Print 'new line
Print "Text to print." 'constant to
print

B1 = 10

622 669 370 763

681BASCOM Language Reference

© 2008 MCS Electronics

Print Hex(b1) 'print in
hexa notation
C = &HA000 'assign
value to c%
Print Hex(c) 'print in
hex notation
Print C 'print in
decimal notation

C = -32000
Print C
Print Hex(c)
Rem Note That Integers Range From -32767 To 32768

Print "You can also use multiple" _
; "lines using _"
Print "use it for long lines"
'From version 1.11.6.4 :
A = &B1010_0111
Print Bin(a)
S = "1001"
A = Binval(s)
Print A '9 dec
End

6.288 PRINTBIN

Action
Print binary content of a variable to the serial port.

Syntax
PRINTBIN var [; varn]
PRINTBIN #channel, var [; varn]

Remarks
Var The variable which value is send to the serial port.

varn Optional variables to send.

The channel is optional and for use with OPEN and CLOSE statements.

PRINTBIN is equivalent to PRINT CHR(var);
When you use a Long for example, 4 bytes are printed.

Multiple variables may be sent. They must be separated by the ; sign.

The number of bytes to send can be specified by an additional numeric parameter.
This is convenient when sending the content of an array.

Printbin ar(1) ; 3 ' will send 3 bytes from array ar().
Printbin ar(1) ; 2 ; ar(2) ; 4 ' will send 2 bytes from array ar() starting at index 1,
then 4 bytes from array ar() starting at index 4.

When you use Printbin ar(1) , the whole array will be printed.
When you need to print the content of a big array(array with more then 255
elements) you need to use the CONFIG PRINTBIN option.

669 370

682 BASCOM-AVR

© 2008 MCS Electronics

See also
INPUTBIN , CONFIG PRINTBIN

Example
Dim A(10) As Byte, C As Byte
For C = 1 To 10
 A(c)= c 'fill array
Next
Printbin A(1) 'print content of a(1). Not the whole array will be sent!
End

6.289 PSET

Action
Sets or resets a single pixel.

Syntax
PSET X , Y, value

Remarks
X The X location of the pixel. In range from 0-239.

Y The Y location of the pixel. In range from 0-63.

value The value for the pixel. 0 will clear the pixel. 1 Will set the pixel.

The PSET is handy to create a simple data logger or oscilloscope.

See also
SHOWPIC , CONFIG GRAPHLCD , LINE

Example
'---

'name : t6963_240_128.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : T6963C graphic display support demo 240 *
128
'micro : Mega8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m8535.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default

620 439

749 416 635

683BASCOM Language Reference

© 2008 MCS Electronics

use 40 for the frame space

'---
' (c) 2001-2003 MCS Electronics
' T6963C graphic display support demo 240 * 128
'---

'The connections of the LCD used in this demo
'LCD pin connected to
' 1 GND GND
'2 GND GND
'3 +5V +5V
'4 -9V -9V potmeter
'5 /WR PORTC.0
'6 /RD PORTC.1
'7 /CE PORTC.2
'8 C/D PORTC.3
'9 NC not conneted
'10 RESET PORTC.4
'11-18 D0-D7 PA
'19 FS PORTC.5
'20 NC not connected

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,
Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2
'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'Clear the screen will both clear text and graph display
Cls
'Other options are :
' CLS TEXT to clear only the text display
' CLS GRAPH to clear only the graphical part

Cursor Off

Wait 1
'locate works like the normal LCD locate statement
' LOCATE LINE,COLUMN LINE can be 1-8 and column 0-30

Locate 1 , 1

'Show some text
Lcd "MCS Electronics"
'And some othe text on line 2
Locate 2 , 1 : Lcd "T6963c support"
Locate 3 , 1 : Lcd "1234567890123456789012345678901234567890"
Locate 16 , 1 : Lcd "write this to the lower line"

Wait 2

Cls Text

684 BASCOM-AVR

© 2008 MCS Electronics

'use the new LINE statement to create a box
'LINE(X0,Y0) - (X1,Y1), on/off
Line(0 , 0) -(239 , 127) , 255 ' diagonal
line
Line(0 , 127) -(239 , 0) , 255 ' diagonal
line
Line(0 , 0) -(240 , 0) , 255 ' horizontal
upper line
Line(0 , 127) -(239 , 127) , 255 'horizontal
lower line
Line(0 , 0) -(0 , 127) , 255 ' vertical
left line
Line(239 , 0) -(239 , 127) , 255 ' vertical
right line

Wait 2
' draw a line using PSET X,Y, ON/OFF
' PSET on.off param is 0 to clear a pixel and any other value to turn it
on
For X = 0 To 140
 Pset X , 20 , 255 ' set the
pixel
Next

For X = 0 To 140
 Pset X , 127 , 255 ' set the
pixel
Next

Wait 2

'circle time
'circle(X,Y), radius, color
'X,y is the middle of the circle,color must be 255 to show a pixel and 0
to clear a pixel
For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Wait 1
 Circle(20 , 20) , X , 0 'remove
circle
 Wait 1
Next

Wait 2

For X = 1 To 10
 Circle(20 , 20) , X , 255 ' show
circle
 Waitms 200
Next
Wait 2
'Now it is time to show a picture
'SHOWPIC X,Y,label
'The label points to a label that holds the image data
Test:
Showpic 0 , 0 , Plaatje
Showpic 0 , 64 , Plaatje ' show 2
since we have a big display
Wait 2
Cls Text ' clear the
text

685BASCOM Language Reference

© 2008 MCS Electronics

End

'This label holds the mage data
Plaatje:
'$BGF will put the bitmap into the program at this location
$bgf "mcs.bgf"
'You could insert other picture data here

6.290 PS2MOUSEXY

Action
Sends mouse movement and button information to the PC.

Syntax
PS2MOUSEXY X , Y, button

Remarks
X The X-movement relative to the current position.

The range is –255 to 255.

Y The Y-movement relative to the current position.

The range is –255 to 255.

Button A variable or constant that represents the button state.

0 – no buttons pressed
1- left button pressed
2- right button pressed
4- middle button pressed

You can combine these values by adding them. For example, 6 would
emulate that the right and middle buttons are pressed.

To send a mouse click, you need to send two ps2mouseXY statements.
The first must indicate that the button is pressed, and the second must
release the button.

Ps2mouseXY 0,0,1 ' left mouse pressed

PsmouseXY 0,0,0 ' left mouse released

The SENDSCAN statement could also be used.

See also
SENDSCAN , CONFIG PS2EMU

6.291 PULSEIN

Action
Returns the number of units between two occurrences of an edge of a pulse.

Syntax

728 440

686 BASCOM-AVR

© 2008 MCS Electronics

PULSEIN var , PINX , PIN , STATE

Remarks
var A word variable that is assigned with the result.

PINX A PIN register like PIND

PIN The pin number(0-7) to get the pulse time of.

STATE May be 0 or 1.

0 means sample 0 to 1 transition.
1 means sample 1 to 0 transition.

ERR variable will be set to 1 in case of a time out. A time out will occur after 65535
unit counts. With 10 uS units this will be after 655.35 mS.

You can add a bitwait statement to be sure that the PULSEIN statement will wait
for the start condition. But when using the BITWAIT statement and the start condition
will never occur, your program will stay in a loop.

The PULSIN statement will wait for the specified edge.

When state 0 is used, the routine will wait until the level on the specified input pin is
0. Then a counter is started and stopped until the input level gets 1.

No hardware timer is used. A 16 bit counter is used. It will increase in 10 uS units.
But this depends on the XTAL. You can change the library routine to adjust the units.

See also
PULSEOUT

ASM
The following ASM routine is called from mcs.lib
_pulse_in (calls _adjust_pin)

On entry ZL points to the PINx register , R16 holds the state, R24 holds the pin
number to sample.
On return XL + XH hold the 16 bit value.

Example
Dim w As Word
pulsein w , PIND , 1 , 0 'detect time from 0 to 1
print w
End

6.292 PULSEOUT

Action
Generates a pulse on a pin of a PORT of specified period in 1uS units for 4 MHz.

Syntax
PULSEOUT PORT , PIN , PERIOD

350

686

687BASCOM Language Reference

© 2008 MCS Electronics

Remarks
PORT Name of the PORT. PORTB for example

PIN Variable or constant with the pin number (0-7).

PERIOD Number of periods the pulse will last. The periods are in uS
when an XTAL of 4 MHz is used.

The pulse is generated by toggling the pin twice, thus the initial state of the pin
determines the polarity.
The PIN must be configured as an output pin before this statement can be used.

See also
PULSEIN

Example
Dim A As Byte
Config Portb = Output 'PORTB all
output pins
Portb = 0 'all pins 0
Do
 For A = 0 To 7
 Pulseout Portb , A , 60000 'generate
pulse
 Waitms 250 'wait a bit
 Next
Loop 'loop for
ever

6.293 PUSHALL

Action
Saves all registers that might be used by BASCOM.

Syntax
PUSHALL

Remarks
When you are writing your own ASM routines and mix them with BASIC you are
unable to tell which registers are used by BASCOM because it depends on the used
statements and interrupt routines that can run on the background.

That is why Pushall saves all used registers. Use POPALL to restore the registers.

The saved registers are : R0-R5, R7,R10,R11 and R16-R31

See also
POPALL

685

675

688 BASCOM-AVR

© 2008 MCS Electronics

6.294 PUT

Action
Writes a byte to the hardware or software UART.
Writes data to a file opened in BINARY mode.

Syntax
PUT #channel, var
PUT #channel, var ,[pos] [,length]

Remarks
PUT in combination with the software/hardware UART is provided for compatibility
with BASCOM-8051. It writes one byte

PUT in combination with the AVR-DOS file system is very flexible and versatile. It
works on files opened in BINARY mode and you can write all data types.

#channel A channel number, which
identifies an opened file. This can be a hard coded constant or a variable.

Var The variable or variable array that will be written to the file

Pos This is an optional parameter that may be used to specify the position
where the data must be written. This must be a long variable.

Length This is an optional parameter that may be used to specify how many bytes
must be written to the file.

By default you only need to provide the variable name. When the variable is a byte, 1
byte will be written. When the variable is a word or integer, 2 bytes will be written.
When the variable is a long or single, 4 bytes will be written. When the variable is a
string, the number of bytes that will be written is equal to the dimensioned size of the
string. DIM S as string * 10 , would write 10 bytes.

Note that when you specify the length for a string, the maximum length is 255. The
maximum length for a non-string array is 65535.

Example
PUT #1, var
PUT #1, var , , 2 ' write 2 bytes at default position
PUT #1, var ,PS, 2 ' write 2 bytes at location storied in variable PS

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , DISKSIZE , GET , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM

current position Goto new position first

Byte:

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 546 582 570 572

571 542 571 814 622

689BASCOM Language Reference

© 2008 MCS Electronics

_FilePutRange_1
Input:
 r24: File number
 X: Pointer to variable
 T-Flag cleared

_FilePutRange_1
Input:
 r24: File number
 X: Pointer to variable
 r16-19 (A): New position (1-based)
 T-Flag Set

Word/Integer:

_FilePutRange_2
Input:
 r24: File number
 X: Pointer to variable
 T-Flag cleared

_FilePutRange_2
Input:
 r24: File number
 X: Pointer to variable
 r16-19 (A): New position (1-based)
 T-Flag Set

Long/Single:

_FilePutRange_4
Input:
 r24: File number
 X: Pointer to variable
 T-Flag cleared

_FilePutRange_4
Input:
 r24: File number
 X: Pointer to variable
 r16-19 (A): New position (1-based)
 T-Flag Set

String (<= 255 Bytes) with fixed length

_FilePutRange_Bytes
Input:
 r24: File number
 r20: Count of Bytes
 X: Pointer to variable
 T-Flag cleared

_FilePutRange_Bytes
Input:
 r24: File number
r20: Count of bytes
 X: Pointer to variable
 r16-19 (A): New position (1-based)
 T-Flag Set

Array (> 255 Bytes) with fixed length

_FilePutRange
Input:
 r24: File number
 r20/21: Count of Bytes
 X: Pointer to variable
 T-Flag cleared

_FilePutRange
Input:
 r24: File number
 r20/21: Count of bytes
 X: Pointer to variable
 r16-19 (A): New position (1-based)
 T-Flag Set

Output from all kind of usage:
r25: Error Code
C-Flag on Error

Example

'for the binary file demo we need some variables of different types
Dim B AsByte, W AsWord, L AsLong, Sn AsSingle, Ltemp AsLong
Dim Stxt AsString* 10
B = 1 : W = 50000 : L = 12345678 : Sn = 123.45 : Stxt ="test"

'open the file in BINARY mode
Open"test.biN"ForBinaryAs#2
Put#2 , B ' write a byte
Put#2 , W ' write a word
Put#2 , L ' write a long
Ltemp =Loc(#2)+ 1 ' get the position of the next byte
Print Ltemp ;" LOC"' store the location of the file pointer

690 BASCOM-AVR

© 2008 MCS Electronics

Print Seek(#2);" = LOC+1"

PrintLof(#2);" length of file"
PrintFileattr(#2);" file mode"' should be 32 for binary
Put#2 , Sn ' write a single
Put#2 , Stxt ' write a string

Flush#2 ' flush to disk
Close#2

'now open the file again and write only the single
Open"test.bin"ForBinaryAs#2
L = 1 'specify the file position
B =Seek(#2 , L)' reset is the same as using SEEK #2,L
Get#2 , B ' get the byte
Get#2 , W ' get the word
Get#2 , L ' get the long
Get#2 , Sn ' get the single
Get#2 , Stxt ' get the string
Close#2

6.295 QUOTE

Action
The Quote function will return a string surrounded by quotes.

Syntax
var = QUOTE(Source)

Remarks
Var A string variable that is assigned with the quoted string of variable

source.

Source The string or string constant to be quoted.

The Quote() function can be used in HTML web server pages.

See also
NONE

Example
Dim S as String * 20
S = "test"
S = Quote(s)
Print S ' would print "test"
End

6.296 RAD2DEG

Action
Converts a value in radians to degrees.

691BASCOM Language Reference

© 2008 MCS Electronics

Syntax
var = RAD2DEG(Source)

Remarks
Var A numeric variable that is assigned with the angle of variable

source.

Source The single or double variable to get the angle of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
DEG2RAD

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates DEG2RAD function

'---

Dim S As Single
S = 90

S = Deg2Rad(s)
Print S
S = Rad2deg(s)
Print S
End

6.297 RC5SEND

Action
Sends RC5 remote code.

Syntax
RC5SEND togglebit, address, command

Uses
TIMER1

Remarks
Togglebit Make the toggle bit 0 or 32 to set the toggle bit

Address The RC5 address

537

692 BASCOM-AVR

© 2008 MCS Electronics

Command The RC5 command.

The resistor must be connected to the OC1A pin. In the example a 2313 micro was
used. This micro has pin portB.3 connected to OC1A.
Look in a data sheet for the proper pin when used with a different chip.

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button is
pressed on the remote control transmitter.
Five system bits hold the system address so that only the right system responds to
the code.

Usually, TV sets have the system address 0, VCRs the address 5 and so on. The
command sequence is six bits long, allowing up to 64 different commands per
address.

The bits are transmitted in bi-phase code (also known as Manchester code).
An IR booster circuit is shown below:

See also
CONFIG RC5 , GETRC5 , RC6SEND

Example
'---

'name : sendrc5.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : code based on application note from Ger
Langezaal
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

443 596 695

693BASCOM Language Reference

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' +5V <---[A Led K]---[220 Ohm]---> Pb.3 for 2313.
' RC5SEND is using TIMER1, no interrupts are used
' The resistor must be connected to the OC1(A) pin , in this case PB.3

Dim Togbit As Byte , Command As Byte , Address As Byte

Command = 12 ' power on
off
Togbit = 0 ' make it 0
or 32 to set the toggle bit
Address = 0
Do
 Waitms 500
 Rc5send Togbit , Address , Command
 'or use the extended RC5 send code. You can not use both
 'make sure that the MS bit is set to 1, so you need to send
 '&B10000000 this is the minimal requirement
 '&B11000000 this is the normal RC5 mode
 '&B10100000 here the toggle bit is set
 ' Rc5sendext &B11000000 , Address , Command
Loop
End

6.298 RC5SENDEXT

Action
Sends extended RC5 remote code.

Syntax
RC5SENDEXT togglebit, address, command

Uses
TIMER1

Remarks
Togglebit Make the toggle bit 0 or 32 to set the toggle bit

Address The RC5 address

Command The RC5 command.

Normal RC5 code uses 2 leading bits with the value '1'. After that the toggle bit
follows.
With extended RC5, the second bit is used to select the bank. When you make it 1
(the default and normal RC5) the RC5 code is compatible. When you make it 0, you
select bank 0 and thus use extended RC5 code.

The resistor must be connected to the OC1A pin. In the example a 2313 micro was
used. This micro has pin portB.3 connected to OC1A.
Look in a data sheet for the proper pin when used with a different chip.

694 BASCOM-AVR

© 2008 MCS Electronics

Most audio and video systems are equipped with an infra-red remote control.
The RC5 code is a 14-bit word bi-phase coded signal.
The two first bits are start bits, always having the value 1.
The next bit is a control bit or toggle bit, which is inverted every time a button is
pressed on the remote control transmitter.
Five system bits hold the system address so that only the right system responds to
the code.

Usually, TV sets have the system address 0, VCRs the address 5 and so on. The
command sequence is six bits long, allowing up to 64 different commands per
address.

The bits are transmitted in bi-phase code (also known as Manchester code).
An IR booster circuit is shown below:

See also
CONFIG RC5 , GETRC5 , RC6SEND

Example
'---

'name : sendrc5.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : code based on application note from Ger
Langezaal
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' +5V <---[A Led K]---[220 Ohm]---> Pb.3 for 2313.
' RC5SEND is using TIMER1, no interrupts are used

443 596 695

695BASCOM Language Reference

© 2008 MCS Electronics

' The resistor must be connected to the OC1(A) pin , in this case PB.3

Dim Togbit As Byte , Command As Byte , Address As Byte

Command = 12 ' power on
off
Togbit = 0 ' make it 0
or 32 to set the toggle bit
Address = 0
Do
 Waitms 500
 ' Rc5send Togbit , Address , Command
 'or use the extended RC5 send code. You can not use both
 'make sure that the MS bit is set to 1, so you need to send
 '&B10000000 this is the minimal requirement
 '&B11000000 this is the normal RC5 mode
 '&B10100000 here the toggle bit is set
 Rc5sendExt &B11000000 , Address , Command
Loop
End

6.299 RC6SEND

Action
Sends RC6 remote code.

Syntax
RC6SEND togglebit, address, command

Uses
TIMER1

Remarks
Togglebit Make the toggle bit 0 or 1 to set the toggle bit

Address The RC6 address

Command The RC6 command.

The resistor must be connected to the OC1A pin. In the example a 2313 micro was
used. This micro has pin portB.3 connected to OC1A.
Look in a data sheet for the proper pin when used with a different chip.

Most audio and video systems are equipped with an infrared remote control.
The RC6 code is a 16-bit word bi-phase coded signal.
The header is 20 bits long including the toggle bits.
Eight system bits hold the system address so that only the right system responds to
the code.

Usually, TV sets have the system address 0, VCRs the address 5 and so on. The
command sequence is eight bits long, allowing up to 256 different commands per
address.

The bits are transmitted in bi-phase code (also known as Manchester code).

696 BASCOM-AVR

© 2008 MCS Electronics

An IR booster circuit is shown below:

Device Address

TV 0

VCR 5

SAT 8

DVD 4

This is not a complete list.

Command Value Command Value

Key 0 0 Balance right 26

Key 1 1 Balance left 27

Key 2-9 2-9 Channel search+ 30

Previous program 10 Channel search - 31

Standby 12 Next 32

Mute/un-mute 13 Previous 33

Personal preference 14 External 1 56

Display 15 External 2 57

Volume up 16 TXT submode 60

Volume down 17 Standby 61

Brightness up 18 Menu on 84

Brightness down 19 Menu off 85

Saturation up 20 Help 129

Saturation down 21 Zoom - 246

Bass up 22 Zoom + 247

Bass down 23

Treble up 24

Treble down 25

This list is by far not complete.
Since there is little info about RC6 on the net available, use code at your own risk!

See also
CONFIG RC5 , GETRC5 , RC5SEND

Example
'---

443 596 691

697BASCOM Language Reference

© 2008 MCS Electronics

'name : sendrc6.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : code based on application note from Ger
Langezaal
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' +5V <---[A Led K]---[220 Ohm]---> Pb.3 for 2313.
' RC6SEND is using TIMER1, no interrupts are used
' The resistor must be connected to the OC1(A) pin , in this case PB.3

Dim Togbit As Byte , Command As Byte , Address As Byte

'this controls the TV but you could use rc6send to make your DVD region
free as well :-)
'Just search the net for the codes you need to send. Do not ask me for
info please.
Command = 32 ' channel
next
Togbit = 0 ' make it 0
or 32 to set the toggle bit
Address = 0
Do
 Waitms 500
 Rc6send Togbit , Address , Command
Loop
End

6.300 READ

Action
Reads those values and assigns them to variables.

Syntax
READ var

Remarks
Var Variable that is assigned data value.

It is best to place the DATA lines at the end of your program.501

698 BASCOM-AVR

© 2008 MCS Electronics

 It is important that the variable is of the same type as the stored data.

See also
DATA , RESTORE

Example
'---

'name : readdata.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : READ,RESTORE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to
stored data
For Count = 1 To 3 'for number
of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to
stored data
For Count = 1 To 2 'for number
of data items
 Read A : Print Count ; " " ; A
Next

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

'demonstration of readlabel
Dim W As Iram Word At 8 Overlay ' location

501 709

699BASCOM Language Reference

© 2008 MCS Electronics

is used by restore pointer
'note that W does not use any RAM it is an overlayed pointer to the data
pointer
W = Loadlabel(dta1) ' loadlabel
expects the labelname
Read B1
Print B1
End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

6.301 READEEPROM

Action
Reads the content from the DATA EEPROM and stores it into a variable.

Syntax
READEEPROM var , address

Remarks
Var The name of the variable that must be stored

Address The address in the EEPROM where the data must be read from.

This statement is provided for backwards compatibility with BASCOM-8051.
You can also use the ERAM variable instead of READEEPROM :

Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM
B = V 'read from EEPROM

When you use the assignment version, the data types must be equal!
According to a data sheet from ATMEL, the first location in the EEPROM with address
0, can be overwritten during a reset so don't use it.

You may also use ERAM variables as indexes. Like :
Dim ar(10) as Eram Byte

When you omit the address label in consecutive reads, you must use a new
READEEPROM statement. It will not work in a loop:

700 BASCOM-AVR

© 2008 MCS Electronics

Readeeprom B , Label1
Print B

Do
 Readeeprom B
 Print B Loop
Until B = 5

This will not work since there is no pointer maintained. The way it will work :

ReadEEprom B , Label1 ' specify label
ReadEEPROM B ' read next address in EEPROM
ReadEEPROM B ' read next address in EEPROM

See also
WRITEEEPROM , $EEPROM

ASM
NONE

Example
'---

'name : eeprom2.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to use labels with READEEPROM
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'first dimension a variable
Dim B As Byte
Dim Yes As String * 1

'Usage for readeeprom and writeeprom :
'readeeprom var, address

'A new option is to use a label for the address of the data
'Since this data is in an external file and not in the code the eeprom
data
'should be specified first. This in contrast with the normal DATA lines
which must

815 267

701BASCOM Language Reference

© 2008 MCS Electronics

'be placed at the end of your program!!

'first tell the compiler that we are using EEPROM to store the DATA
$eeprom

'the generated EEP file is a binary file.
'Use $EEPROMHEX to create an Intel Hex file usable with AVR Studio.
'$eepromhex

'specify a label
Label1:
Data 1 , 2 , 3 , 4 , 5
Label2:
Data 10 , 20 , 30 , 40 , 50

'Switch back to normal data lines in case they are used
$data

'All the code above does not generate real object code
'It only creates a file with the EEP extension

'Use the new label option
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

Readeeprom B , Label2
Print B 'prints 10
Readeeprom B
Print B 'prints 20

'And it works for writing too :
'but since the programming can interfere we add a stop here
Input "Ready?" , Yes
B = 100
Writeeeprom B , Label1
B = 101
Writeeeprom B

'read it back
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2
End

6.302 READHITAG

Action
Read HITAG RFID transponder serial number.

Syntax
result = READHITAG(var)

702 BASCOM-AVR

© 2008 MCS Electronics

Remarks
result A numeric variable that will be 0 if no serial number was read

from the transponder. It will return 1 if a valid number was
read.

RFID is used for entrance systems, anti theft, and many other applications where a
wireless chip is an advantage over the conventional magnetic strip and chip-card.
The HITAG series from Philips(NXP) is one of the oldest and best available. The
HTRC110 chip is a simple to use chip that can read and write transponders. Each
transponder chip has a 5 byte(40 bits) unique serial number.
The only disadvantage of the HTRC110 is that you need to sign an NDA in order to
get the important documents and 8051 example code.

When the transponder is held before the coil of the receiver, the bits stream will be
modulated with the bit values. Just like RC5, HITAG is using Manchester encoding.
This is a simple and reliable method used in transmission systems.
Manchester encoding is explained very well at the Wiki Manchester page.

The image above is copied from the Wiki.

There are 2 methods to decode the bits. You can detect the edges of the bits and sample on 3/4 of
the bit time.
Another way is to use a state machine. The state machine will check the length between the edges
of the pulse. It will start with the assumption that there is a (1). Then it will enter the MID1 state. If
the next pulse is a long pulse, we have received a (0). When it received a short pulse, we enter the
start1 state. Now we need to receive a short space which indicated a (1), otherwise we have an
invalid state. When we are in the MID0 state, we may receive a long space(1) or a short space. All
others pulses are invalid and lead to a restart of the pulse state(START).

Have a look at the image above. Then see how it really works. We start with assuming a (1). We
then receive a long pulse so we receive a (0). Next we receive a long space which is a (1). And
again a long pulse which is a (0) again. Then we get a short space and we are in start1 state. We
get a short pulse which is a (0) and we are back in MID0 state. The long space will be a (1) and we
are in MID1 state again. etc.etc. When ever we receive a pulse or space which is not defined we
reset the pulse state machine.

http://en.wikipedia.org/wiki/Manchester_code

703BASCOM Language Reference

© 2008 MCS Electronics

At 125 KHz, the bit time is 512 uS. A short pulse we define as halve a bit time which
is 256 uS.
We use a 1/4 of the bit time as an offset since the pulses are not always exactly
precise.
So a short bit is 128-384(256-128 - 256+128) uS. And a long bit is 384-640 uS
(512-128 - 512+128).
We use TIMER0 which is an 8 bit timer available in all AVR's to determine the time.
Since most micro's have an 8 MHz internal clock, we run the program in 8 MHz. It
depends on the pre scaler value of the timer, which value are used to determine the
length between the edges.
You can use 64 or 256. The generated constants are : _TAG_MIN_SHORT,
_TAG_MAX_SHORT , _TAG_MIN_LONG and _TAG_MAX_LONG.

We need an interrupt to detect when an edge is received. We can use the INTx for
this and configure the pin to interrupt when a logic level changes. Or we can use the
PIN interrupt so we can use more pins.
The sample contains both methods.
It is important that the ReadHitag() functions needs a variable that can store 5 bytes.
This would be an array.
And you need to check the _TAG constants above so that they do not exceed 255.

When you set up the interrupt, you can also use it for other tasks if needed. You only

704 BASCOM-AVR

© 2008 MCS Electronics

need to call the _checkhitag routine in the subroutine. And you need to make sure
that the additional code you write does not take up too much time.

When you use the PCINT interrupt it is important to realize that other pins must be
masked off. The PCMSK register may have only 1 bit enabled. Otherwise there is no
way to determine which pin was changed.

EM4095
The EM4095 is similar to the HTRC110. The advantage of the EM4095 is that it has a
synchronized clock and needs no setup and less pins.
The EM4095 library uses the same method as the RC5 decoding : the bit is sampled
on 3/4 of the bit length. The parity handling is the same. The EM4095 decoding
routine is smaller then the HTRC110 decoding library.
A reference design for the EM4095 will be available from MCS.

See also
READMAGCARD , CONFIG HITAG

Example
See CONFIG HITAG for 2 examples.

6.303 READMAGCARD

Action
Read data from a magnetic card.

Syntax
READMAGCARD var , count , coding

Remarks
Var A byte array the receives the data.

Count A byte variable that returns the number of bytes read.

coding A numeric constant that specifies if 5 or 7 bit coding is used. Valid values
are 5 and 7.

There can be 3 tracks on a magnetic card.
Track 1 stores the data in 7 bit including the parity bit. This is handy to store alpha
numeric data.
On track 2 and 3 the data is stored with 5 bit coding.

The ReadMagCard routine works with ISO7811-2 5 and 7 bit decoding.

The returned numbers for 5 bit coding are:

Returned
number

ISO characterT

0 0

1 1

2 2

3 3

704 405

405

705BASCOM Language Reference

© 2008 MCS Electronics

4 4

5 5

6 6

7 7

8 8

9 9

10 hardware control

11 start byte

12 hardware control

13 separator

14 hardware control

15 stop byte

Example
'---

'name : magcard.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : show you how to read data from a magnetic
card
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'[reserve some space]
Dim Ar(100) As Byte , B As Byte , A As Byte

'the magnetic card reader has 5 wires
'red - connect to +5V
'black - connect to GND
'yellow - Card inserted signal CS
'green - clock
'blue - data

'You can find out for your reader which wires you have to use by
connecting +5V
'And moving the card through the reader. CS gets low, the clock gives a
clock pulse of equal pulses
'and the data varies
'I have little knowledge about these cards and please dont contact me
about magnectic readers
'It is important however that you pull the card from the right direction
as I was doing it wrong for

706 BASCOM-AVR

© 2008 MCS Electronics

'some time :-)
'On the DT006 remove all the jumpers that are connected to the LEDs

'[We use ALIAS to specify the pins and PIN register]
_mport Alias Pinb 'all pins
are connected to PINB
_mdata Alias 0 'data line
(blue) PORTB.0
_mcs Alias 1 'CS line
(yellow) PORTB.1
_mclock Alias 2 'clock line
(green) PORTB.2

Config Portb = Input 'we only
need bit 0,1 and 2 for input
Portb = 255 'make them
high

Do
 Print "Insert magnetic card" 'print a
message
 Readmagcard Ar(1) , B , 5 'read the
data
 Print B ; " bytes received"
 For A = 1 To B
 Print Ar(a); 'print the
bytes
 Next
 Print
Loop

'By specifying 7 instead of 5 you can read 7 bit data

6.304 REM

Action
Instruct the compiler that comment will follow.

Syntax
REM or '

Remarks
You can and should comment your program for clarity and your later sanity.
You can use REM or ' followed by your comment.
All statements after REM or ' are treated as comments so you cannot use statements
on the same line after a REM statement.

Block comments can be used too:

'(start block comment
print "This will not be compiled
') end block comment

Example

707BASCOM Language Reference

© 2008 MCS Electronics

Rem TEST.BAS version 1.00

Print A ' " this is comment : PRINT " Hello "

 ^ - - - This Will Not Be Executed!

6.305 RESET

Action
Reset a bit to zero.

Syntax
RESET bit
RESET var.x

Remarks
bit Can be a SFR such as PORTB.x, or any bit variable where x=0-7.

var Can be a byte, integer word or long variable.

x Constant of variable to reset.(0-7) for bytes and (0-15) for Integer/Word. For
longs(0-31)

You can also use the constants from the definition file to set or reset a bit.
RESET PORTB.PB7 'will reset bin 7 of portB. This because PB7 is a constant in the
def file.

See also
SET , TOGGLE

Example
'---

'name : boolean.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: AND, OR, XOR, NOT, BIT and MOD
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

721 796

708 BASCOM-AVR

© 2008 MCS Electronics

Dim A As Byte , B1 As Byte , C As Byte
Dim Aa As Bit , I As Integer

A = 5 : B1 = 3 ' assign
values
C = A And B1 ' and a with
b
Print "a AND c = " ; C ' print
result

C = A Or B1 'also for or
Print "a OR b1 = " ; C

C = A Xor B1 ' and for
xor
Print "a XOR b1 = " ; C

A = 1
C = Not A 'not
Print "c = NOT a " ; C
C = C Mod 10
Print "c MOD 10 = " ; C

If Portb.1 = 1 Then
 Print "Bit set"
Else
 Print "Bit not set"
End If

Aa = 1 'use this or
..
Set Aa 'use the set
statement
If Aa = 1 Then
 Print "Bit set (aa=1)"
Else
 Print "Bit not set(aa=0)"
End If

Aa = 0 'now try 0
Reset Aa 'or use
reset
If Aa = 1 Then
 Print "Bit set (aa=1)"
Else
 Print "Bit not set(aa=0)"
End If

B1 = 255 'assign
variable
Reset B1.0 'reset bit 0
of a byte variable
Print B1 'print it

Set B1.0 'set it
Print B1 'print it
End

709BASCOM Language Reference

© 2008 MCS Electronics

6.306 RESTORE

Action
Allows READ to reread values in specified DATA statements by setting data pointer to
beginning of data statement.

Syntax
RESTORE label

Remarks
label The label of a DATA statement.

See also
DATA , READ , LOOKUP

Example
'---

'name : readdata.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : READ,RESTORE
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Integer , B1 As Byte , Count As Byte
Dim S As String * 15
Dim L As Long
Restore Dta1 'point to
stored data
For Count = 1 To 3 'for number
of data items
 Read B1 : Print Count ; " " ; B1
Next

Restore Dta2 'point to
stored data
For Count = 1 To 2 'for number
of data items
 Read A : Print Count ; " " ; A
Next

501 697 650

710 BASCOM-AVR

© 2008 MCS Electronics

Restore Dta3
Read S : Print S
Read S : Print S

Restore Dta4
Read L : Print L 'long type

'demonstration of readlabel
Dim W As Iram Word At 8 Overlay ' location
is used by restore pointer
'note that W does not use any RAM it is an overlayed pointer to the data
pointer
W = Loadlabel(dta1) ' loadlabel
expects the labelname
Read B1
Print B1
End

Dta1:
Data &B10 , &HFF , 10
Dta2:
Data 1000% , -1%

Dta3:
Data "Hello" , "World"
'Note that integer values (>255 or <0) must end with the %-sign
'also note that the data type must match the variable type that is
'used for the READ statement

Dta4:
Data 123456789&
'Note that LONG values must end with the &-sign
'Also note that the data type must match the variable type that is used
'for the READ statement

6.307 RETURN

Action
Return from a subroutine.

Syntax
RETURN

Remarks
Subroutines must be ended with a related RETURN statement.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUB

Example
'---

602

711BASCOM Language Reference

© 2008 MCS Electronics

'name : gosub.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: GOTO, GOSUB and RETURN
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Goto Continue
Print "This code will not be executed"

Continue: 'end a label
with a colon
Print "We will start execution here"
Gosub Routine
Print "Back from Routine"
End

Routine: 'start a
subroutine
 Print "This will be executed"
Return 'return from
subroutine

6.308 RIGHT

Action
Return a specified number of rightmost characters in a string.

Syntax
var = RIGHT(var1 ,n)

Remarks
var The string that is assigned.

Var1 The source string.

st The number of bytes to copy from the right of the string.

See also
LEFT , MID634 662

712 BASCOM-AVR

© 2008 MCS Electronics

Example
Dim S As String * 15 , Z As String * 15
S ="ABCDEFG"
Z = Left(s , 5)
Print Z 'ABCDE
Z = Right(s , 3) : Print Z
Z = Mid(s , 2 , 3) : Print Z
End

6.309 RND

Action
Returns a random number.

Syntax
var = RND(limit)

Remarks
Limit Word that limits the returned random number.

Var The variable that is assigned with the random number.

The RND() function returns an Integer/Word and needs an internal storage of 2 bytes.
(___RSEED). Each new call to Rnd() will give a new positive random number.

 Notice that it is a software based generated number. And each time you will
restart your program the same sequence will be created.

You can use a different SEED value by dimensioning and assigning ___RSEED
yourself:
Dim ___rseed as word : ___rseed = 10234
Dim I as word : I = rnd(10)

When your application uses a timer you can assign ___RSEED with the timer value.
This will give a better random number.

See also
NONE

Example
'---

'name : rnd.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : RND() function
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

713BASCOM Language Reference

© 2008 MCS Electronics

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Word ' dim
variable
Do
 I = Rnd(40) 'get random
number (0-39)
 Print I 'print the
value
 Wait 1 'wait 1
second
Loop 'for ever
End

6.310 ROTATE

Action
Rotate all bits one place to the left or right.

Syntax
ROTATE var , LEFT/RIGHT[, shifts]

Remarks
Var Byte, Integer/Word or Long variable.

Shifts The number of shifts to perform.

The ROTATE statement rotates all the bits in the variable to the left or right. All bits
are preserved so no bits will be shifted out of the variable.
This means that after rotating a byte variable with a value of 1, eight times the
variable will be unchanged.
When you want to shift out the MS bit or LS bit, use the SHIFT statement.

See also
SHIFT , SHIFTIN , SHIFTOUT

Example
'---

'name : rotate.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example for ROTATE and SHIFT statement
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no

741 743 747

714 BASCOM-AVR

© 2008 MCS Electronics

'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'dimension some variables
Dim B As Byte , I As Integer , L As Long

'the shift statement shift all the bits in a variable one
'place to the left or right
'An optional paramater can be provided for the number of shifts.
'When shifting out then number 128 in a byte, the result will be 0
'because the MS bit is shifted out

B = 1
Shift B , Left
Print B
'B should be 2 now

B = 128
Shift B , Left
Print B
'B should be 0 now

'The ROTATE statement preserves all the bits
'so for a byte when set to 128, after a ROTATE, LEFT , the value will
'be 1

'Now lets make a nice walking light
'First we use PORTB as an output
Config Portb = Output
'Assign value to portb
Portb = 1
Do
 For I = 1 To 8
 Rotate Portb , Left
 'wait for 1 second
 Wait 1
 Next
 'and rotate the bit back to the right
 For I = 1 To 8
 Rotate Portb , Right
 Wait 1
 Next
Loop
End

6.311 ROUND

Action
Returns a value rounded to the nearest value.

715BASCOM Language Reference

© 2008 MCS Electronics

Syntax
var = ROUND(x)

Remarks
Var A single or double variable that is assigned with the ROUND of

variable x.

X The single or double to get the ROUND of.

Round(2.3) = 2 , Round(2.8) = 3
Round(-2.3) = -2 , Round(-2.8) = -3

See Also
INT , FIX , SGN

Example
'---

'name : round_fix_int.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : ROUND,FIX
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As Single , Z As Single
For S = -10 To 10 Step 0.5
 Print S ; Spc(3) ; Round(s) ; Spc(3) ; Fix(s) ; Spc(3) ; Int(s)
Next
End

6.312 RTRIM

Action
Returns a copy of a string with trailing blanks removed

Syntax
var = RTRIM(org)

625 573 740

716 BASCOM-AVR

© 2008 MCS Electronics

Remarks
var String that is assigned with the result.

org The string to remove the trailing spaces from

See also
TRIM , LTRIM

ASM
NONE

Example
Dim S As String * 6
S =" AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

6.313 SECELAPSED

Action
Returns the elapsed Seconds to a former assigned time-stamp.

Syntax
Target = SECELAPSED(TimeStamp)

Remarks
Target A variable (LONG), that is assigned with the elapsed Seconds

TimeStamp A variable (LONG), which holds a timestamp like the output of an earlier
called SecOfDay()

The Function works with the SOFTCLOCK variables _sec, _min and _hour and
considers a jump over midnight and gives a correct result within 24 hour between two
events.

The Return-Value is in the range of 0 to 86399.

See also
Date and Time Routines , SecOfDay , SysSecElapsed

Partial Example
Lsecofday = Secofday()
_hour = _hour + 1
Lvar1 = Secelapsed(lsecofday)
Print Lvar1

796 639

852 717 779

717BASCOM Language Reference

© 2008 MCS Electronics

6.314 SECOFDAY

Action
Returns the Seconds of a Day.

Syntax
Target = SECOFDAY()
Target = SECOFDAY(bSecMinHour)
Target = SECOFDAY(strTime)
Target = SECOFDAY(lSysSec)

Remarks
Target A variable (LONG), that is assigned with the Seconds of the Day

bSecMinHour A Byte, which holds the Second-value followed by Minute(Byte) and
Hour(Byte)

strTime A String, which holds the time in the format „hh:mm:ss"

LSysSec A Variable (Long) which holds the System Second

The Function can be used with 4 different kind of inputs:

1.Without any parameter. The internal Time of SOFTCLOCK (_sec, _min, _hour)
is used.

2.With a user defined time array. It must be arranged in same way (Second,
Minute, Hour) as the internal SOFTCLOCK time. The first Byte (Second) is the
input by this kind of usage. So the Second of Day can be calculated of every
time.

3.With a time-String. The time-string must be in the Format „hh:mm:ss".
4.With a System Second Number (LONG)

The Return-Value is in the range of 0 to 86399 from 00:00:00 to 23:59:59.
No validity-check of input is made.

See also
Date and Time Routines , SysSec

Partial Example
' ================= Second of Day
===
' Example 1 with internal RTC-Clock
_sec = 12 : _min = 30 : _hour = 18 ' Load RTC-
Clock for example - testing

Lsecofday = Secofday()
Print "Second of Day of " ; Time$; " is " ; Lsecofday

' Example 2 with defined Clock - Bytes (Second / Minute / Hour)
Bsec = 20 : Bmin = 1 : Bhour = 7
Lsecofday = Secofday(bsec)

852 777

718 BASCOM-AVR

© 2008 MCS Electronics

Print "Second of Day of Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour
; " (" ; Time(bsec) ; ") is " ; Lsecofday

' Example 3 with System Second
Lsyssec = 1234456789
Lsecofday = Secofday(lsyssec)
Print "Second of Day of System Second " ; Lsyssec ; "(" ; Time(lsyssec)
; ") is " ; Lsecofday

' Example 4 with Time - String
Strtime = "04:58:37"
Lsecofday = Secofday(strtime)
Print "Second of Day of " ; Strtime ; " is " ; Lsecofday

6.315 SEEK

Action
Function: Returns the position of the next Byte to be read or written
Statement: Sets the position of the next Byte to be read or written

Syntax
Function: NextReadWrite = SEEK (#bFileNumber)
Statement: SEEk #bFileNumber, NewPos

Remarks
bFileNumber (Byte) Filenumber, which identifies an opened file

NextReadWrit
e

A Long Variable, which is assigned with the Position of the next Byte
to be read or written (1-based)

NewPos A Long variable that holds the new position the file pointer must be
set too.

This function returns the position of the next Byte to be read or written. If an error
occurs, 0 is returned. Check DOS-Error in variable gbDOSError.

The statement also returns an error in the gbDOSerror variable in the event that an
error occurs.
You can for example not set the file position behinds the file size.

In VB the file is filled with 0 bytes when you set the file pointer behind the size of the
file. For embedded systems this does not seem a good idea.

Seek and Loc seems to do the same function, but take care : the seek function will
return the position of the next read/write, while the Loc function returns the position
of the last read/write. You may say that Seek = Loc+1.

 In QB/VB you can use seek to make the file bigger. When a file is 100 bytes
long, setting the file pointer to 200 will increase the file with 0 bytes. By design this is
not the case in AVR-DOS.

719BASCOM Language Reference

© 2008 MCS Electronics

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , BSAVE , BLOAD , KILL ,
DISKFREE , DISKSIZE , GET , PUT , FILEDATE , FILETIME ,
FILEDATETIME , DIR , FILELEN , WRITE , INPUT

ASM
Function
Calls

_FileSeek

Input r24: filenumber X: Pointer to Long-variable, which gets the
result

Output r25: Errorcode C-Flag: Set on Error

Statement
Calls

_FileSeekSet

Input r24: filenumber X: Pointer to Long-variable with the position

Output r25: Errorcode C-Flag: Set on Error

Partial Example
Open "test.biN"for Binary As #2
Put#2 , B ' write a
byte
Put#2 , W ' write a
word
Put#2 , L ' write a
long
Ltemp = Loc(#2) + 1 ' get the
position of the next byte
Print Ltemp ; " LOC" ' store the
location of the file pointer
Print Seek(#2) ; " = LOC+1"
Close #2

'now open the file again and write only the single
Open "test.bin" For Binary As #2
Seek#2 , Ltemp ' set the
filepointer
Sn = 1.23 ' change the
single value so we can check it better
Put #2 , Sn = 1 'specify the
file position
Close #2

6.316 SELECT-CASE-END SELECT

Action
Executes one of several statement blocks depending on the value of an expression.

Syntax
SELECT CASE var
 CASE test1 : statements

615 669 370 574 679 638

642 643 566 580 569 356 352 627

545 546 582 688 570 572

571 542 571 814 622

720 BASCOM-AVR

© 2008 MCS Electronics

[CASE test2 : statements]
CASE ELSE : statements
END SELECT

Remarks
Var Variable to test the value of

Test1 Value to test for.

Test2 Value to test for.

You can test for conditions to like:

CASE IS > 2 :

Another option is to test for a range :

CASE 2 TO 5 :

See also
IF THEN

Example
'---

'name : case.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates SELECT CASE statement
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim I As Byte 'dim
variable
Dim S As String * 5 , Z As String * 5

Do

 Input "Enter value (0-255) " , I
 Select Case I
 Case 1 : Print "1"

613

721BASCOM Language Reference

© 2008 MCS Electronics

 Case 2 : Print "2"
 Case 3 To 5 : Print "3-5"
 Case Is >= 10 : Print ">= 10"
 Case Else : Print "Not in Case statement"
 End Select
Loop
End

'note that a Boolean expression like > 3 must be preceded
'by the IS keyword

6.317 SET

Action
Set a bit to the value one.

Syntax
SET bit
SET var.x

Remarks
Bit Bitvariable.

Var A byte, integer, word or long variable.

X Bit of variable (0-7) to set. (0-15 for Integer/Word) and (0-
31) for Long

See also
RESET , TOGGLE

Example
'---

'name : boolean.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: AND, OR, XOR, NOT, BIT and MOD
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

707 796

722 BASCOM-AVR

© 2008 MCS Electronics

Dim A As Byte , B1 As Byte , C As Byte
Dim Aa As Bit , I As Integer

A = 5 : B1 = 3 ' assign
values
C = A And B1 ' and a with
b
Print "a AND c = " ; C ' print
result

C = A Or B1 'also for or
Print "a OR b1 = " ; C

C = A Xor B1 ' and for
xor
Print "a XOR b1 = " ; C

A = 1
C = Not A 'not
Print "c = NOT a " ; C
C = C Mod 10
Print "c MOD 10 = " ; C

If Portb.1 = 1 Then
 Print "Bit set"
Else
 Print "Bit not set"
End If

Aa = 1 'use this or
..
Set Aa 'use the set
statement
If Aa = 1 Then
 Print "Bit set (aa=1)"
Else
 Print "Bit not set(aa=0)"
End If

Aa = 0 'now try 0
Reset Aa 'or use
reset
If Aa = 1 Then
 Print "Bit set (aa=1)"
Else
 Print "Bit not set(aa=0)"
End If

B1 = 255 'assign
variable
Reset B1.0 'reset bit 0
of a byte variable
Print B1 'print it

Set B1.0 'set it
Print B1 'print it
End

723BASCOM Language Reference

© 2008 MCS Electronics

6.318 SETFONT

Action
Sets the current font which can be used on some graphical displays.

Syntax
SETFONT font

Remarks
font The name of the font that need to be used with LCDAT

statements.

Since SED-based displays do not have their own font generator, you need to define
your own fonts. You can create and modify your own fonts with the FontEditor Plugin.

SETFONT will set an internal used data pointer to the location in memory where you
font is stored. The name you specify is the same name you use to define the font.

You need to include the used fonts with the $include directive:

$INCLUDE "font8x8.font"

The order of the font files is not important. The location in your source is however
important.
The $INCLUDE statement will include binary data and this may not be accessed by
the flow of your program.
When your program flow enters into font code, unpredictable results will occur.
So it is best to place the $INCLUDE files at the end of your program behind the END
statement.

You need to include the glibSED library with :
$LIB "glibsed.lbx"
While original written for the SED1521, fonts are supported on a number of displays
now including color displays.

See also
CONFIG GRAPHLCD , LCDAT , GLCDCMD , GLCDDATA

Example
'---

'name : sed1520.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates the SED1520 based graphical
display support
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro

426 632 601 601

724 BASCOM-AVR

© 2008 MCS Electronics

$crystal = 7372800 ' used
crystal frequency
$baud = 115200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'I used a Staver to test

'some routines to control the display are in the glcdSED.lib file
'IMPORTANT : since the SED1520 uses 2 chips, the columns are split into
2 of 60.
'This means that data after column 60 will not print correct. You need
to locate the data on the second halve
'For example when you want to display a line of text that is more then 8
chars long, (8x8=64) , byte 8 will not draw correctly
'Frankly i find the KS0108 displays a much better choice.

$lib "glcdSED1520.lbx"

'First we define that we use a graphic LCD

Config Graphlcd = 120 * 64sed , Dataport = Porta , Controlport = Portd ,
Ce = 5 , Ce2 = 7 , Cd = 3 , Rd = 4

'The dataport is the portname that is connected to the data lines of the
LCD
'The controlport is the portname which pins are used to control the lcd
'CE =CS Chip Enable/ Chip select
'CE2= Chip select / chip enable of chip 2
'CD=A0 Data direction
'RD=Read

'Dim variables (y not used)
Dim X As Byte , Y As Byte

'clear the screen
Cls
Wait 2
'specify the font we want to use
Setfont Font8x8

'You can use locate but the columns have a range from 1-132

'When you want to show somthing on the LCD, use the LDAT command
'LCDAT Y , COL, value
Lcdat 1 , 1 , "1231231"
Lcdat 3 , 80 , "11"
'lcdat accepts an additional param for inversing the text
'lcdat 1,1,"123" , 1 ' will inverse the text

Wait 2
Line(0 , 0) -(30 , 30) , 1
Wait 2

Showpic 0 , 0 , Plaatje 'show a
comnpressed picture
End 'end program

725BASCOM Language Reference

© 2008 MCS Electronics

'we need to include the font files
$include "font8x8.font"
'$include "font16x16.font"

Plaatje:
'include the picture data
$bgf "smile.bgf"

6.319 SETTCP

Action
(Re) Configures the TCP/IP W3100A chip.

Syntax
SETTCP MAC , IP , SUBMASK , GATEWAY

Remarks
MAC The MAC address you want to assign to the W3100A.

The MAC address is a unique number that identifies your chip. You
must use a different address for every W3100A chip in your network.
Example : 123.00.12.34.56.78

You need to specify 6 bytes that must be separated by dots. The bytes
must be specified in decimal notation.

IP The IP address you want to assign to the W3100A.

The IP address must be unique for every W3100A in your network.
When you have a LAN, 192.168.0.10 can be used. 192.168.0.x is used
for LAN’s since the address is not an assigned internet address.

SUBMASK The submask you want to assign to the W3100A.

The submask is in most cases 255.255.255.0

GATEWAY This is the gateway address of the W3100A.

The gateway address you can determine with the IPCONFIG command
at the command prompt :

C:\>ipconfig
Windows 2000 IP Configuration

Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . :
IP Address. : 192.168.0.3
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.0.1
Use 192.168.0.1 in this case.

The CONFIG TCPIP statement may be used only once.

When you want to set the TCP/IP settings dynamically for instance when the settings
are stored in EEPROM, you can not use constants. For this purpose, SETTCP must be

726 BASCOM-AVR

© 2008 MCS Electronics

used.

SETTCP can take a variable or a constant for each parameter.

When you set the TCP/IP settings dynamically, you do not need to set them with
CONFIG TCPIP. In the CONFIG TCPIP you can use the NOINIT parameter so that the
MAC and IP are not initialized which saves code.

See also
GETSOCKET , SOCKETCONNECT , SOCKETSTAT , TCPWRITE ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN , CONFIG
TCPIP

Example
See the DHCP.BAS example from the BASCOM Sample dir.

6.320 SETTCPREGS

Action
Writes to a W3100A register

Syntax
SETTCPREGS address, var , bytes

Remarks
address The address of the register W3100A register. This must be the value of

the MSB. For example in location &H92 and &H93, the timeout is stored.
You need to specify &H93 then.

var The variable to write.

bytes The number of bytes to write.

Most W3100A options are implemented with BASCOM statements or functions. When
there is a need to write to the W3100A register you can use the SETTCPREGS
commands. It can write multiple bytes. It is important that you specify the highest
address. This because the registers must be written starting with the highest address.

See also
GETTCPREGS

ASM
NONE

Example
'---

'name : regs.bas
'copyright : (c) 1995-2005, MCS Electronics

600 752 756 787

788 786 372 755

456

599

727BASCOM Language Reference

© 2008 MCS Electronics

'purpose : test custom regs reading writing
'micro : Mega88
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m88def.dat" ' specify
the used micro

$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 80 ' default
use 32 for the hardware stack
$swstack = 128 ' default
use 10 for the SW stack
$framesize = 80 ' default
use 40 for the frame space

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of

728 BASCOM-AVR

© 2008 MCS Electronics

Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

'we do the usual
Print "Init TCP" ' display a
message
Enable Interrupts ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55 , Twi = &H80 , Clock = 400000
Print "Init done"

'set the IP address to 192.168.0.135
Settcp 12.128.12.24.56.78 , 192.168.0.135 , 255.255.255.0 , 192.168.0.88

Dim L As Long

'now read the IP address direct from the registers
L = Gettcpregs(&H91 , 4)
Print Ip2str(l)

Dim B4 As Byte At L Overlay ' this byte
is the same as the LSB of L

'now make the IP address 192.168.0.136 by writing to the LSB
B4 = 136
Settcpregs &H91 , L , 4 'write

'and check if it worked
L = Gettcpregs(&H91 , 4)
Print Ip2str(l)
'while the address has the right value now the chip needs a reset in
order to use the new settings
L = &B10000001 ' set
sysinit and swrest bits
Settcpregs &H00 , L , 1 ' write 1
register

'and with PING you can check again that now it works
End

6.321 SENDSCAN

Action
Sends scan codes to the PC.

Syntax
SENDSCAN label

Remarks

729BASCOM Language Reference

© 2008 MCS Electronics

Label The name of the label that contains the scan codes.

The SENDSCAN statement can send multiple scan codes to the PC.
The label is used to specify the start of the scan codes. The first byte specifies the
number of bytes that follow.

The following table lists all mouse scan codes.

Emulated Action Data sent to host

Move up one 08,00,01

Move down one 28,00,FF

Move right one 08,01,00

Move left one 18,FF,00

Press left button 09,00,00

Release left button 08,00,00

Press middle button 0C,00,00

Release middle button 08,00,00

Press right button 0A,00,00

Release right button 08,00,00

To emulate a left mouse click, the data line would look like this:

DATA 6 , &H09, &H00, &H00, &H08 , &H00, &H00
 ^ send 6 bytes
 ^ left click
 ^ release

See also
PS2MOUSEXY , CONFIG PS2EMU

Example
'---

'name : ps2_emul.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PS2 Mouse emulator
'micro : 90S2313
'suited for demo : NO, commercial addon needed
'commercial addon needed : yes
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

685 440

730 BASCOM-AVR

© 2008 MCS Electronics

$lib "mcsbyteint.lbx" ' use
optional lib since we use only bytes

'configure PS2 pins
Config Ps2emu = Int1 , Data = Pind.3 , Clock = Pinb.0
' ^------------------------ used interrupt
' ^----------- pin connected to DATA
' ^-- pin connected to clock
'Note that the DATA must be connected to the used interrupt pin

Waitms 500 ' optional
delay

Enable Interrupts ' you need
to turn on interrupts yourself since an INT is used

Print "Press u,d,l,r,b, or t"
Dim Key As Byte
Do
 Key = Waitkey() ' get key
from terminal
 Select Case Key
 Case "u" : Ps2mousexy 0 , 10 , 0 ' up
 Case "d" : Ps2mousexy 0 , -10 , 0 ' down
 Case "l" : Ps2mousexy -10 , 0 , 0 ' left
 Case "r" : Ps2mousexy 10 , 0 , 0 ' right
 Case "b" : Ps2mousexy 0 , 0 , 1 ' left
button pressed
 Ps2mousexy 0 , 0 , 0 ' left
button released
 Case "t" : Sendscan Mouseup ' send a
scan code
 Case Else
 End Select
Loop

Mouseup:
Data 3 , &H08 , &H00 , &H01 ' mouse up
by 1 unit

6.322 SENDSCANKBD

Action
Sends keyboard scan codes to the PC.

Syntax
SENDSCANKBD label | var

Remarks
Label The name of the label that contains the scan codes.

var The byte variable that will be sent to the PC.

The SENDSCANKBD statement can send multiple scan codes to the PC.
The label is used to specify the start of the scan codes. The first byte specifies the
number of bytes that follow.

731BASCOM Language Reference

© 2008 MCS Electronics

You can also send the content of a variable. This way you can send dynamic
information.
You need to make sure you send the make and break codes.

The following tables lists all scan codes.

AT KEYBOARD SCANCODES

Table reprinted with permission of Adam Chapweske

http://panda.cs.ndsu.nodak.edu/~achapwes

 KEY MAKE BREAK KEY MAKE BREAK KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [54 FO,54

B 32 F0,32 ` 0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U
ARROW

E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L ARROW E0,6B E0,F0,6B

J 3B F0,3B L
SHFT

12 FO,12 D
ARROW

E0,72 E0,F0,72

K 42 F0,42 L
CTRL

14 FO,14 R ARROW E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,
F0,1F

NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R
SHFT

59 F0,59 KP * 7C F0,7C

O 44 F0,44 R
CTRL

E0,14 E0,
F0,14

KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,
F0,27

KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,
F0,11

KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,
F0,2F

KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 05 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 06 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 04 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 03 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 01 F0,01] 5B F0,5B

732 BASCOM-AVR

© 2008 MCS Electronics

3 26 F0,26 F10 09 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 ' 52 F0,52

5 2E F0,2E F12 07 F0,07 , 41 F0,41

6 36 F0,36 PRNT

SCRN

E0,12,

E0,7C

E0,F0,

7C,E0,
F0,12

. 49 F0,49

7 3D F0,3D SCROL
L

7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE E1,14,7
7,

E1,
F0,14,
F0,77

-NONE-

ACPI Scan Codes
Key Make Code Break Code

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E

Windows Multimedia Scan Codes
Key Make Code Break Code

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

733BASCOM Language Reference

© 2008 MCS Electronics

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favorites E0, 18 E0, F0, 18

To emulate volume up, the data line would look like this:

DATA 5 , &HE0, &H32, &HE0, &HF0 , &H32
 ^ send 5 bytes
 ^ volume up

See also
CONFIG ATEMU

Example
'---

'name : ps2_kbdemul.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : PS2 AT Keyboard emulator
'micro : 90S2313
'suited for demo : no, ADD ON NEEDED
'commercial addon needed : yes
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

$lib "mcsbyteint.lbx" ' use
optional lib since we use only bytes

'configure PS2 AT pins
Enable Interrupts ' you need
to turn on interrupts yourself since an INT is used
Config Atemu = Int1 , Data = Pind.3 , Clock = Pinb.0
' ^------------------------ used interrupt
' ^----------- pin connected to DATA
' ^-- pin connected to clock
'Note that the DATA must be connected to the used interrupt pin

Waitms 500 ' optional
delay

'rcall _AT_KBD_INIT
Print "Press t for test, and set focus to the editor window"
Dim Key2 As Byte , Key As Byte

382

734 BASCOM-AVR

© 2008 MCS Electronics

Do
 Key2 = Waitkey() ' get key
from terminal
 Select Case Key2
 Case "t" :
 Waitms 1500
 Sendscankbd Mark ' send a
scan code
 Case Else
 End Select
Loop
Print Hex(key)

Mark: ' send mark
Data 12 , &H3A , &HF0 , &H3A , &H1C , &HF0 , &H1C , &H2D , &HF0 , &H2D ,
 &H42 , &HF0 , &H42
' ^ send 12 bytes
' m a r
 k

6.323 SERIN

Action
Reads serial data from a dynamic software UART.

Syntax
SERIN var , bts , port , pin, baud , parity , dbits , sbits

Remarks
While the OPEN and CLOSE statements can be used for software UARTS, they do not
permit to use the same pin for input and output. The settings used when opened the
communication channel can also not be changed at run time.

The SERIN and SEROUT statements are dynamic software UART routines to perform
input and output. You can use them on the same pin for example send some data
with SEROUT and get back an answer using SERIN.

Since the SERIN and SEROUT routines can use any pin and can use different
parameter values, the code size of these routines is larger.

Paramete
r

Description

Var A variable that will be assigned with the received data.

Bts The number of bytes to receive. String variables will wait for a return
(ASCII 13). There is no check if the variable you assign is big enough to
hold the result.

Port The name of the port to use. This must be a letter like A for portA.

Pin The pin number you want to use of the port. This must be in the range
from 0-7.

Baud The baud rate you want to use. For example 19200.

Parity A number that codes the parity. 0= NONE, 1 = EVEN, 2 = ODD

Dbits The number of data bits. Use 7 or 8.

Sbits The number of stop bits. 1 to 2.

The use of SERIN will create an internal variable named ___SER_BAUD. This is a

735BASCOM Language Reference

© 2008 MCS Electronics

LONG variable. It is important that you specify the correct crystal value
with $CRYSTAL so the correct calculation can be made for the specified baud rate.

Note that ___SER_BAUD will not hold the passed baud rate but will hold the bit delay
used internal.

Since the SW UART is dynamic you can change all the parameters at run time. For
example you can store the baud rate in a variable and pass this variable to the SERIN
routine.

Your code could change the baud rate under user control this way.

It is important to realize that software timing is used for the bit timing. Any interrupt
that occurs during SERIN or SEROUT will delay the transmission. Disable interrupts
while you use SERIN or SEROUT.

ASM
The routine called is named _serin and is stored in mcs.lib
For the baud rate calculation, _calc_baud is called.

See also
SEROUT

Example
'---

'name : serin_out.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of DYNAMIC software UART
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'tip : Also look at OPEN and CLOSE

'some variables we will use
Dim S As String * 10
Dim Mybaud As Long
'when you pass the baud rate with a variable, make sure you dimesion it
as a LONG

Mybaud = 19200
Do
 'first get some data

736

736 BASCOM-AVR

© 2008 MCS Electronics

 Serin S , 0 , D , 0 , Mybaud , 0 , 8 , 1
 'now send it
 Serout S , 0 , D , 1 , Mybaud , 0 , 8 , 1
 ' ^ 1 stop bit
 ' ^---- 8 data bits
 ' ^------ even parity (0=N, 1 = E, 2=O)
 ' ^-------------- baud rate
 ' ^-------------------- pin number
 ' ^----------------------- port so PORTA.0 and PORTA.1
are used
 ' ^--------------------------- for strings pass 0
 ' ^-------------------------------- variable
 Wait 1
Loop
End

'because the baud rate is passed with a variable in this example, you
could change it under user control
'for example check some DIP switches and change the variable mybaud

6.324 SEROUT

Action
Sends serial data through a dynamic software UART.

Syntax
SEROUT var , bts , port , pin, baud , parity , dbits , sbits

Remarks
While the OPEN and CLOSE statements can be used for software UARTS, they do not
permit to use the same pin for input and output. The settings used when opened the
communication channel can also not be changed at run time.

The SERIN and SEROUT statements are dynamic software UART routines to perform
input and output. You can use them on the same pin for example send some data
with SEROUT and get back an answer using SERIN.

Since the SERIN and SEROUT routines can use any pin and can use different
parameter values, the code size of these routines is larger.

Paramete
r

Description

Var A variable which content is send through the UART. A constant can NOT
be used.

Bts The number of bytes to receive. String variables will wait for a return
(ASCII 13). There is no check if the variable you assign is big enough to
hold the result.

Port The name of the port to use. This must be a letter like A for portA.

Pin The pin number you want to use of the port. This must be in the range
from 0-7.

Baud The baud rate you want to use. For example 19200.

Parity A number that codes the parity. 0= NONE, 1 = EVEN, 2 = ODD

Dbits The number of data bits. Use 7 or 8.

Sbits The number of stop bits. 1 to 2.

737BASCOM Language Reference

© 2008 MCS Electronics

The use of SEROUT will create an internal variable named ___SER_BAUD. This is a
LONG variable. It is important that you specify the correct crystal value
with $CRYSTAL so the correct calculation can be made for the specified baud rate.

Note that ___SER_BAUD will not hold the passed baud rate but will hold the bit delay
used internal.

Since the SW UART is dynamic you can change all the parameters at run time. For
example you can store the baud rate in a variable and pass this variable to the
SEROUT routine.

Your code could change the baud rate under user control this way.

It is important to realize that software timing is used for the bit timing. Any interrupt
that occurs during SERIN or SEROUT will delay the transmission. Disable interrupts
while you use SERIN or SEROUT.

The SEROUT will use the pin in Open Collector mode. This means that you can
connect several AVR chips and poll the ‘ bus’ with the SERIN statement.

ASM
The routine called is named _serout and is stored in mcs.lib
For the baud rate calculation, _calc_baud is called.

See also
SERIN

Example
'---

'name : serin_out.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of DYNAMIC software UART
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'tip : Also look at OPEN and CLOSE

'some variables we will use
Dim S As String * 10
Dim Mybaud As Long

734

738 BASCOM-AVR

© 2008 MCS Electronics

'when you pass the baud rate with a variable, make sure you dimesion it
as a LONG

Mybaud = 19200
Do
 'first get some data
 Serin S , 0 , D , 0 , Mybaud , 0 , 8 , 1
 'now send it
 Serout S , 0 , D , 1 , Mybaud , 0 , 8 , 1
 ' ^ 1 stop bit
 ' ^---- 8 data bits
 ' ^------ even parity (0=N, 1 = E, 2=O)
 ' ^-------------- baud rate
 ' ^-------------------- pin number
 ' ^----------------------- port so PORTA.0 and PORTA.1
are used
 ' ^--------------------------- for strings pass 0
 ' ^-------------------------------- variable
 Wait 1
Loop
End

'because the baud rate is passed with a variable in this example, you
could change it under user control
'for example check some DIP switches and change the variable mybaud

6.325 SETIPPROTOCOL

Action
Configures socket RAW-mode protocol

Syntax
SETIPPROTOCOL socket, value

Remarks
Socket The socket number. (0-3)

Value The IP-protocol value to set.

In order to use W3100A’s IPL_RAW Mode, the protocol value of the IP Layer to be
used (e.g., 01 in case
of ICMP) needs to be set before socket initialization.
As in UDP, data transmission and reception is possible when the corresponding
channel is initialized.

The PING example demonstrates the usage.
As a first step, SETIPPROTOCOL is used :
 Setipprotocol Idx , 1
And second, the socket is initialized :
 Idx = Getsocket(idx , 3 , 5000 , 0)

The W3100A data sheet does not provide much more details about the IPR register.

See also
SETTCPREGS , GETSOCKET726 600

739BASCOM Language Reference

© 2008 MCS Electronics

ASM
NONE

Example
'---
'name : PING_TWI.bas http://www.faqs.org/rfcs/rfc792.html
'copyright : (c) 1995-2005, MCS Electronics
'purpose : Simple PING program
'micro : Mega88
'suited for demo : yes
'commercial addon needed : no
'---
$regfile = "m32def.dat" ' specify the used micro

$crystal = 8000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 80 ' default use 32 for the hardware stack
$swstack = 128 ' default use 10 for the SW stack
$framesize = 80 ' default use 40 for the frame space

Const Debug = 1

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer Raw Sock
Const Sel_control = 0 ' Confirm Socket Status
Const Sel_send = 1 ' Confirm Tx Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx Data Size

'socket status
Const Sock_closed = $00 ' Status Of Connection Closed
Const Sock_arp = $01 ' Status Of Arp
Const Sock_listen = $02 ' Status Of Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of Closing Tcp Connection
Const Sock_closing = $0b ' Status Of Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of Closing Tcp Connection
Const Sock_reset = $0d ' Status Of Closing Tcp Connection
Const Sock_init = $0e ' Status Of Socket Initialization
Const Sock_udp = $0f ' Status Of Udp
Const Sock_raw = $10 ' Status of IP RAW

'we do the usual
Print "Init TCP" ' display a message
Enable Interrupts ' before we use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 , Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx = $55 , Rx = $55 , Twi = &H80 , Clock = 400000
Print "Init done"

Dim Peersize As Integer , Peeraddress As Long , Peerport As Word
Dim Idx As Byte , Result As Word , J As Byte , Res As Byte
Dim Ip As Long
Dim Dta(12) As Byte , Rec(12) As Byte

740 BASCOM-AVR

© 2008 MCS Electronics

Dta(1) = 8 'type is echo
Dta(2) = 0 'code

Dta(3) = 0 ' for checksum initialization
Dta(4) = 0 ' checksum
Dta(5) = 0 ' a signature can be any number
Dta(6) = 1 ' signature
Dta(7) = 0 ' sequence number - any number
Dta(8) = 1
Dta(9) = 65

Dim W As Word At Dta + 2 Overlay 'same as dta(3) and dta(4)
W = Tcpchecksum(dta(1) , 9) ' calculate checksum and store in dta(3) and dta(4)

#if Debug
 For J = 1 To 9
 Print Dta(j)
 Next
#endif

Ip = Maketcp(192.168.0.16) 'try to check this server

Print "Socket " ; Idx ; " " ; Idx
Setipprotocol Idx , 1 'set protocol to 1
'the protocol value must be set BEFORE the socket is openend

Idx = Getsocket(idx , 3 , 5000 , 0)

Do
 Result = Udpwrite(ip , 7 , Idx , Dta(1) , 9) 'write ping data '
 Print Result
 Waitms 100
 Result = Socketstat(idx , Sel_recv) 'check for data
 Print Result
 If Result >= 11 Then
 Print "Ok"
 Res = Tcpread(idx , Rec(1) , Result) 'get data with TCPREAD !!!
 #if Debug
 Print "DATA RETURNED :" ; Res '
 For J = 1 To Result
 Print Rec(j) ; " " ;
 Next
 Print
 #endif
 Else 'there might be a problem
 Print "Network not available"
 End If
 Waitms 1000
Loop

6.326 SGN

Action
Returns the sign of a float value.

Syntax

741BASCOM Language Reference

© 2008 MCS Electronics

var = SGN(x)

Remarks
Var A single or double variable that is assigned with the SGNS of variable x.

X The single or double to get the sign of.

For values <0, -1 will be returned
For 0, 0 will be returned
For values >0, 1 will be returned

See Also
INT , FIX , ROUND

Example
Dim S As Single , X As Single , Y As Single
X = 2.3 : S = Sgn(x)
Print S
X = -2.3 : S = Sgn(x)
Print S
End

6.327 SHIFT

Action
Shift all bits one place to the left or right.

Syntax
SHIFT var , LEFT/RIGHT[, shifts] [,SIGNED]

Remarks
Var Byte, Integer/Word, Long or Single variable.

Shifts The number of shifts to perform.

signed An option that only works with right shifts. It will preserve the
sign bit which otherwise would be cleared by the first shift.

The SHIFT statement rotates all the bits in the variable to the left or right.

When shifting LEFT the most significant bit, will be shifted out of the variable. The LS
bit becomes zero. Shifting a variable to the left, multiplies the variable with a value of
two.

When shifting to the RIGHT, the least significant bit will be shifted out of the variable.
The MS bit becomes zero. Shifting a variable to the right, divides the variable by two.
Use the SIGNED parameter to preserve the sign.

A Shift performs faster than a multiplication or division.

See also
ROTATE , SHIFTIN , SHIFTOUT

625 573 714

713 743 747

742 BASCOM-AVR

© 2008 MCS Electronics

Example
'---

'name : shift.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example for SHIFTIN and SHIFTOUT statement
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim L As Long

Clock Alias Portb.0
Output Alias Portb.1
Sin Alias Pinb.2 'watch the
PIN instead of PORT

'shiftout pinout,pinclock, var,parameter [,bits , delay]
' value for parameter :
' 0 - MSB first ,clock low
' 1 - MSB first,clock high
' 2 - LSB first,clock low
' 3 - LSB first,clock high
'The bits is a new option to indicate the number of bits to shift out
'For a byte you should specify 1-8 , for an integer 1-16 and for a long
1-32
'The delay is an optional delay is uS and when used, the bits parameter
must
'be specified too!

'Now shift out 9 most significant bits of the LONG variable L
Shiftout Output , Clock , L , 0 , 9

'shiftin pinin,pinclock,var,parameter [,bits ,delay]
' 0 - MSB first ,clock low (4)
' 1 - MSB first,clock high (5)
' 2 - LSB first,clock low (6)
' 3 - LSB first,clock high (7)

'To use an external clock, add 4 to the parameter
'The shiftin also has a new optional parameter to specify the number of
bits

'The bits is a new option to indicate the number of bits to shift out
'For a byte you should specify 1-8 , for an integer 1-16 and for a long

743BASCOM Language Reference

© 2008 MCS Electronics

1-32
'The delay is an optional delay is uS and when used, the bits parameter
must
'be specified too!

'Shift in 9 bits into a long
Shiftin Sin , Clock , L , 0 , 9
'use shift to shift the bits to the right place in the long
Shift L , Right , 23
End

6.328 SHIFTCURSOR

Action
Shift the cursor of the LCD display left or right by one position.

Syntax
SHIFTCURSOR LEFT | RIGHT

See also
SHIFTLCD

Partial Example
LCD "Hello"
SHIFTCURSOR LEFT
End

6.329 SHIFTIN

Action
Shifts a bit stream into a variable.

Syntax
SHIFTIN pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as an input.PINB.2 for example

Pclock The port pin which generates the clock.

Var The variable that is assigned. The existing value is not preserved. For
example when you shiftin 3 bits, the whole byte will be replaced with the
3 bits.
See CONFIG SHIFTIN for other SHIFTIN behaviour.

Option Option can be :

0 – MSB shifted in first when clock goes low
1 – MSB shifted in first when clock goes high
2 – LSB shifted in first when clock goes low
3 – LSB shifted in first when clock goes high
Adding 4 to the parameter indicates that an external clock signal is used

748

744 BASCOM-AVR

© 2008 MCS Electronics

for the clock. In this case the clock will not be generated. So using 4 will
be the same a 0 (MSB shifted in first when clock goes low) but the clock
must be generated by an external signal.

4 – MSB shifted in first when clock goes low with ext. clock
5 – MSB shifted in first when clock goes high with ext. clock
6 – LSB shifted in first when clock goes low with ext. clock
7 – LSB shifted in first when clock goes high with ext. clock

Bits Optional number of bits to shift in. Maximum 255. The number of bits is
automatic loaded depending on the used variable. For a long for example
which is 4 bytes long, 32 will be loaded.

Delay Optional delay in uS.

If you do not specify the number of bits to shift, the number of shifts will depend on
the type of the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a
Long and Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.
The PIN is normally connected with the output of chip that will send information.

The PCLOCK pin can be used to clock the bits as a master, that is the clock pulses will
be generated. Or it can sample a pin that generates these pulses.

The VARIABLE is a normal BASIC variable. And may be of any type except for BIT.
The data read from the chip is stored in this variable.

The OPTIONS is a constant that specifies the direction of the bits. The chip that
outputs the data may send the LS bit first or the MS bit first. It also controls on which
edge of the clock signal the data must be stored.

When you add 4 to the constant you tell the compiler that the clock signal is not
generated but that there is an external clock signal.
The number of bits may be specified. You may omit this info. In that case the number
of bits of the element data type will be used.
The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can
specify a delay time(in uS).

SHIFTIN with option NEW
The new option CONFIG SHIFTIN =NEW , will change the behaviour of the SHIFTIN
statement.
When using this option, it will work for all SHIFTIN statements. The SHIFTIN will work
more like the normal SHIFT statement. Bits are shifted from left to right or right to
left.

The new SHIFTIN can preserve the value/bits when shifting in bits.
For example when the value of a word is &B101 and you shift in 3 bits with value
&B111, the resulting value will be &B101111. When you not want to preserve the
value, you can add a value of 8 to the parameter. When you add a value of 16, the
value will also not be preserved, but then the value will be cleared initially. You would
only need this when shifting in less 8 bits then the size of the variable.
Another important difference is that the new SHIFTIN can only SHIFTIN a maximum
of 8 bytes. For quick operation, register R16-R23 are used. You may specify the
number of bits to shiftin. This may be a variable too. When you shiftin a value into a
Word, the number of bits is automatic loaded with 16. This is true for all numeric data

452

745BASCOM Language Reference

© 2008 MCS Electronics

types.

Some of the code is stored in the MCS library. While this reduces code when SHIFTIN
is used multiple times, it has the drawback that the code is written for 8 bytes and
thus is not optimal for shifting in less bytes.
You can choose to generate a part of the library code instead. Add a value of 32 to
the parameter to do so.
Another new option is not to set the initial pin state for the clock and input pin. By
default the clock pin is made an input or output, depending on the external clock
option. And the clock is set to an initial state when no external clock is used.
When you want to use shiftin after a shiftout, you might not want the level to change.
In this case, add 64 to the parameter.

Pin The port pin which serves as an input.PINB.2 for example

Pclock The port pin which generates the clock. An external signal can also be
used for the clock. In that case, the pin is used in input mode.

Var The variable that is assigned. The existing value is preserved.
With some additional constants which you can add to the option
parameter, you can influence the behaviour :
 - 8 - Do NOT preserve the value. This saves code.
-16 - Do not preserve value, but clear the value before shifting in the
bits

Option A constant which can be one of the following values :

0 – MS bit shifted in first when clock goes low
1 – MS bit shifted in first when clock goes high
2 – LS bit shifted in first when clock goes low
3 – LS bit shifted in first when clock goes high

Adding 4 to the parameter indicates that an external clock signal is used
for the clock. In this case the clock will not be generated. So using 4 will
be the same a 0 (MSB shifted in first when clock goes low) but the clock
must be generated by an external signal.

4 – MSB shifted in first when clock goes low with ext. clock
5 – MSB shifted in first when clock goes high with ext. clock
6 – LSB shifted in first when clock goes low with ext. clock
7 – LSB shifted in first when clock goes high with ext. clock

Add a value of 8 to the option, so the existing variable will not be
preserved.
Add a value of 16 to the option to clear the variable first.
Add a value of 32 to the option to generate code instead of using the lib
code.
Add a value of 64 to the option when you do not want the clock and input
pin data direction and state want to be set. For example, when using
SHIFTIN after a SHIFTOUT statement.

Example : Shiftin Pind.3 , Portd.4 , W , 2 + 32 + 16 , 3

Bits Optional number of bits to shift in. Maximum 64. The number of bits is
automatic loaded depending on the used variable. For a long for example
which is 4 bytes long, 32 will be loaded. You can use a constant or
variable.

Delay Optional delay in uS. When not specified, 2 nops are used. The delay is
intended to slow down the clock frequency.

746 BASCOM-AVR

© 2008 MCS Electronics

The initial state for the clock depends on the option. For option 1 and 3, it will be low.
For option 0 and 2 it will be high.
Thus for example option 2 will set the clock pin high. Then the clock is brought low
and the data is sampled/stored. After this the clock is made high again. This means
when ready, the clock pin will be in the same state as the initial state.

See also
SHIFTOUT , SHIFT

Example
'---

'name : shift.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example for SHIFTIN and SHIFTOUT statement
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim L As Long

clock Alias Portb.0
Output Alias Portb.1
sinp Alias Pinb.2 'watch the
PIN instead of PORT

'shiftout pinout,pinclock, var,parameter [,bits , delay]
' value for parameter :
' 0 - MSB first ,clock low
' 1 - MSB first,clock high
' 2 - LSB first,clock low
' 3 - LSB first,clock high
'The bits is a new option to indicate the number of bits to shift out
'For a byte you should specify 1-8 , for an integer 1-16 and for a long
1-32
'The delay is an optional delay is uS and when used, the bits parameter
must
'be specified too!

'Now shift out 9 most significant bits of the LONG variable L
Shiftout Output , Clock , L , 0 , 9

747 741

747BASCOM Language Reference

© 2008 MCS Electronics

'shiftin pinin,pinclock,var,parameter [,bits ,delay]
' 0 - MSB first ,clock low (4)
' 1 - MSB first,clock high (5)
' 2 - LSB first,clock low (6)
' 3 - LSB first,clock high (7)

'To use an external clock, add 4 to the parameter
'The shiftin also has a new optional parameter to specify the number of
bits

'The bits is a new option to indicate the number of bits to shift out
'For a byte you should specify 1-8 , for an integer 1-16 and for a long
1-32
'The delay is an optional delay is uS and when used, the bits parameter
must
'be specified too!

'Shift in 9 bits into a long
Shiftin Sinp , Clock , L , 0 , 9
'use shift to shift the bits to the right place in the long
Shift L , Right , 23
End

6.330 SHIFTOUT

Action
Shifts a bit stream out of a variable into a port pin .

Syntax
SHIFTOUT pin , pclock , var , option [, bits , delay]

Remarks
Pin The port pin which serves as a data output.

Pclock The port pin which generates the clock.

Var The variable that is shifted out.

Option Option can be :

0 – MSB shifted out first when clock goes low
1 – MSB shifted out first when clock goes high
2 – LSB shifted out first when clock goes low
3 – LSB shifted out first when clock goes high

Bits Optional number of bits to shift out.

Delay Optional delay in uS. When you specify the delay, the number of bits
must also be specified. When the default must be used you can also
use NULL for the number of bits.

If you do not specify the number of bits to shift, the number of shifts will depend on
the type of the variable.
When you use a byte, 8 shifts will occur and for an integer, 16 shifts will occur. For a
Long and Single 32 shifts will occur.

The SHIFTIN routine can be used to interface with all kind of chips.

748 BASCOM-AVR

© 2008 MCS Electronics

The PIN is normally connected with the input of a chip that will receive information.

The PCLOCK pin is used to clock the bits out of the chip.

The VARIABLE is a normal BASIC variable. And may be of any type except for BIT.
The data that is stored in the variable is sent with PIN.

The OPTIONS is a constant that specifies the direction of the bits. The chip that reads
the data may want the LS bit first or the MS bit first. It also controls on which edge of
the clock signal the data is sent to PIN.

The number of bits may be specified. You may omit this info. In that case the number
of bits of the element data type will be used.

The DELAY normally consists of 2 NOP instructions. When the clock is too fast you can
specify a delay time(in uS).

The clock pin is brought to a initial level before the shifts take place. For mode 0,
it is made 1. This way, the first clock can go from 1 to 0. And back to 1. You could see
this as another clock cycle. So check if you use the proper mode. Or put the clock pin
in the right state before you use SHIFT.

See also
SHIFTIN , SHIFT

Example
See SHIFTIN sample

6.331 SHIFTLCD

Action
Shift the LCD display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks
NONE

See also
SHIFTCURSOR , SHIFTCURSOR , INITLCD , CURSOR

Partial Example
Cls 'clear the
LCD display
Lcd "Hello world." 'display
this at the top line
Wait 1

743 741

743

743 743 616 498

749BASCOM Language Reference

© 2008 MCS Electronics

Lowerline 'select the
lower line
Wait 1
Lcd "Shift this." 'display
this at the lower line
Wait 1
For A = 1 To 10
 Shiftlcd Right 'shift the
text to the right
 Wait 1 'wait a
moment
Next

For A = 1 To 10
 Shiftlcd Left 'shift the
text to the left
 Wait 1 'wait a
moment
Next

Locate 2 , 1 'set cursor
position
Lcd "*" 'display
this
Wait 1 'wait a
moment

Shiftcursor Right 'shift the
cursor
Lcd "@" 'display
this

6.332 SHOWPIC

Action
Shows a BGF file on the graphic display

Syntax
SHOWPIC x, y , label

Remarks
Showpic can display a converted BMP file. The BMP must be converted into a BGF file
with the Tools Graphic Converter .

The X and Y parameters specify where the picture must be displayed. X and Y must
be 0 or a multiple of 8. The picture height and width must also be a multiple of 8.

The label tells the compiler where the graphic data is located. It points to a label
where you put the graphic data with the $BGF directive.

You can store multiple pictures when you use multiple labels and $BGF directives,

Note that the BGF files are RLE encoded to save code space.

See also
PSET , $BGF , CONFIG GRAPHLCD , LINE , CIRCLE , SHOWPICE

79

682 259 416 635 362 750

750 BASCOM-AVR

© 2008 MCS Electronics

Example
See $BGF example

6.333 SHOWPICE

Action
Shows a BGF file stored in EEPROM on the graphic display

Syntax
SHOWPICE x, y , label

Remarks
Showpice can display a converted BMP file that is stored in the EEPROM of the micro
processor. The BMP must be converted into a BGF file with the Tools Graphic
Converter .

The X and Y parameters specify where the picture must be displayed. X and Y must
be 0 or a multiple of 8. The picture height and width must also be a multiple of 8.

The label tells the compiler where the graphic data is located. It points to a label
where you put the graphic data with the $BGF directive.
You can store multiple pictures when you use multiple labels and $BGF directives,

Note that the BGF files are RLE encoded to save code space.

See also
PSET , $BGF , CONFIG GRAPHLCD , LINE , SHOWPIC , CIRCLE

Example
'---

'name : showpice.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstrates showing a picture from EEPROM
'micro : AT90S8535
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "8535def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

259

79

682 259 416 635 749 362

751BASCOM Language Reference

© 2008 MCS Electronics

'First we define that we use a graphic LCD
' Only 240*64 supported yet
Config Graphlcd = 240 * 128 , Dataport = Porta , Controlport = Portc ,
Ce = 2 , Cd = 3 , Wr = 0 , Rd = 1 , Reset = 4 , Fs = 5 , Mode = 8
'The dataport is th e portname that is connected to the data lines of
the LCD
'The controlport is the portname which pins are used to control the lcd
'CE, CD etc. are the pin number of the CONTROLPORT.
' For example CE =2 because it is connected to PORTC.2
'mode 8 gives 240 / 8 = 30 columns , mode=6 gives 240 / 6 = 40 columns

'we will load the picture data into EEPROM so we specify $EEPROM
'the data must be specified before the showpicE statement.
$eeprom
Plaatje:
'the $BGF directive will load the data into the EEPROM or FLASH
depending on the $EEPROM or $DATA directive
$bgf "mcs.bgf"
'switch back to normal DATA (flash) mode
$data

'Clear the screen will both clear text and graph display
Cls
'showpicE is used to show a picture from EEPROM
'showpic must be used when the data is located in Flash
Showpice 0 , 0 , Plaatje
End

6.334 SIN

Action
Returns the sine of a float

Syntax
var = SIN(source)

Remarks
Var A numeric variable that is assigned with sinus of variable source.

source The single or double variable to get the sinus of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , ATN , COS

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

690 537 339 485

752 BASCOM-AVR

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
S = 0.5 : X = Tan(s) : Print X ' prints
0.546302195
S = 0.5 : X = Sin(s) : Print X ' prints
0.479419108
S = 0.5 : X = Cos(s) : Print X ' prints
0.877588389
End

6.335 SINH

Action
Returns the sinus hyperbole of a float

Syntax
var = SINH(source)

Remarks
Var A numeric variable that is assigned with sinus hyperbole of

variable source.

source The single or double variable to get the sinus hyperbole of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , ATN , COS , SIN , TANH , COSH

Example
Show sample

6.336 SOCKETCONNECT

Action
Establishes a connection to a TCP/IP server.

Syntax
Result = SOCKETCONNECT(socket, IP, port)

Remarks

690 537 339 485 751 792 486

842

753BASCOM Language Reference

© 2008 MCS Electronics

Result A byte that is assigned with 0 when the connection succeeded. It will return
1 when an error occurred.

IP The IP number of the server you want to connect to.

This may be a number like 192.168.0.2 or a LONG variable that is assigned
with an IP number.

Note that the LSB of the LONG, must contain the MSB of the IP number.

Port The port number of the server you are connecting to.

You can only connect to a server. Standardized servers have dedicated port numbers.
For example, the HTTP protocol(web server) uses port 80.

After you have established a connection the server might send data. This depends
entirely on the used protocol. Most servers will send some welcome text, this is called
a banner.

You can send or receive data once the connection is established.

The server might close the connection after this or you can close the connection
yourself. This also depends on the protocol.

See also
CONFIG TCPIP , GETSOCKET , SOCKETSTAT , TCPWRITE , TCPWRITESTR
, TCPREAD , CLOSESOCKET , SOCKETLISTEN

Example
'---

'name : servertest.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : start the easytcp.exe program after the chip
is programmed
' and create 2 connections
'micro : Mega161
'suited for demo : no
'commercial addon needed : yes
'---

$regfile = "m161def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer

456 600 756 787 788

786 372 755

754 BASCOM-AVR

© 2008 MCS Electronics

Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

$lib "tcpip.lbx" ' specify
the tcpip library
Print "Init , set IP to 192.168.0.8" ' display a
message
Enable Interrupts ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 0.0.0.0 , Localport = 1000 , Tx =
$55 , Rx = $55

'Use the line below if you have a gate way
'Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55

Dim Bclient As Byte ' socket
number
Dim Idx As Byte

755BASCOM Language Reference

© 2008 MCS Electronics

Dim Result As Word ' result
Dim S As String * 80
Dim Flags As Byte
Dim Peer As Long

Do
 For Idx = 0 To 3
 Result = Socketstat(idx , 0) ' get status
 Select Case Result
 Case Sock_established
 If Flags.idx = 0 Then ' if we did
not send a welcome message yet
 Flags.idx = 1
 Result = Tcpwrite(idx , "Hello from W3100A{013}{010}")
 ' send welcome
 End If
 Result = Socketstat(idx , Sel_recv) ' get number
of bytes waiting
 If Result > 0 Then
 Do
 Result = Tcpread(idx , S)
 Print "Data from client: " ; Idx ; " " ; S
 Peer = Getdstip(idx)
 Print "Peer IP " ; Ip2str(peer)
 'you could analyse the string here and send an
appropiate command
 'only exit is recognized
 If Lcase(s) = "exit" Then
 Closesocket Idx
 Elseif Lcase(s) = "time" Then
 Result = Tcpwrite(idx , "12:00:00{013}{010}")
' you should send date$ or time$
 End If
 Loop Until Result = 0
 End If
 Case Sock_close_wait
 Print "close_wait"
 Closesocket Idx
 Case Sock_closed
 Print "closed"
 Bclient = Getsocket(idx , Sock_stream , 5000 , 0) '
get socket for server mode, specify port 5000
 Print "Socket " ; Idx ; " " ; Bclient
 Socketlisten Idx
 Print "Result " ; Result
 Flags.idx = 0 ' reset the
hello message flag
 End Select
 Next
Loop
End

6.337 SOCKETLISTEN

Action
Opens a socket in server(listen) mode.

Syntax
SOCKETLISTEN socket

756 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Socket The socket number you want to use for the server in the range of 0 -3.

The socket will listen to the port you specified with the GetSocket function.
You can listen to a maximum of 4 sockets at the same time.

After the connection is closed by either the client or the server, a new connection
need to be created and the SocketListen statement must be used again.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , TCPREAD , CLOSESOCKET

Example
See SOCKETCONNECT example

6.338 SOCKETSTAT

Action
Returns information of a socket.

Syntax
Result = SOCKETSTAT(socket , mode)

Remarks
Result A word variable that is assigned with the result.

Socket The socket number you want to get information of

Mode A parameter that specified what kind of information you want to retrieve.

SEL_CONTROL or 0 : returns the status register value

SEL_SEND or 1 : returns the number of bytes that might be placed into
the transmission buffer.

SEL_RECV or 2 : returns the number of bytes that are stored in the
reception buffer.

The SocketStat function contains actual 3 functions. One to get the status of the
connection, one to determine how many bytes you might write to the socket, and one
to determine how many bytes you can read from the buffer.

When you specify mode 0, one of the following byte values will be returned:

Value State Description

0 SOCK_CLOSED Connection closed

1 SOCK_ARP Standing by for reply after transmitting ARP
request

2 SOCK_LISTEN Standing by for connection setup to the client

456 600 752 756

787 788 786 372

752

757BASCOM Language Reference

© 2008 MCS Electronics

when acting in passive mode

3 SOCK_SYNSENT Standing by for SYN,ACK after transmitting
SYN for connecting setup when acting in active
mode

4 SOCK_SYNSENT_ACK Connection setup is complete after SYN,ACK is
received and ACK is transmitted in active mode

5 SOCK_SYNRECV SYN,ACK is being transmitted after receiving
SYN from the client in listen state, passive
mode

6 SOCK_ESTABLISHED Connection setup is complete in active, passive
mode

7 SOCK_CLOSE_WAIT Connection being terminated

8 SOCK_LAST_ACK Connection being terminated

9 SOCK_FIN_WAIT1 Connection being terminated

10 SOCK_FIN_WAIT2 Connection being terminated

11 SOCK_CLOSING Connection being terminated

12 SOCK_TIME_WAIT Connection being terminated

13 SOCK_RESET Connection being terminated after receiving
reset packet from peer.

14 SOCK_INIT Socket initializing

15 SOCK_UDP Applicable channel is initialized in UDP mode.

16 SOCK_RAW Applicable channel is initialized in IP layer RAW
mode

17 SOCK_UDP_ARP Standing by for reply after transmitting ARP
request packet to the destination for UDP
transmission

18 SOCK_UDP_DATA Data transmission in progress in UDP RAW
mode

19 SOCK_RAW_INIT W3100A initialized in MAC layer RAW mode

The SocketStat function is also used internally by the library.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , TCPWRITE ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN

Partial Example

Tempw = Socketstat(i , 0)' get status
Select Case Tempw
 Case Sock_established
 Case Else
End Select

6.339 SONYSEND

Action
Sends Sony remote IR code.

Syntax

456 600 752 787

788 786 372 755

758 BASCOM-AVR

© 2008 MCS Electronics

SONYSEND address [, bits]

Uses
TIMER1

Remarks
Address The address of the Sony device.

bits This is an optional parameter. When used, it must be 12, 15 or 20.

Also, when you use this option, the address variable must be of the type
LONG.

SONY CD Infrared Remote Control codes (RM-DX55)

Function Hex Bin

Power A91 1010 1001 0001

Play 4D1 0100 1101 0001

Stop 1D1 0001 1101 0001

Pause 9D1 1001 1101 0001

Continue B91 1011 1001 0001

Shuffle AD1 1010 1101 0001

Program F91 1111 1001 0001

Disc 531 0101 0011 0001

1 011 0000 0001 0001

2 811 1000 0001 0001

3 411 0100 0001 0001

4 C11 1100 0001 0001

5 211 0010 0001 0001

6 A11 1010 0001 0001

7 611 0110 0001 0001

8 E11 1110 0001 0001

9 111 0001 0001 0001

0 051 0000 0101 0001

>10 E51 1110 0101 0001

enter D11 1101 0001 0001

clear F11 1111 0001 0001

repeat 351 0011 0101 0001

disc - BD1 1011 1101 0001

disc + H7D1 0111 1101 0001

|<< 0D1 0000 1101 0001

>>| 8D1 1000 1101 0001

<< CD1 1100 1101 0001

>> 2D1 0010 1101 0001

SONY Cassette RM-J901)

Deck A

stop 1C1 0001 1100 0001

play > 4C1 0100 1100 0001

759BASCOM Language Reference

© 2008 MCS Electronics

play < EC1 1110 1100 0001

>> 2C1 0010 1100 0001

<< CC1 1100 1100 0001

record 6C1 0110 1100 0001

pause 9C1 1001 1100 0001

Dec B

stop 18E 0001 1000 1110

play > 58E 0101 1000 1110

play < 04E 0000 0100 1110

>> 38E 0011 1000 1110

<< D8E 1101 1000 1110

record 78E 0111 1000 1110

pause 98E 1001 1000 1110

---[SONY TV Infrared Remote Control codes (RM-694)]--------------------------

program + = &H090 : 0000 1001 0000
program - = &H890 : 1000 1001 0000
volume + = &H490 : 0100 1001 0000
volume - = &HC90 : 1100 1001 0000
power = &HA90 : 1010 1001 0000
sound on/off = &H290 : 0010 1001 0000
1 = &H010 : 0000 0001 0000
2 = &H810 : 1000 0001 0000
3 = &H410 : 0100 0001 0000
4 = &HC10 : 1100 0001 0000
5 = &H210 : 0010 0001 0000
6 = &HA10 : 1010 0001 0000
7 = &H610 : 0110 0001 0000
8 = &HE10 : 1110 0001 0000
9 = &H110 : 0001 0001 0000
0 = &H910 : 1001 0001 0000
-/-- = &HB90 : 1011 1001 0000

For more SONY Remote Control info:
http://www.fet.uni-hannover.de/purnhage/

The resistor must be connected to the OC1A pin. In the example a 2313 micro was
used. This micro has pin portB.3 connected to OC1A.
Look in a data sheet for the proper pin when used with a different chip.

An IR booster circuit is shown below:

http://www.fet.uni-hannover.de/purnhage/

760 BASCOM-AVR

© 2008 MCS Electronics

See also
CONFIG RC5 , GETRC5 , RC5SEND , RC6SEND

Example
'---

'name : sonysend.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : code based on application note from Ger
Langezaal
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' +5V <---[A Led K]---[220 Ohm]---> Pb.3 for 2313.
' RC5SEND is using TIMER1, no interrupts are used
' The resistor must be connected to the OC1(A) pin , in this case PB.3

Do
 Waitms 500
 Sonysend &HA90
Loop
End

6.340 SOUND

Action
Sends pulses to a port pin.

443 596 691 695

761BASCOM Language Reference

© 2008 MCS Electronics

Syntax
SOUND pin, duration, pulses

Remarks
Pin Any I/O pin such as PORTB.0 etc.

Duration The number of pulses to send. Byte, integer/word or constant.

Pulses The time the pin is pulled low and high.

This is the value for a loop counter.

When you connect a speaker or a buzzer to a port pin (see hardware) , you can use
the SOUND statement to generate some tones.
The port pin is switched high and low for pulses times.
This loop is executed duration times.

The SOUND statement is not intended to generate accurate frequencies. Use a TIMER
to do that.

See also
NONE

Example
'---

'name : sound.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo : SOUND
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim Pulses As Word , Periods As Word
Pulses = 65535 : Periods = 10000 'set
variables
Speaker Alias Portb.1 'define port
pin

Sound Speaker , Pulses , Periods 'make some
noice
'note that pulses and periods must have a high value for high XTALS
'sound is only intended to make some noise!

762 BASCOM-AVR

© 2008 MCS Electronics

'pulses range from 1-65535
'periods range from 1-65535
End

6.341 SPACE

Action
Returns a string that consists of spaces.

Syntax
var = SPACE(x)

Remarks
X The number of spaces.

Var The string that is assigned.

Using 0 for x will result in a string of 255 bytes because there is no check for a zero
length assign.

See also
STRING , SPC

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates DEG2RAD function

'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 15 , Z As String * 15
S = Space(5)
Print " {" ; S ; " }" '{ }

Dim A As Byte
A = 3
S = Space(a)

776 763

763BASCOM Language Reference

© 2008 MCS Electronics

End

6.342 SPC

Action
Prints the number of specified spaces.

Syntax
PRINT SPC(x)
LCD SPC(x)

Remarks
X The number of spaces to print.

Using 0 for x will result in a string of 255 bytes because there is no check for a zero
length assign.

SPC can be used with LCD too.

The difference with the SPACE function is that SPACE returns a number of spaces
while SPC() can only be used with printing. Using SPACE() with printing is also
possible but it will use a temporary buffer while SPC does not use a temporary buffer.

See also
SPACE

Example
'---

'copyright : (c) 1995-2005, MCS Electronics
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'purpose : demonstrates DEG2RAD function

'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 15 , Z As String * 15
Print "{" ; Spc(5) ; "}" '{ }
Lcd "{" ; Spc(5) ; "}" '{ }

275

762

764 BASCOM-AVR

© 2008 MCS Electronics

6.343 SPIIN

Action
Reads a value from the SPI-bus.

Syntax
SPIIN var, bytes

Remarks
Var The variable which receives the value read from the SPI-bus.

Bytes The number of bytes to read. The maximum is 255.

In order to be able to read data from the SPI slave, the master need to send some
data first. The master will send the value 0.
SPI is a 16 bit shift register. Thus writing 1 byte will cause 1 byte to be clocked out of
the device which the SPIIN will read.

See also
SPIOUT , SPIINIT , CONFIG SPI , SPIMOVE

Example
'---

'name : spi.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo :SPI
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim B As Byte
Dim A(10) As Byte

Spiinit
B = 5
Spiout A(1) , B

766 765 453 765

765BASCOM Language Reference

© 2008 MCS Electronics

Spiin A(1) , B

A(1) = Spimove(a(2))
End

6.344 SPIINIT

Action
Initiate the SPI pins.

Syntax
SPIINIT

Remarks
After the configuration of the SPI pins, you must initialize the SPI pins to set them for
the right data direction. When the pins are not used by other hardware/software, you
only need to use SPIINIT once.

When other routines change the state of the SPI pins, use SPIINIT again before using
SPIIN and SPIOUT.

See also
SPIIN , SPIOUT

ASM
Calls _init_spi

Example
See SPIIN

6.345 SPIMOVE

Action
Sends and receives a value or a variable to the SPI-bus.

Syntax
var = SPIMOVE(byte)

Remarks
Var The variable that is assigned with the received byte(s) from the SPI-bus.

Byte The variable or constant whose content must be send to the SPI-bus.

See also
SPIIN , SPIINIT , CONFIG SPI

764 766

764

764 765 453

766 BASCOM-AVR

© 2008 MCS Electronics

Example
Config Spi = Soft , Din = Pinb.0 , Dout = Portb.1 , Ss = Portb.2 , Clock
= Portb.3

Spiinit

Dim a(10) as Byte , X As Byte

Spiout A(1) , 5 'send 5
bytes
Spiout X , 1 'send 1 byte
A(1) = Spimove(5) ' move 5 to
SPI and store result in a(1)
End

6.346 SPIOUT

Action
Sends a value of a variable to the SPI-bus.

Syntax
SPIOUT var , bytes

Remarks
var The variable whose content must be send to the SPI-bus.

bytes The number of bytes to send. Maximum value is 255.

When SPI is used in HW(hardware) mode, there might be a small delay/pause after
each byte that is sent. This is caused by the SPI hardware and the speed of the bus.
After a byte is transmitted, SPSR bit 7 is checked. This bit 7 indicates that the SPI is
ready for sending a new byte.

See also
SPIIN , SPIINIT , CONFIG SPI , SPIMOVE

Example
Dim A(10) As Byte
Config Spi = Soft , Din =Pinb.0 , Dout =Portb.1 , Ss =Portb.2 , Clock =
Portb.3
Spiinit
Spiout A(1), 4 'write 4 bytes a(1), a(2) , a(3) and a(4)
End

6.347 SPLIT

Action
Split a string into a number of array elements.

Syntax
count = SPLIT (source, array, search)

764 765 453 765

767BASCOM Language Reference

© 2008 MCS Electronics

Remarks
count The number of elements that SPLIT() returned. When the array is not big

enough to fill the array, this will be the maximum size of the array. So
make sure the array is big enough to hold the results.

source The source string or string constant to search for.

array The index of the first element of the array that will be filled

search The character to search for. This can be a string or string constant.

When you use the serial port to receive data, in some cases you need to process the
data in parts.
For example when you need to split an IP number as "123.45.24.12" you could use
INSTR() or you can use SPLIT().
You must DIM the array yourself. The content of the array will be overwritten.

It is also important to know that the individual elements of the array need to be big
enough to store the string part.
For example when the array has 5 elements and each element may be 10 characters
long, a string that is 11 bytes long will not fit. Another element will be used in that
case to store the additional info.

The SPLIT function takes care not to overwrite other memory. So when you split
"1.2.2.2.2.2.2.3.3.3" into an array of 3 elements, you will loose the data.

See also
INSTR

Example
'--
' mega48.bas
' mega48 sample file
' (c) 1995-2005, MCS Electronics
'--
$regfile = "m48def.dat"
$crystal = 8000000
$baud = 19200
Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As String * 80
Dim Ar(5) As String * 10
Dim Bcount As Byte

'The split function can split a string or string constant into elements
'It returns the number of elements
'You need to take care that there are enough elements and that each
element is big enough
'to hold the result
'When a result does not fit into 1 element it will be put into the next
element
'The memory is protected against overwriting.

S = "this is a test"

Bcount = Split("this is a test" , Ar(1) , " ")
'bcount will get the number of filled elements

624

768 BASCOM-AVR

© 2008 MCS Electronics

'ar(1) is the starting address to use
'" " means that we check for a space

'When you use " aa" , the first element will contain a space
Bcount = Split("thiscannotfit! into the element" , Ar(1) , " ")

Dim J As Byte
For J = 1 To Bcount
 Print Ar(j)
Next

'this demonstrates that your memory is safe and will not be overwritten
when there are too many string parts
Bcount = Split("do not overflow the array please" , Ar(1) , " ")

For J = 1 To Bcount
 Print Ar(j)
Next
End

6.348 SQR

Action
Returns the Square root of a variable.

Syntax
var = SQR(source)

Remarks
var A numeric single or double variable that is assigned with the SQR

of variable source.

source The single or double variable to get the SQR of.

When SQR is used with a single, the FP_TRIG library will be used.
When SQR is used with bytes, integers, words and longs, the SQR routine from MCS.
LBX will be used.

See Also
POWER

Example

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default

676

769BASCOM Language Reference

© 2008 MCS Electronics

use 40 for the frame space

Dim A As Single
Dim B As Double
A = 9.0
B = 12345678.123

A =Sqr(A)
Print A ' prints 3.0
B = Sqr(b)
Print B
End

6.349 START

Action
Start the specified device.

Syntax
START device

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG, AC (Analog

comparator power), ADC(A/D converter power) or DAC(D/A converter)

You must start a timer/counter in order for an interrupt to occur (when the external
gate is disabled).
TIMER0 and COUNTER0 are the same device.

The AC and ADC parameters will switch power to the device and thus enabling it to
work.

See also
STOP

Example
'---

'name : adc.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstration of GETADC() function for 8535
or M163 micro
'micro : Mega163
'suited for demo : yes
'commercial addon needed : no
'use in simulator : possible
' Getadc() will also work for other AVR chips that have an ADC converter
'---

$regfile = "m163def.dat" ' we use the
M163
$crystal = 4000000

$hwstack = 32 ' default

775

770 BASCOM-AVR

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 'default use
10 for the SW stack
$framesize = 40 'default use
40 for the frame space

'configure single mode and auto prescaler setting
'The single mode must be used with the GETADC() function

'The prescaler divides the internal clock by 2,4,8,16,32,64 or 128
'Because the ADC needs a clock from 50-200 KHz
'The AUTO feature, will select the highest clockrate possible
Config Adc = Single , Prescaler = Auto
'Now give power to the chip
Start Adc

'With STOP ADC, you can remove the power from the chip
'Stop Adc

Dim W As Word , Channel As Byte

Channel = 0
'now read A/D value from channel 0
Do
 W = Getadc(channel)
 Print "Channel " ; Channel ; " value " ; W
 Incr Channel
 If Channel > 7 Then Channel = 0
Loop
End

'The new M163 has options for the reference voltage
'For this chip you can use the additional param :
'Config Adc = Single , Prescaler = Auto, Reference = Internal
'The reference param may be :
'OFF : AREF, internal reference turned off
'AVCC : AVCC, with external capacitor at AREF pin
'INTERNAL : Internal 2.56 voltage reference with external capacitor ar
AREF pin

'Using the additional param on chip that do not have the internal
reference will have no effect.

6.350 STCHECK

Action
Calls a routine to check for various stack overflows. This routine is intended for debug
purposes.

Syntax
STCHECK

Remarks
The different stack spaces used by BASCOM-AVR lead to lots of questions about them.
The STCHECK routine can help to determine if the stack size are trashed by your
program. The program STACK.BAS is used to explain the different settings.

Note that STCHECK should be removed form your final program. That is once you

771BASCOM Language Reference

© 2008 MCS Electronics

tested your program and found out is works fine, you can remove the call to
STCHECK since it costs time and code space.

The settings used are :
HW stack 8
Soft stack 2
Frame size 14

Below is a part of the memory of the 90S2313 used for the example:
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
FR FR FR FR FR FR FR FR
FR FR FR FR FR FR YY YY SP SP SP SP SP SP SP SP

Since the last memory in SRAM is DF, the hardware stack is occupied by D8-DF(8
bytes)
When a call is made or a push is used the data is saved at the position the hardware
stack pointer is pointing to. After this the stack pointer is decreased.
A call uses 2 bytes so SP will be SP-2. (DF-2) =DD
When 8 bytes are stored the SP will point to D7. Another call or push will thus destroy
memory position D7 which is occupied by the soft stack.

The soft stack begins directly after the hardware stack and is also growing down.

The Y pointer(r28+r29) is used to point to this data.

Since the Y pointer is decreased first and then the data is saved, the pointer must
point at start up to a position higher. That is D8, the end of the hardware space.

St -y,r24 will point to D8-1=D7 and will store R24 at location D7.
Since 2 bytes were allocated in this example we use D7 and D6 to store the data.
When the pointer is at D6 and another St -y,r24 is used, it will write to position D5
which is the end of the frame space that is used as temporarily memory.

The frame starts at C8 and ends at D5. Writing beyond will overwrite the soft stack.
And when there is no soft stack needed, it will overwrite the hardware stack space.
The map above shows FR(frame), YY(soft stack data) and SP(hardware stack space)

How to determine the right values?

The stack check routine can be used to determine if there is an overflow.

It will check :
-if SP is below it's size. In this case below D8.
-if YY is below it’s size in this case when it is D5
-if the frame is above its size in this case D6

When is YY(soft stack) used? When you use a LOCAL variable inside a SUB or
function. Each local variable will use 2 bytes.
When you pass variables to user Subroutines or functions it uses 2 bytes for each
parameter.
call mysub(x,y) will use 2 * 2 = 4 bytes.
local z as byte ' will use another 2 bytes

772 BASCOM-AVR

© 2008 MCS Electronics

This space is freed when the routine ends.
But when you call another sub inside the sub, you need more space.
sub mysub(x as byte,y as byte)
 call testsub(r as byte) ' we must add another 2 bytes

When you use empty(no params) call like :

call mytest() , No space is used.

When do you need frame space?
When ever you use a num<>string conversion routine like:

Print b (where b is a byte variable)

Bytes will use 4 bytes max (123+0)
Integer will use 7 bytes max (-12345+0)c
Longs will use 16 bytes max
And the single will use 24 bytes max

When you add strings and use the original the value must be remembered by the
compiler.

Consider this :
s$ = "abcd" + s$

Here you give s$ a new value. But you append the original value so the original value
must be remembered until the operation has completed. This copy is stored in the
frame too.

So when string s$ was dimmed with a length of 20, you need a frame space of 20+1
(null byte)

When you pass a variable by VALUE (BYVAL) then you actually pass a copy of the
variable.
When you pass a byte, 1 byte of frame space is used, a long will take 4 bytes.
When you use a LOCAL LONG, you also need 4 bytes of frame space to store the local
long.

The frame space is reused and so is the soft stack space and hardware stack space.
So the hard part is to determine the right sizes!

The stack check routine must be called inside the deepest nested sub or function.

Gosub test

test:
 gosub test1
return

test1:
' this is the deepest level so check the stack here

773BASCOM Language Reference

© 2008 MCS Electronics

 stcheck
return

Stcheck will use 1 variable named ERROR. You must dimension it yourself.

Dim Error As Byte

Error will be set to :

1: if hardware stack grows down into the soft stack space
2: if the soft stack space grows down into the frame space
3: if the frame space grows up into the soft stack space.

The last 2 errors are not necessarily bad when you consider that when the soft stack
is not used for passing data, it may be used by the frame space to store data.
Confusing right.?

 It is advised to use the simpler DBG/$DBG method. This requires that you can
simulate your program.

ASM
Routines called by STCHECK :
_StackCheck : uses R24 and R25 but these are saved and restored.

Because the call uses 2 bytes of hardware stack space and the saving of R24 and R25
also costs 2 bytes, it uses 4 more bytes of hardware stack space than your final
program would do that f course does not need to use STCHECK.

Example
'---

'name : stack.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to check for the stack sizes
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 8 ' default
use 32 for the hardware stack
$swstack = 2 ' default
use 10 for the SW stack
$framesize = 14 ' default
use 40 for the frame space
'settings must be :

'HW Stack : 8
'Soft Stack : 2
'Frame size : 14

774 BASCOM-AVR

© 2008 MCS Electronics

'note that the called routine (_STACKCHECK) will use 4 bytes
'ofhardware stack space
'So when your program works, you may subtract the 4 bytes of the needed
hardware stack size
'in your final program that does not include the STCHECK

'testmode =0 will work
'testmode =1 will use too much hardware stack
'testmode =2 will use too much soft stack space
'testmode =3 will use too much frame space
Const Testmode = 0
'compile and test the program with testmode from 0-3

'you need to dim the ERROR byte !!
Dim Error As Byte

#if Testmode = 2
 Declare Sub Pass(z As Long , Byval K As Long)
#else
 Declare Sub Pass()
#endif

Dim I As Long
I = 2
Print I
'call the sub in your code at the deepest level
'normally within a function or sub

#if Testmode = 2
 Call Pass(i , 1)
#else
 Call Pass()
#endif
End

#if Testmode = 2
 Sub Pass(z As Long , Byval K As Long)
#else
 Sub Pass()
#endif
 #if Testmode = 3
 Local S As String * 13
 #else
 Local S As String * 8
 #endif

 Print I
 Gosub Test
End Sub

Test:
#if Testmode = 1
 push r0 ; eat some hardware stack space
 push r1
 push r2
#endif

 ' *** here we call the routine ***
 Stcheck

775BASCOM Language Reference

© 2008 MCS Electronics

 ' *** when error <>0 then there is a problem ***
#if Testmode = 1
 pop r2
 pop r1
 pop r0
#endif
Return

6.351 STOP

Action
Stop the specified device. Or stop the program

Syntax
STOP device
STOP

Remarks
Device TIMER0, TIMER1, COUNTER0 or COUNTER1, WATCHDOG, AC (Analog

comparator power) , ADC(A/D converter power) or DAC(D/A
converter)

The single STOP statement will end your program by generating a never ending loop.
When END is used it will have the same effect but in addition it will disable all
interrupts.

The STOP statement with one of the above parameters will stop the specified device.

TIMER0 and COUNTER0 are the same device.
The AC and ADC parameters will switch power off the device to disable it and thus
save power.

See also
START , END

Example
See START example

6.352 STR

Action
Returns a string representation of a number.

Syntax
var = STR(x)

Remarks
var A string variable.

769 565

769

776 BASCOM-AVR

© 2008 MCS Electronics

X A numeric variable.

The string must be big enough to store the result.
You do not need to convert a variable into a string before you print it.
When you use PRINT var, then you will get the same result as when you convert the
numeric variable into a string, and print that string.
The PRINT routine will convert the numeric variable into a string before it gets printed
to the serial port.

As the integer conversion routines can convert byte, integer, word and longs into a
string it also means some code overhead when you do not use longs. You can include
the alternative library named mcsbyte .lbx then. This library can only print bytes.
There is also a library for printing integers and words only. This library is named
mcsbyteint .
When you use these libs to print a long you will get an error message.

See also
VAL , HEX , HEXVAL , MCSBYTE , BIN

Difference with VB
In VB STR() returns a string with a leading space. BASCOM does not return a leading
space.

Example
Dim A As Byte , S As String * 10
A = 123
S = Str(a)
Print S ' 123
'when you use print a, you will get the same result.
'but a string can also be manipulated with the string routines.
End

6.353 STRING

Action
Returns a string consisting of m repetitions of the character with ASCII Code n.

Syntax
var = STRING(m ,n)

Remarks
Var The string that is assigned.

N The ASCII-code that is assigned to the string.

M The number of characters to assign.

Since a string is terminated by a 0 byte, you can't use 0 for n.
Using 0 for m will result in a string of 255 bytes, because there is no check on a
length assign of 0.

828

828

806 604 605 828 347

777BASCOM Language Reference

© 2008 MCS Electronics

See also
SPACE

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 40 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 15
S = String(5 , 65)
Print S 'AAAAA
End

6.354 SUB

Action
Defines a Sub procedure.

Syntax
SUB Name[(var1 , …)]

Remarks
Name Name of the sub procedure, can be any non-reserved word.

var1 The name of the parameter.

You must end each subroutine with the END SUB statement.
You can copy the DECLARE SUB line and remove the DECLARE statement. This
ensures that you have the right parameters.

See Also
FUNCTION , CALL

See the DECLARE SUB topic for more details.

6.355 SYSSEC

Action
Returns a Number, which represents the System Second

Syntax

762

530 358

532

778 BASCOM-AVR

© 2008 MCS Electronics

Target = SYSSEC()
Target = SYSSEC(bSecMinHour)
Target = SYSSEC(strTime, strDate)
Target = SYSSEC(wSysDay)

Remarks
Target A Variable (LONG), that is assigned with the System-Second

BSecMinHo
ur

A Byte, which holds the Sec-value followed by Min(Byte), Hour (Byte),
Day(Byte), Month(Byte) and Year(Byte)

StrTime A time-string in the format „hh:mm:ss"

StrDate A date-string in the format specified in the Config Date statement

wSysDay A variable (Word) which holds the System Day (SysDay)

The Function can be used with 4 different kind of inputs:

1.Without any parameter. The internal Time and Date of SOFTCLOCK (_sec,
_min, _hour, _day, _month, _year) is used.

2.With a user defined time and Date array. It must be arranged in same way
(Second, Minute, Hour, Day, Month, Year) as the internal SOFTCLOCK time/
date. The first Byte (Second) is the input by this kind of usage. So the System
Second can be calculated of every time/date.

3.With a time-String and a date-string. The time-string must be in the Format
„hh:mm:ss". The date-string must be in the format specified in the Config
Date statement

4.With a System Day Number (Word). The result is the System Second of this
day at 00:00:00.

The Return-Value is in the Range of 0 to 2147483647. 2000-01-01 at 00:00:00 starts
with 0.
The Function is valid from 2000-01-01 to 2068-01-19 03:14:07. In the year 2068 a
LONG – overflow will occur.

See also
Date and Time Routines , SYSSECELAPSED , SYSDAY

Example
Enable Interrupts
Config Clock = Soft
Config Date = YMD , Separator =.' ANSI-Format

Dim Strdate As String * 8
Dim Strtime As String * 8
Dim Bsec As Byte , Bmin As Byte , Bhour As Byte
Dim Bday As Byte , Bmonth As Byte , Byear As Byte
Dim Wsysday As Word
Dim Lsyssec As Long

' Example 1 with internal RTC-Clock
' Load RTC-Clock for example - testing
_sec = 17 : _min = 35 : _hour = 8 : _day = 16 : _month = 4 : _year = 3
Lsyssec = Syssec()
Print "System Second of " ; Time$; " at " ; Date$; " is " ; Lsyssec
' System Second of 08:35:17 at 03.04.16 is 103797317

852 779 780

779BASCOM Language Reference

© 2008 MCS Electronics

' Example 2 with with defined Clock - Bytes (Second, Minute, Hour, Day /
Month / Year)
Bsec = 20 : Bmin = 1 : Bhour = 7 : Bday = 22 : Bmonth = 12 : Byear = 1
Lsyssec = Syssec(bsec)
Strtime = Time_sb(bsec) : Strdate = Date_sb(bday)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec
' System Second of 07:01:20 at 01.12.22 is 62319680

' Example 3 with Time and Date - String
Strtime = "04:58:37"
strDate ="02.09.18"
Lsyssec = Syssec(strtime , Strdate)
Print "System Second of " ; Strtime ; " at " ; Strdate ; " is " ;
Lsyssec
' System Second of 04:58:37 at 02.09.18 is 85640317

' Example 4 with System Day
Wsysday = 2000
Lsyssec = Syssec(wsysday)
Print "System Second of System Day " ; Wsysday ; " (00:00:00) is " ;
Lsyssec
' System Second of System Day 2000 (00:00:00) is 172800000

6.356 SYSSECELAPSED

Action
Returns the elapsed Seconds to a earlier assigned system-time-stamp.

Syntax
Target = SysSecElapsed(SystemTimeStamp)

Remarks
Target A variable (LONG), that is assigned with the elapsed Seconds

SystemTimeStamp A variable (LONG), which holds a Systemtimestamp like the
output of an earlier called SysSec()

The Return-Value is in the Range of 0 to 2147483647. The Function is valid from
2000-01-01 to 2068-01-19 at 03:14:07. In the year 2068 a LONG – overflow will
occur.

The difference to the pair DayOfSec and SecElapsed is, that SysSec and
SysSecElapsed can be used for event distances larger than 24 hours.

See also
Date and Time Routines , SECELAPSED , SYSSEC

Example
Enable Interrupts
Config Clock = Soft

Dim Lsystemtimestamp As Long
Dim Lsystemsecondselapsed As Long

852 716 777

780 BASCOM-AVR

© 2008 MCS Electronics

Lsystemtimestamp = Syssec()
Print "Now it's " ; Lsystemtimestamp ; " seconds past 2000-01-01
00:00:00"

' do other stuff
' some time later

Lsystemsecondselapsed = Syssecelapsed(lsystemtimestamp)
Print "Now it's " ; Lsystemsecondselapsed ; " seconds later"

6.357 SYSDAY

Action
Returns a number, which represents the System Day

Syntax
Target = SysDay()
Target = SysDay(bDayMonthYear)
Target = SysDay(strDate)
Target = SysDay(lSysSec)

Remarks
Target A Variable (LONG), that is assigned with the System-Day

bDayMonthDa
y

A Byte, which holds the Day-value followed by Month(Byte) and Year
(Byte)

strDate A String, which holds a Date-String in the format specified in the
CONFIG DATA statement

lSysSec A variable, which holds a System Second (SysSec)

The Function can be used with 4 different kind of inputs:

1.Without any parameter. The internal Date-values of SOFTCLOCK (_day,
_month, _year) are used.

2.With a user defined date array. It must be arranged in same way (Day, Month,
Year) as the internal SOFTCLOCK date. The first Byte (Day) is the input by
this kind of usage. So the Day of the Year can be calculated of every date.

3.With a Date-String. The date-string must be in the Format specified in the
Config Date Statement.

4.With a System Second Number (LONG)

The Return-Value is in the Range of 0 to 36524. 2000-01-01 starts with 0.
The Function is valid in the 21th century (from 2000-01-01 to 2099-12-31).

See also
Date and Time Routines , Config Date , Config Clock , SysSec

Example
Enable Interrupts
Config Clock = Soft

852 395 387 777

781BASCOM Language Reference

© 2008 MCS Electronics

Config Date = YMD , Separator =.' ANSI-Format

Dim Strdate As String * 8
Dim Bday Asbyte , Bmonth As Byte , Byear As Byte
Dim Wsysday As Word
Dim Lsyssec As Long

' Example 1 with internal RTC-Clock
_day = 20 : _Month = 11 : _Year = 2 ' Load RTC-Clock for example -
testing
Wsysday = Sysday()
Print "System Day of " ; Date$; " is " ; Wsysday

' System Day of 02.11.20 is 1054

' Example 2 with defined Clock - Bytes (Day / Month / Year)
Bday = 24 : Bmonth = 5 : Byear = 8
Wsysday = Sysday(bday)
Print "System Day of Day=" ; Bday ; " Month=" ; Bmonth ; " Year=" ;
Byear ; " is " ; Wsysday
' System Day of Day=24 Month=5 Year=8 is 3066

' Example 3 with Date - String
Strdate = "04.10.29"
Wsysday = Sysday(strdate)
Print "System Day of " ; Strdate ; " is " ; Wsysday
' System Day of 04.10.29 is 1763

' Example 4 with System Second
Lsyssec = 123456789
Wsysday = Sysday(lsyssec)
Print "System Day of System Second " ; Lsyssec ; " is " ; Wsysday
' System Day of System Second 123456789 is 1428"Now it's " ;
Lsystemsecondselapsed ; " seconds later"

6.358 SWAP

Action
Exchange two variables of the same type.

Syntax
SWAP var1, var2

Remarks
var1 A variable of type bit, byte, integer, word, long or string.

var2 A variable of the same type as var1.

After the swap, var1 will hold the value of var2 and var2 will hold the value of var1.

Example
'---

'name : swap.bas
'copyright : (c) 1995-2005, MCS Electronics

782 BASCOM-AVR

© 2008 MCS Electronics

'purpose : demo: SWAP
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim A As Byte , B1 As Byte
Dim Bbit1 As Bit , Bbit2 As Bit
Dim S1 As String * 10 , S2 As String * 10

S1 = "AAA" : S2 = "BBB"
Swap S1 , S2

A = 5 : B1 = 10 'assign some
vars
Print A ; " " ; B1 'print them

Swap A , B1 'swap them
Print A ; " " ; B1 'print is
again

Set Bbit1
Swap Bbit1 , Bbit2
Print Bbit1 ; Bbit2
End

6.359 TAN

Action
Returns the tangent of a float

Syntax
var = TAN(source)

Remarks
Var A numeric variable that is assigned with tangent of variable source.

Source The single or double variable to get the tangent of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

783BASCOM Language Reference

© 2008 MCS Electronics

See Also
RAD2DEG , DEG2RAD , ATN , COS , SIN , ATN2

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim S As Single , X As Single
S = 0.5 : X = Tan(s) : Print X ' prints
0.546302195
S = 0.5 : X = Sin(s) : Print X ' prints
0.479419108
S = 0.5 : X = Cos(s) : Print X ' prints
0.877588389
End

6.360 TCPCHECKSUM

Action
Return a TCP/IP checksum, also called Internet Checksum, or IP Checksum.

Syntax
res= TCPCHECKSUM(buffer , bytes [,w1] [,w2])

Remarks
Res A word variable that is assigned with the TCP/IP checksum of the buffer

Buffer A variable or array to get the checksum of.

Bytes The number of bytes that must be examined.

w1,w2 Optional words that will be included in the checksum.

Checksum's are used a lot in communication protocols. A checksum is a way to verify
that received data is the same as it was sent. In the many Internet Protocols (TCP,
UDP, IP, ICMP …) a special Internet checksum is used. Normally the data to calculate
the checksum on is stored in an array of bytes, but in some cases like TCP, and UDP,
a pseudo header is added. The optional words (w1, w2) can be used for these cases.
Most often w1 and w2 will be used for the Protocol number, and the UDP or TCP
packet length.

This checksum is calculated by grouping the bytes in the array into 2-byte words. If
the number of Bytes is an odd number, then an extra byte of zero is used to make the
last 2-byte word. All of the words are added together, keeping the total in a 4-byte

690 537 339 485 751 340

784 BASCOM-AVR

© 2008 MCS Electronics

Long variable. If the optional words w1, w2, are included, they are also added to the
total. Next, the 4-byte Long total is split into two, 2-byte words, and these words are
added together to make a new 2-byte Word total. Finally the total is inverted. This is
the value returned as Res.

This function using w1, w2, are very useful when working directly with Ethernet chips
like the RTL8019AS or with protocols not directly supported by the WIZnet chips.

See the samples directory for more examples of use (IP_Checksum.bas).

You can use it for the PING sample below.

See also
CRC8 , CRC16 , CRC32 , CHECKSUM

ASM
NONE

Example
' -
- - - - - - - - - - - - - - - - - -
'name : PING_TWI.bas http://www.faqs.org/
r f c s / r f c 7 9 2 . h t m l
'copyright : (c) 1995-2005, MCS Electronics
'purpose : Simple PING program
'micro : Mega88
'suited for demo : yes
'commercial addon needed : no
' -
- - - - - - - - - - - - - - - - - -
$ r e g f i l e = "m32de f . da t " ' specify
the used micro

$ c r y s t a l = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
r a t e
$hwstack = 80 ' default
use 32 for the hardware stack
$swstack = 128 ' default
use 10 for the SW stack
$framesize = 80 ' default
use 40 for the frame space

Const Debug = 1

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed

490 491 496 360

785BASCOM Language Reference

© 2008 MCS Electronics

Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

'we do the usual
P r i n t "Init TCP" ' display a
message
Enable I n t e r r u p t s ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = I n t 0 , Mac = 12.128. 12 .34. 56.78 , Ip = 192.168. 0 . 8 ,
Submask = 255.255. 255.0 , Gateway = 192.168. 0 . 1 , Localport = 1000 , Tx
= $55 , Rx = $55 , Twi = &H80 , Clock = 400000
P r i n t "Init done"

Dim Peersize As I n t e g e r , Peeraddress As Long , Peerport As Word
Dim Idx As Byte , Result As Word , J As Byte , Res As Byte
Dim Ip As Long
Dim Dta(12) As Byte , Rec(12) As Byte

Dta(1) = 8 'type is
echo
Dta(2) = 0 ' c o d e

Dta(3) = 0 ' for
checksum initialization
Dta(4) = 0 ' checksum
Dta(5) = 0 ' a
signature can be any number
Dta(6) = 1 '
s i g n a t u r e
Dta(7) = 0 ' sequence
number - any number
Dta(8) = 1
Dta(9) = 65

Dim W As Word A t Dta + 2 Overlay 'same as dta
(3) and dta(4)

786 BASCOM-AVR

© 2008 MCS Electronics

W = Tcpchecksum(d t a(1) , 9) ' calculate
checksum and store in dta(3) and dta(4)

#i f Debug
 For J = 1 To 9
 P r i n t Dta(j)
 Next
#e n d i f

I p = Maketcp(192.168. 0 . 1 6) 'try to
check this server

P r i n t "Socket " ; Idx ; " " ; Idx
Set ipprotocol Idx , 1 ' s e t
protocol to 1
'the protocol value must be set BEFORE the socket is openend

I d x = Getsocket(i d x , 3 , 5000 , 0)

Do
 Result = Udpwrite(i p , 7 , Idx , Dta(1) , 9) 'write ping
data '
 P r i n t Result
 Waitms 100
 Result = Socketstat(i d x , Sel_recv) 'check for
d a t a
 P r i n t Result
 I f Result >= 11 Then
 P r i n t " O k "
 Res = Tcpread(i d x , Rec(1) , Result) 'get data
with TCPREAD !!!
 #i f Debug
 P r i n t "DATA RETURNED :" ; Res '
 For J = 1 To Result
 P r i n t Rec(j) ; " " ;
 Next
 P r i n t
 #e n d i f
 Else 'there might
be a problem
 P r i n t "Network not available"
 End I f
 Waitms 1000
Loop

6.361 TCPREAD

Action
Reads data from an open socket connection.

Syntax
Result = TCPREAD(socket , var, bytes)

Remarks
Result A byte variable that will be assigned with 0, when no errors occurred.

When an error occurs, the value will be set to 1.

When there are not enough bytes in the reception buffer, the routine will

787BASCOM Language Reference

© 2008 MCS Electronics

wait until there is enough data or the socket is closed.

socket The socket number you want to read data from (0-3).

Var The name of the variable that will be assigned with the data from the
socket.

Bytes The number of bytes to read. Only valid for non-string variables.

When you use TCPread with a string variable, the routine will wait for CR + LF and it
will return the data without the CR + LF.
For strings, the function will not overwrite the string.

For example, your string is 10 bytes long and the line you receive is 80 bytes long,
you will receive only the first 10 bytes after CR + LF is encountered.
Also, for string variables, you do not need to specify the number of bytes to read
since the routine will wait for CR + LF.

For other data types you need to specify the number of bytes.
There will be no check on the length so specifying to receive 2 bytes for a byte will
overwrite the memory location after the memory location of the byte.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN

Partial Example
Result = Socketstat(idx , Sel_recv) ' get number of bytes
waiting
If Result > 0 Then
 Result = Tcpread(idx , S)
End If

6.362 TCPWRITE

Action
Write data to a socket.

Syntax
Result = TCPWRITE(socket , var , bytes)
Result = TCPWRITE(socket , EPROM, address , bytes)

Remarks
Result A word variable that will be assigned with the number of bytes actually

written to the socket.

When the free transmission buffer is large enough to accept all the data,
the result will be the same as BYTES. When there is not enough space,
the number of written bytes will be returned.

When there is no space, 0 will be returned.

Socket The socket number you want to send data to(0-3).

Var A constant string like "test" or a variable.

456 600 752 756

787 788 372 755

788 BASCOM-AVR

© 2008 MCS Electronics

When you send a constant string, the number of bytes to send does not
need to be specified.

Bytes A word variable or numeric constant that specifies how many bytes must
be send.

Address The address of the data stored in the chips internal EEPROM. You need to
specify EPROM too in that case.

EPROM An indication for the compiler so it knows that you will send data from
EPROM.

The TCPwrite function can be used to write data to a socket that is stored in EEPROM
or in memory.
When you want to send data from an array, you need to specify the element : var
(idx) for example.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN

Example
Result = Tcpwrite(idx , "Hello from W3100A{013}{010}")

6.363 TCPWRITESTR

Action
Sends a string to an open socket connection.

Syntax
Result = TCPWRITESTR(socket , var , param)

Remarks
Result A word variable that will be assigned with the number of bytes actually

written to the socket.

When the free transmission buffer is large enough to accept all the data,
the result will be the same as BYTES. When there is not enough space,
the number of written bytes will be returned.

When there is no space, 0 will be returned.

Socket The socket number you want to send data to (0-3).

Var The name of a string variable.

Param A parameter that might be 0 to send only the string or 255, to send the
string with an additional CR + LF

This option was added because many protocols expect CR + LF after the
string.

The TCPwriteStr function is a special variant of the TCPwrite function.
It will use TCPWrite to send the data.

456 600 752 756

788 786 372 755

789BASCOM Language Reference

© 2008 MCS Electronics

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPREAD , CLOSESOCKET , SOCKETLISTEN

Example
'---

' SMTP.BAS
' (c) 2002 MCS Electronics
' sample that show how to send an email with SMTP protocol
'---

$regfile = "m161def.dat" ' used
processor
$crystal = 4000000 ' used
crystal
$baud = 19200 ' baud rate
$lib "tcpip.lbx" ' specify
the name of the tcp ip lib

'W3100A constants
Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection

456 600 752 756

787 786 372 755

790 BASCOM-AVR

© 2008 MCS Electronics

Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

Const Debug = -1 ' for
sending feeback to the terminal

#if Debug
 Print "Start of SMTP demo"
#endif

Enable Interrupts ' enable
interrupts
'specify MAC, IP, submask and gateway
'local port value will be used when you do not specify a port value
while creating a connection
'TX and RX are setup to use 4 connections each with a 2KB buffer
Config Tcpip = Int0 , Mac = 00.44.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55

'dim the used variables
Dim S As String * 50 , I As Byte , J As Byte , Tempw As Word
#if Debug
 Print "setup of W3100A complete"
#endif

'First we need a socket
I = Getsocket(0 , Sock_stream , 5000 , 0)
' ^ socket numer ^ port
#if Debug
 Print "Socket : " ; I
 'the socket must return the asked socket number. It returns 255 if
there was an error
#endif

If I = 0 Then ' all ok
 'connect to smtp server
 J = Socketconnect(i , 194.09.0. , 25) ' smtp
server and SMTP port 25
 ' ^socket
 ' ^ ip address of the smtp server
 ' ^ port 25 for smtp
 ' DO NOT FORGET to ENTER a valid IP number of your ISP smtp server
 #if Debug
 Print "Connection : " ; J
 Print S_status(1)
 #endif
 If J = 0 Then ' all ok
 #if Debug
 Print "Connected"
 #endif
 Do
 Tempw = Socketstat(i , 0) ' get status
 Select Case Tempw
 Case Sock_established ' connection
established
 Tempw = Tcpread(i , S) ' read line

791BASCOM Language Reference

© 2008 MCS Electronics

 #if Debug
 Print S ' show info
from smtp server
 #endif
 If Left(s , 3) = "220" Then ' ok
 Tempw = Tcpwrite(i , "HELO username{013}{010}")
' send username
 ' ^^^ fill in username there
 #if Debug
 Print Tempw ; " bytes written" ' number of
bytes actual send
 #endif
 Tempw = Tcpread(i , S) ' get
response
 #if Debug
 Print S ' show
response
 #endif
 If Left(s , 3) = "250" Then ' ok
 Tempw = Tcpwrite(i , "MAIL FROM:<tcpip@test.com>
{013}{010}") ' send from address
 Tempw = Tcpread(i , S) ' get
response
 #if Debug
 Print S
 #endif
 If Left(s , 3) = "250" Then ' ok
 Tempw = Tcpwrite(i , "RCPT TO:<tcpip@test.com>
{013}{010}") ' send TO address
 Tempw = Tcpread(i , S) ' get
response
 #if Debug
 Print S
 #endif
 If Left(s , 3) = "250" Then ' ok
 Tempw = Tcpwrite(i , "DATA{013}{010}")
' speicfy that we are going to send data
 Tempw = Tcpread(i , S) ' get
response
 #if Debug
 Print S
 #endif
 If Left(s , 3) = "354" Then ' ok
 Tempw = Tcpwrite(i , "From: tcpip@test.com
{013}{010}")
 Tempw = Tcpwrite(i , "To: tcpip@test.com
{013}{010}")
 Tempw = Tcpwrite(i , "Subject: BASCOM SMTP
test{013}{010}")
 Tempw = Tcpwrite(i , "X-Mailer: BASCOM
SMTP{013}{010}")
 Tempw = Tcpwrite(i , "{013}{010}")
 Tempw = Tcpwrite(i , "This is a test email
from BASCOM SMTP{013}{010}")
 Tempw = Tcpwrite(i , "Add more lines as
needed{013}{010}")
 Tempw = Tcpwrite(i , ".{013}{010}")
' end with a single dot

 Tempw = Tcpread(i , S) ' get
response
 #if Debug
 Print S

792 BASCOM-AVR

© 2008 MCS Electronics

 #endif
 If Left(s , 3) = "250" Then ' ok
 Tempw = Tcpwrite(i , "QUIT{013}{010}")
 ' quit connection
 Tempw = Tcpread(i , S)
 #if Debug
 Print S
 #endif
 End If
 End If
 End If
 End If
 End If
 End If
 Case Sock_close_wait
 Print "CLOSE_WAIT"
 Closesocket I ' close the
connection
 Case Sock_closed
 Print "Socket CLOSED" ' socket is
closed
 End
 End Select
 Loop
 End If
End If
End 'end program

6.364 TANH

Action
Returns the hyperbole of a single

Syntax
var = TANH(source)

Remarks
Var A numeric variable that is assigned with hyperbole of variable source.

Source The single or double variable to get the hyperbole of.

All trig functions work with radians. Use deg2rad and rad2deg to convert between
radians and angles.

See Also
RAD2DEG , DEG2RAD , ATN , COS , SIN , SINH , COSH

Example
Show sample

690 537 339 485 751 752 486

842

793BASCOM Language Reference

© 2008 MCS Electronics

6.365 THIRDLINE

Action
Reset LCD cursor to the third line.

Syntax
THIRDLINE

Remarks
NONE

See also
UPPERLINE , LOWERLINE , FOURTHLINE

Example
Dim A As Byte
A = 255
Cls
Lcd A
Thirdline
Lcd A
Upperline
End

6.366 TIME$

Action
Internal variable that holds the time.

Syntax
TIME$ = "hh:mm:ss"
var = TIME$

Remarks
The TIME$ variable is used in combination with the CONFIG CLOCK and CONFIG DATE
directive.

The CONFIG CLOCK statement will use the TIMER0 or TIMER2 in async mode to
create a 1 second interrupt. In this interrupt routine the _Sec, _Min and _Hour
variables are updated. The time format is 24 hours format.

When you assign TIME$ to a string variable these variables are assigned to the TIME$
variable.
When you assign the TIME$ variable with a constant or other variable, the _sec,
_Hour and _Min variables will be changed to the new time.

The only difference with VB is that all digits must be provided when assigning the
time. This is done for minimal code. You can change this behavior of course.

The async timer is only available in the M103, 90S8535, M163 and M32(3), Mega128,

806 652 578

794 BASCOM-AVR

© 2008 MCS Electronics

Mega64, Mega8. For other chips it will not work.

As new chips are launched by Atmel, and support is added by MCS, the list
above might not be complete. It is intended to serve as an example for chips with a
timer that can be used in asynchrone mode. So when your micro has a timer that can
be used in asynchrone mode, it should work.

 Do not confuse DATE$ with the DATE function.

ASM
The following asm routines are called from mcs.lib.
When assigning TIME$: _set_time (calls _str2byte)
When reading TIME$: _make_dt (calls _byte2str)

See also
DATE$, CONFIG CLOCK , CONFIG DATE

Example
See the sample of DATE$

6.367 TIME

Action
Returns a time-value (String or 3 Byte for Second, Minute and Hour) depending of the
Type of the Target

Syntax
bSecMinHour = Time(lSecOfDay)
bSecMinHour = Time(lSysSec)
bSecMinHour = Time(strTime)

strTime = Time(lSecOfDay)
strTime = Time(lSysSec)
strTime = Time(bSecMinHour)

Remarks
bSecMinHour A BYTE – variable, which holds the Second-value followed by Minute

(Byte) and Hour (Byte)

strTime A Time – String in Format „hh:mm:ss"

lSecOfDay A LONG – variable which holds Second Of Day (SecOfDay)

lSysSec A LONG – variable which holds System Second (SysSec)

Converting to a time-string:
The target string strTime must have a length of at least 8 Bytes, otherwise SRAM
after the target-string will be overwritten.

514 387 395

514

795BASCOM Language Reference

© 2008 MCS Electronics

Converting to Softclock format (3 Bytes for Second, Minute and Hour):
Three Bytes for Seconds, Minutes and Hour must follow each other in SRAM. The
variable-name of the first Byte, that one for Second must be passed to the function.

See also
Date and Time Routines , SECOFDAY , SYSSEC

Partial Example
Enable Interrupts
Config Clock = Soft

Dim Strtime As String * 8
Dim Bsec As Byte , Bmin As Byte , Bhour As Byte
Dim Lsecofday As Long
Dim Lsyssec As Long

' Example 1: Converting defined Clock - Bytes (Second / Minute / Hour)
to Time - String
Bsec = 20 : Bmin = 1 : Bhour = 7
Strtime = Time(bsec)
Print "Time values: Sec=" ; Bsec ; " Min=" ; Bmin ; " Hour=" ; Bhour ; "
converted to string " ; Strtime
' Time values: Sec=20 Min=1 Hour=7 converted to string 07:01:20

' Example 2: Converting System Second to Time - String
Lsyssec = 123456789
Strtime = Time(lsyssec)
Print "Time of Systemsecond " ; Lsyssec ; " is " ; Strtime

' Time of Systemsecond 123456789 is 21:33:09

' Example 3: Converting Second of Day to Time - String
Lsecofday = 12345
Strtime = Time(lsecofday)
Print "Time of Second of Day " ; Lsecofday ; " is " ; Strtime
' Time of Second of Day 12345 is 03:25:45

' Example 4: Converting System Second to defined Clock - Bytes (Second /
Minute / Hour)
Lsyssec = 123456789
Bsec = Time(lsyssec)
Print "System Second " ; Lsyssec ; " converted to Sec=" ; Bsec ; " Min="
 ; Bmin ; " Hour=" ; Bhour

' System Second 123456789 converted to Sec=9 Min=33 Hour=21

' Example 4: Converting Second of Day to defined Clock - Bytes (Second /
Minute / Hour)
Lsecofday = 12345
Bsec = Time(lsecofday)
Print "Second of Day " ; Lsecofday ; " converted to Sec=" ; Bsec ; "
Min=" ; Bmin ; " Hour=" ; Bhour
' Second of Day 12345 converted to Sec=45 Min=25 Hour=3

852 717 777

796 BASCOM-AVR

© 2008 MCS Electronics

6.368 TOGGLE

Action
Toggles the state of an output pin or bit variable.

Syntax
TOGGLE pin

Remarks
pin Any port pin like PORTB.0 or bit variable. A port pin must be configured as

an output pin before TOGGLE can be used.

With TOGGLE you can simply invert the output state of a port pin.
When the pin is driving a relay for example and the relay is OFF, one TOGGLE
statement will turn the relays ON. Another TOGGLE will turn the relays OFF again.

New AVR chips have an enhanced port architecture which allow a toggle of the PORT
by setting the PIN register to 1. The DAT files have a setting under the [DEVICE]
section named NEWPORT.
When the value is 1, the PIN register will be set to toggle the PORT pin. When the
NEWPORT value is set to 0, an XOR will be used to toggle the port pin.

See also
CONFIG PORT

ASM
NONE

Partial Example
Dim Var As Byte
Config Pinb.0 = Output ' portB.0 is
an output now

Do
 Toggle Portb.0 'toggle
state
 Waitms 1000 'wait for 1
sec
Loop

6.369 TRIM

Action
Returns a copy of a string with leading and trailing blanks removed

Syntax
var = TRIM(org)

436

797BASCOM Language Reference

© 2008 MCS Electronics

Remarks
Var String that receives the result.

Org The string to remove the spaces from

TRIM is the same as a LTRIM() and RTRIM() call. It will remove the spaces on the left
and right side of the string.

See also
RTRIM , LTRIM

Partial Example
Dim S As String * 6
S =" AB "
Print Ltrim(s)
Print Rtrim(s)
Print Trim(s)
End

6.370 UCASE

Action
Converts a string in to all upper case characters.

Syntax
Target = UCASE(source)

Remarks
Target The string that is assigned with the upper case string of string target.

Source The source string.

See also
LCASE

ASM
The following ASM routines are called from MCS.LIB : _UCASE
X must point to the target string, Z must point to the source string.
The generated ASM code : (can be different depending on the micro used)
;##### Z = Ucase(s)
Ldi R30,$60
Ldi R31,$00 ; load constant in register
Ldi R26,$6D
Rcall _Ucase

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud

715 639

628

798 BASCOM-AVR

© 2008 MCS Electronics

rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Dim S As String * 12 , Z As String * 12
S = "Hello World"
Z = Lcase(s)
Print Z
Z = Ucase(s)
Print Z
End

6.371 UDPREAD

Action
Reads data via UDP protocol.

Syntax
Result = UDPREAD(socket , var, bytes)

Remarks
Result A byte variable that will be assigned with 0, when no errors occurred.

When an error occurs, the value will be set to 1.

When there are not enough bytes in the reception buffer, the routine will
wait until there is enough data or the socket is closed.

socket The socket number you want to read data from (0-3).

Var The name of the variable that will be assigned with the data from the
socket.

Bytes The number of bytes to read.

Reading strings is not supported for UDP.
When you need to read a string you can use the OVERLAY option of DIM.

There will be no check on the length so specifying to receive 2 bytes for a byte will
overwrite the memory location after the memory location of the byte.

The socketstat function will return a length of the number of bytes + 8 for UDP. This
because UDP sends also a 8 byte header. It contains the length of the data, the IP
number of the peer and the port number.

The UDPread function will fill the following variables with this header data:

Peersize, PeerAddress, PeerPort

You need to DIM these variables in your program when you use UDP.
Use the following line :

Dim Peersize As Integer , Peeraddress As Long , Peerport As Word

799BASCOM Language Reference

© 2008 MCS Electronics

 Make sure you maintain the shown order.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPWRITESTR , CLOSESOCKET , SOCKETLISTEN , UDPWRITE

, UDPWRITESTR

Example
'---

'name : udptest.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : start the easytcp.exe program after the chip
is programmed and
' press UDP button
'micro : Mega161
'suited for demo : no
'commercial addon needed : yes
'---

$regfile = "m161def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of

456 600 752 756

787 788 372 755

801 802

800 BASCOM-AVR

© 2008 MCS Electronics

Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

$lib "tcpip.lbx" ' specify
the tcpip library
Print "Init , set IP to 192.168.0.8" ' display a
message
Enable Interrupts ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 0.0.0.0 , Localport = 1000 , Tx =
$55 , Rx = $55

'Use the line below if you have a gate way
'Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55

Dim Idx As Byte ' socket
number
Dim Result As Word ' result
Dim S(80) As Byte
Dim Sstr As String * 20
Dim Temp As Byte , Temp2 As Byte ' temp bytes
'---

'When you use UDP, you need to dimension the following variables in
exactly the same order !
Dim Peersize As Integer , Peeraddress As Long , Peerport As Word
'---

Declare Function Ipnum(ip As Long) As String ' a handy
function

'like with TCP, we need to get a socket first
'note that for UDP we specify sock_dgram
Idx = Getsocket(idx , Sock_dgram , 5000 , 0) ' get socket
for UDP mode, specify port 5000
Print "Socket " ; Idx ; " " ; Idx

'UDP is a connection less protocol which means that you can not listen,

801BASCOM Language Reference

© 2008 MCS Electronics

connect or can get the status
'You can just use send and receive the same way as for TCP/IP.
'But since there is no connection protocol, you need to specify the
destination IP address and port
'So compare to TCP/IP you send exactly the same, but with the addition
of the IP and PORT
Do
 Temp = Inkey() ' wait for
terminal input
 If Temp = 27 Then ' ESC
pressed
 Sstr = "Hello"
 Result = Udpwritestr(192.168.0.3 , 5000 , Idx , Sstr , 255)
 End If
 Result = Socketstat(idx , Sel_recv) ' get number
of bytes waiting
 If Result > 0 Then
 Print "Bytes waiting : " ; Result
 Temp2 = Result - 8 'the first 8
bytes are always the UDP header which consist of the length, IP number
and port address
 Temp = Udpread(idx , S(1) , Result) ' read the
result
 For Temp = 1 To Temp2
 Print S(temp) ; " " ; ' print
result
 Next
 Print
 Print Peersize ; " " ; Peeraddress ; " " ; Peerport ' these are
assigned when you use UDPREAD
 Print Ipnum(peeraddress) ' print IP
in usual format
 Result = Udpwrite(192.168.0.3 , Peerport , Idx , S(1) , Temp2)
 ' write the received data back
 End If
Loop
'the sample above waits for data and send the data back for that reason
temp2 is subtracted with 8, the header size

'this function can be used to display an IP number in normal format
Function Ipnum(ip As Long) As String
 Local T As Byte , J As Byte
 Ipnum = ""
 For J = 1 To 4
 T = Ip And 255
 Ipnum = Ipnum + Str(t)
 If J < 4 Then Ipnum = Ipnum + "."
 Shift Ip , Right , 8
 Next
End Function
End

6.372 UDPWRITE

Action
Write UDP data to a socket.

Syntax
Result = UDPwrite(IP, port, socket , var , bytes)
Result = UDPwrite(IP, port, socket , EPROM, address , bytes)

802 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Result A word variable that will be assigned with the number of bytes actually

written to the socket.

When the free transmission buffer is large enough to accept all the data,
the result will be the same as BYTES. When there is not enough space,
the number of written bytes will be returned.

When there is no space, 0 will be returned.

IP The IP number you want to send data to.

Use the format 192.168.0.5 or use a LONG variable that contains the IP
number.

Port The port number you want to send data too.

Socket The socket number you want to send data to(0-3).

Var A constant string like "test" or a variable.

When you send a constant string, the number of bytes to send does not
need to be specified.

Bytes A word variable or numeric constant that specifies how many bytes must
be send.

Address The address of the data stored in the chips internal EEPROM. You need to
specify EPROM too in that case.

EPROM An indication for the compiler so it knows that you will send data from
EPROM.

The UDPwrite function can be used to write data to a socket that is stored in EEPROM
or in memory.
When you want to send data from an array, you need to specify the element : var
(idx) for example.

Note that UDPwrite is almost the same as TCPwrite. Since UDP is a connection-less
protocol, you need to specify the IP address and the port number.

 UDP only requires an opened socket. The is no connect or close needed.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITESTR , TCPREAD , CLOSESOCKET , SOCKETLISTEN ,
UDPWRITESTR , UDPREAD

Example
See UDPwriteStr

6.373 UDPWRITESTR

Action
Sends a string via UDP.

Syntax

456 600 752 756

788 786 372 755

802 798

802

803BASCOM Language Reference

© 2008 MCS Electronics

Result = UDPwriteStr(IP, port, socket , var , param)

Remarks
Result A word variable that will be assigned with the number of bytes actually

written to the socket.

When the free transmission buffer is large enough to accept all the data,
the result will be the same as BYTES. When there is not enough space,
the number of written bytes will be returned.

When there is no space, 0 will be returned.

IP The IP number you want to send data to.

Use the format 192.168.0.5 or use a LONG variable that contains the IP
number.

Port The port number you want to send data too.

Socket The socket number you want to send data to (0-3).

Var The name of a string variable.

Param A parameter that might be 0 to send only the string or 255, to send the
string with an additional CR + LF

This option was added because many protocols expect CR + LF after the
string.

The UDPwriteStr function is a special variant of the UDPwrite function.
It will use UDPWrite to send the data.

See also
CONFIG TCPIP , GETSOCKET , SOCKETCONNECT , SOCKETSTAT ,
TCPWRITE , TCPREAD , CLOSESOCKET , SOCKETLISTEN , UDPWRITE ,
UDPREAD

Example
'---

'name : udptest.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : start the easytcp.exe program after the chip
is programmed and
' press UDP button
'micro : Mega161
'suited for demo : no
'commercial addon needed : yes
'---

$regfile = "m161def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default

456 600 752 756

787 786 372 755 801

798

804 BASCOM-AVR

© 2008 MCS Electronics

use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Const Sock_stream = $01 ' Tcp
Const Sock_dgram = $02 ' Udp
Const Sock_ipl_raw = $03 ' Ip Layer
Raw Sock
Const Sock_macl_raw = $04 ' Mac Layer
Raw Sock
Const Sel_control = 0 ' Confirm
Socket Status
Const Sel_send = 1 ' Confirm Tx
Free Buffer Size
Const Sel_recv = 2 ' Confirm Rx
Data Size

'socket status
Const Sock_closed = $00 ' Status Of
Connection Closed
Const Sock_arp = $01 ' Status Of
Arp
Const Sock_listen = $02 ' Status Of
Waiting For Tcp Connection Setup
Const Sock_synsent = $03 ' Status Of
Setting Up Tcp Connection
Const Sock_synsent_ack = $04 ' Status Of
Setting Up Tcp Connection
Const Sock_synrecv = $05 ' Status Of
Setting Up Tcp Connection
Const Sock_established = $06 ' Status Of
Tcp Connection Established
Const Sock_close_wait = $07 ' Status Of
Closing Tcp Connection
Const Sock_last_ack = $08 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait1 = $09 ' Status Of
Closing Tcp Connection
Const Sock_fin_wait2 = $0a ' Status Of
Closing Tcp Connection
Const Sock_closing = $0b ' Status Of
Closing Tcp Connection
Const Sock_time_wait = $0c ' Status Of
Closing Tcp Connection
Const Sock_reset = $0d ' Status Of
Closing Tcp Connection
Const Sock_init = $0e ' Status Of
Socket Initialization
Const Sock_udp = $0f ' Status Of
Udp
Const Sock_raw = $10 ' Status of
IP RAW

$lib "tcpip.lbx" ' specify
the tcpip library
Print "Init , set IP to 192.168.0.8" ' display a
message
Enable Interrupts ' before we
use config tcpip , we need to enable the interrupts
Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 0.0.0.0 , Localport = 1000 , Tx =
$55 , Rx = $55

805BASCOM Language Reference

© 2008 MCS Electronics

'Use the line below if you have a gate way
'Config Tcpip = Int0 , Mac = 12.128.12.34.56.78 , Ip = 192.168.0.8 ,
Submask = 255.255.255.0 , Gateway = 192.168.0.1 , Localport = 1000 , Tx
= $55 , Rx = $55

Dim Idx As Byte ' socket
number
Dim Result As Word ' result
Dim S(80) As Byte
Dim Sstr As String * 20
Dim Temp As Byte , Temp2 As Byte ' temp bytes
'---

'When you use UDP, you need to dimension the following variables in
exactly the same order !
Dim Peersize As Integer , Peeraddress As Long , Peerport As Word
'---

Declare Function Ipnum(ip As Long) As String ' a handy
function

'like with TCP, we need to get a socket first
'note that for UDP we specify sock_dgram
Idx = Getsocket(idx , Sock_dgram , 5000 , 0) ' get socket
for UDP mode, specify port 5000
Print "Socket " ; Idx ; " " ; Idx

'UDP is a connection less protocol which means that you can not listen,
connect or can get the status
'You can just use send and receive the same way as for TCP/IP.
'But since there is no connection protocol, you need to specify the
destination IP address and port
'So compare to TCP/IP you send exactly the same, but with the addition
of the IP and PORT
Do
 Temp = Inkey() ' wait for
terminal input
 If Temp = 27 Then ' ESC
pressed
 Sstr = "Hello"
 Result = Udpwritestr(192.168.0.3 , 5000 , Idx , Sstr , 255)
 End If
 Result = Socketstat(idx , Sel_recv) ' get number
of bytes waiting
 If Result > 0 Then
 Print "Bytes waiting : " ; Result
 Temp2 = Result - 8 'the first 8
bytes are always the UDP header which consist of the length, IP number
and port address
 Temp = Udpread(idx , S(1) , Result) ' read the
result
 For Temp = 1 To Temp2
 Print S(temp) ; " " ; ' print
result
 Next
 Print
 Print Peersize ; " " ; Peeraddress ; " " ; Peerport ' these are
assigned when you use UDPREAD
 Print Ipnum(peeraddress) ' print IP
in usual format
 Result = Udpwrite(192.168.0.3 , Peerport , Idx , S(1) , Temp2)
 ' write the received data back
 End If

806 BASCOM-AVR

© 2008 MCS Electronics

Loop
'the sample above waits for data and send the data back for that reason
temp2 is subtracted with 8, the header size

'this function can be used to display an IP number in normal format
Function Ipnum(ip As Long) As String
 Local T As Byte , J As Byte
 Ipnum = ""
 For J = 1 To 4
 T = Ip And 255
 Ipnum = Ipnum + Str(t)
 If J < 4 Then Ipnum = Ipnum + "."
 Shift Ip , Right , 8
 Next
End Function
End

6.374 UPPERLINE

Action
Reset LCD cursor to the upper line.

Syntax
UPPERLINE

Remarks
Optional you can also use the LOCATE statement.

See also
LOWERLINE , THIRDLINE , FOURTHLINE , LCD , CLS , LOCATE

Example
Dim A As Byte
A = 255
Cls
Lcd A
Thirdline
Lcd A
Upperline
End

6.375 VAL

Action
Converts a string representation of a number into a number.

Syntax
var = VAL(s)

Remarks

652 793 578 629 366 647

807BASCOM Language Reference

© 2008 MCS Electronics

Var A numeric variable that is assigned with the value of s.

S Variable of the string type.

It depends on the variable type which conversion routine will be used. Single and
Double conversion will take more code space.
When you use INPUT, internal the compiler also uses the VAL routines.
In order to safe code, there are different conversion routines. For example BINVAL
and HEXVAL are separate routines.
While they could be added to the compiler, it would mean a certain overhead as they
might never be needed.
With strings as input or the INPUT statement, the string is dynamic and so all
conversion routines would be needed.

See also
STR , HEXVAL , HEX , BIN , BINVAL

Example
$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

Config Com1 = Dummy , Synchrone = 0 , Parity = None , Stopbits = 1 ,
Databits = 8 , Clockpol = 0

Dim A As Byte , S As String * 10
S = "123"
A = Val(s) 'convert
string
Print A ' 123

S = "12345678"
Dim L As Long
L = Val(s)
Print L
End

6.376 VARPTR

Action
Retrieves the memory-address of a variable.

Syntax
var = VARPTR(var2)
var = VARPTR("var3")

775 605 604 347 348

808 BASCOM-AVR

© 2008 MCS Electronics

Remarks
Var The variable that receives the address of var2.

Var2 A variable to retrieve the address from.

var3 A constant

Sometimes you need to know the address of a variable, for example when you like to
peek at it's memory content.
The VARPTR() function assigns this address.

See also
NONE

Example
Dim W As Byte
Print Hex(varptr(w)) ' 0060

6.377 VER

Action
Returns the AVR-DOS version

Syntax
result = VER()

Remarks
Result A numeric variable that is assigned with the AVR-DOS version. The

version number is a byte and the first release is version 1.

When you have a problem, MCS can ask you for the AVR-DOS version number. The
VER() function can be used to return the version number then.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME

 , DIR , WRITE , INPUT

The VERSION () function is something different. It is intended to include
compile time info into the program.

ASM
Calls _AVRDOSVer

Input -

Output R16 loaded with value

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 570 572

571 542 814 622

809

809BASCOM Language Reference

© 2008 MCS Electronics

Example
Print Ver()

6.378 VERSION

Action
Returns a string with the date and time of compilation.

Syntax
Var = VERSION(frm)

Remarks
Var is a string variable that is assigned with a constant. This version
constant is set at compilation time to MM-DD-YY hh:nn:ss

Where MM is the month, DD the day of the month, YY the year.
hh is the hour is 24-hour format, nn the minutes, and ss the seconds.

When frm is set to 1, the format date will be shown in European DD-MM-YY
hh:nn:ss format.

While it is simple to store the version of your program in the source code, it is harder
to determine which version was used for a programmed chip.

The Version() function can print this information to the serial port, or to an LCD
display.

See Also
VER

Example
Print Version()

6.379 WAIT

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds The number of seconds to wait.

No accurate timing is possible with this command.
When you use interrupts, the delay may be extended.

808

810 BASCOM-AVR

© 2008 MCS Electronics

See also
DELAY , WAITMS

Example
WAIT 3 'wait for three seconds
Print "*"

6.380 WAITKEY

Action
Wait until a character is received.

Syntax
var = WAITKEY()
var = WAITKEY(#channel)

Remarks
var Variable that receives the ASCII value of the serial buffer.

Can be a numeric variable or a string variable.

#channel The channel used for the software UART.

While Inkey() returns a character from the serial buffer too, INKEY() continues when
there is no character. Waitkey() waits until there is a character received. This blocks
your program.

See also
INKEY , ISCHARWAITING

Example
'---

'name : inkey.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: INKEY , WAITKEY
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default

538 811

617 626

811BASCOM Language Reference

© 2008 MCS Electronics

use 40 for the frame space

Dim A As Byte , S As String * 2
Do
 A = Inkey() 'get ascii
value from serial port
 's = Inkey()
 If A > 0 Then 'we got
something
 Print "ASCII code " ; A ; " from serial"
 End If
Loop Until A = 27 'until ESC
is pressed

A = Waitkey() 'wait for a
key
's = waitkey()
Print Chr(a)

'wait until ESC is pressed
Do
Loop Until Inkey() = 27

'When you need to receive binary data and the bibary value 0 ,
'you can use the IScharwaiting() function.
'This will return 1 when there is a char waiting and 0 if there is no
char waiting.
'You can get the char with inkey or waitkey then.
End

6.381 WAITMS

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
Ms The number of milliseconds to wait. (1-65535)

No accurate timing is possible with this command.
In addition, the use of interrupts can slow this routine.

See also
DELAY , WAIT , WAITUS

ASM
WaitMS will call the routine _WAITMS. R24 and R25 are loaded with the number of
milliseconds to wait.
Uses and saves R30 and R31.
Depending on the used XTAL the asm code can look like :
_WaitMS:
_WaitMS1F:
Push R30 ; save Z

538 809 812

812 BASCOM-AVR

© 2008 MCS Electronics

Push R31
_WaitMS_1:
Ldi R30,$E8 ;delay for 1 mS
Ldi R31,$03
_WaitMS_2:
Sbiw R30,1 ; -1
Brne _WaitMS_2 ; until 1 mS is ticked away
Sbiw R24,1
Brne _WaitMS_1 ; for number of mS
Pop R31
Pop R30
Ret

Example
WAITMS 10 'wait for 10 mS
Print "*"

6.382 WAITUS

Action
Suspends program execution for a given time in uS.

Syntax
WAITUS uS

Remarks
US The number of microseconds to wait. (1-65535)

This must be a constant. Not a variable!

No accurate timing is possible with this command.
In addition, the use of interrupts can slow down this routine.

The minimum delay possible is determined by the used frequency.
The number of cycles that are needed to set and save registers is 17.

When the loop is set to 1, the minimum delay is 21 uS. In this case you can better
use a NOP that generates 1 clock cycle delay.
At 4 MHz the minimum delay is 5 uS. So a waitus 3 will also generate 5 uS delay.
Above these values the delay will become accurate.

When you really need an accurate delay you should use a timer.
Set the timer to a value and poll until the overflow flag is set. The disadvantage is
that you can not use the timer for other tasks during this hardware delay.

The philosophy behind BASCOM is that it should not use hardware resources unless
there is no other way to accomplish a task.
The WAITUS is used internal by some statements. It was added to the BASCOM
statements but it does NOT accept a variable. Only a constant is accepted.

See also
DELAY , WAIT , WAITMS538 809 811

813BASCOM Language Reference

© 2008 MCS Electronics

Example
WAITUS 10 'wait for 10 uS
Print "*"

6.383 WHILE-WEND

Action
Executes a series of statements in a loop, as long as a given condition is true.

Syntax
WHILE condition
 statements
WEND

Remarks
If the condition is true then any intervening statements are executed until the WEND
statement is encountered.
BASCOM then returns to the WHILE statement and checks the condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND statement.

So in contrast with the DO-LOOP structure, a WHILE-WEND condition is tested first so
that if the condition fails, the statements in the WHILE-WEND structure are never
executed.

See also
DO-LOOP

Example
'---

'name : while_w.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demo: WHILE, WEND
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

550

814 BASCOM-AVR

© 2008 MCS Electronics

Dim A As Byte

A = 1 'assign var
While A < 10 'test
expression
 Print A 'print var
 Incr A 'increase by
one
Wend 'continue
loop
End

6.384 WRITE

Action
Writes data to a sequential file

Syntax
WRITE #ch , data [,data1]

Remarks
Ch A channel number, which

identifies an opened file. This can be a hard coded constant or a
variable.

Data , data1 A variable who’s content are written to the file.

When you write a variables value, you do not write the binary representation but the
ASCII representation. When you look in a file it contains readable text.

When you use PUT, to write binary info, the files are not readable or contain
unreadable characters.
Strings written are surrounded by string delimiters "". Multiple variables written are
separated by a comma. Consider this example :

Dim S as String * 10 , W as Word
S="hello" : W = 100
OPEN "test.txt" For OUTPUT as #1
WRITE #1, S , W
CLOSE #1

The file content will look like this : "hello",100
Use INPUT to read the values from value.

See also
INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC

, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,
KILL , DISKFREE , GET , PUT , FILEDATE , FILETIME , FILEDATETIME

 , DIR , WRITE , INPUT

ASM
Calls _FileWriteQuotationMark _FileWriteDecInt

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 582 688 570 572

571 542 814 622

815BASCOM Language Reference

© 2008 MCS Electronics

_FileWriteDecByte _FileWriteDecWord

_FileWriteDecLong _FileWriteDecSingle

Input Z points to variable

Output

Partial Example
Dim S As String * 10 , W As Word , L As Long

S = "write"
Open "write.dmo"for Output As #2
Write #2 , S , W , L ' write is
also supported
Close #2

Open "write.dmo"for Input As #2
Input #2 , S , W , L ' write is
also supported
Close #2
Print S ; " " ; W ; " " ; L

6.385 WRITEEEPROM

Action
Write a variables content to the DATA EEPROM.

Syntax
WRITEEEPROM var , address

Remarks
var The name of the variable that must be stored

address The address in the EEPROM where the variable must be stored.

A new option is that you can provide a label name for the address. See
example 2.

This statement is provided for compatibility with BASCOM-8051.

You can also use :
Dim V as Eram Byte 'store in EEPROM
Dim B As Byte 'normal variable
B = 10
V = B 'store variable in EEPROM

When you use the assignment version, the data types must be the same!

According to a data sheet from ATMEL, the first location in the EEPROM with address
0, can be overwritten during a reset. It is advised not to use this location.

For security, register R23 is set to a magic value before the data is written to the
EEPROM.
All interrupts are disabled while the EEPROM data is written. Interrupts are enabled
automatic when the data is written.

816 BASCOM-AVR

© 2008 MCS Electronics

It is advised to use the Brownout circuit that is available on most AVR processors.
This will prevent that data is written to the EEPROM when the voltage drops under the
specified level.

When data is written to the EEPROM, all interrupts are disabled, and after the
EEPROM has been written, the interrupts are re-enabled.

See also
READEEPROM

ASM
NONE

Example
'---

'name : eeprom2.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to use labels with READEEPROM
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'first dimension a variable
Dim B As Byte
Dim Yes As String * 1

'Usage for readeeprom and writeeprom :
'readeeprom var, address

'A new option is to use a label for the address of the data
'Since this data is in an external file and not in the code the eeprom
data
'should be specified first. This in contrast with the normal DATA lines
which must
'be placed at the end of your program!!

'first tell the compiler that we are using EEPROM to store the DATA
$eeprom

'the generated EEP file is a binary file.
'Use $EEPROMHEX to create an Intel Hex file usable with AVR Studio.
'$eepromhex

699

817BASCOM Language Reference

© 2008 MCS Electronics

'specify a label
Label1:
Data 1 , 2 , 3 , 4 , 5
Label2:
Data 10 , 20 , 30 , 40 , 50

'Switch back to normal data lines in case they are used
$data

'All the code above does not generate real object code
'It only creates a file with the EEP extension

'Use the new label option
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2

Readeeprom B , Label2
Print B 'prints 10
Readeeprom B
Print B 'prints 20

'And it works for writing too :
'but since the programming can interfere we add a stop here
Input "Ready?" , Yes
B = 100
Writeeeprom B , Label1
B = 101
Writeeeprom B

'read it back
Readeeprom B , Label1
Print B 'prints 1
'Succesive reads will read the next value
'But the first time the label must be specified so the start is known
Readeeprom B
Print B 'prints 2
End

6.386 X10DETECT

Action
Returns a byte that indicates if a X10 Power line interface is found.

Syntax
Result = X10DETECT()

Remarks
Result A variable that will be assigned with 0 if there is no Power Line Interface

found.

1 will be returned if the interface is found, and the detected mains
frequency is 50 Hz.
2 will be returned if the interface is found and the detected mains

818 BASCOM-AVR

© 2008 MCS Electronics

frequency is 60 Hz.

When no TW-523 or other suitable interface is found, the other X10 routines will not
work.

See also
CONFIG X10 , X10SEND

Example
'---

'name : x10.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : example needs a TW-523 X10 interface
'micro : Mega48
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "m48def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'define the house code
Const House = "M" ' use code
A-P

Waitms 500 ' optional
delay not really needed

'dim the used variables
Dim X As Byte

'configure the zero cross pin and TX pin
Config X10 = Pind.4 , Tx = Portb.0
' ^--zero cross
' ^--- transmission pin

'detect the TW-523
X = X10detect()
Print X ' 0 means
error, 1 means 50 Hz, 2 means 60 Hz

Do
 Input "Send (1-32) " , X
 'enter a key code from 1-31
 '1-16 to address a unit
 '17 all units off
 '18 all lights on

480 819

819BASCOM Language Reference

© 2008 MCS Electronics

 '19 ON
 '20 OFF
 '21 DIM
 '22 BRIGHT
 '23 All lights off
 '24 extended code
 '25 hail request
 '26 hail acknowledge
 '27 preset dim
 '28 preset dim
 '29 extended data analog
 '30 status on
 '31 status off
 '32 status request

 X10send House , X ' send the
code
Loop

Dim Ar(4) As Byte
X10send House , X , Ar(1) , 4 ' send 4
additional bytes
End

6.387 X10SEND

Action
Sends a house and key code with the X10 protocol.

Syntax
X10SEND house , code

Remarks
House The house code in the form of a letter A-P.

You can use a constant, or you can use a variable

Code The code or function to send. This is a number between 1-32.

The X10SEND command needs a TW-523 interface.
Only ground, TX and Zero Cross, needs to be connected for transmission.
Use CONFIG X10 to specify the pins.

X10 is a popular protocol used to control equipment via the mains. A 110 KHz signal
is added to the normal 50/60 Hz , 220/110 V power.

Notice that experimenting with 110V-240V can be very dangerous when you do not
know exactly what you are doing !!!

In the US, X10 is very popular and wide spread. In Europe it is hard to get a TW-523
for 220/230/240 V.

I modified an 110V version so it worked for 220V. On the Internet you can find
modification information. But as noticed before, MODIFY ONLY WHEN YOU
UNDERSTAND WHAT YOU ARE DOING.

A bad modified device could result in a fire, and your insurance will most likely not
pay. A modified device will not pass any CE, or other test.

820 BASCOM-AVR

© 2008 MCS Electronics

When the TW-523 is connected to the mains and you use the X10SEND command,
you will notice that the LED on the TW-523 will blink.

The following table lists all X10 codes.

Code value Description

1-16 Used to address a unit. X10 can use a maximum of 16 units per
house code.

17 All units off

18 All lights on

19 ON

20 OFF

21 DIM

22 BRIGHT

23 All lights off

24 Extended ode

25 Hail request

26 Hail acknowledge

27 Preset dim

28 Preset dim

29 Extended data analog

30 Status on

31 Status off

32 Status request

At www.x10.com you can find all X10 information. The intension of BASCOM is not to
learn you everything about X10, but to show you how you can use it with BASCOM.

See also
CONFIG X10 , X10DETECT , X10SEND

Example
See X10DETECT

6.388 #IF ELSE ENDIF

Action
Conditional compilation directives intended for conditional compilation.

Syntax
#IF condition

#ELSE

#ENDIF

Remarks

480 817 819

817

821BASCOM Language Reference

© 2008 MCS Electronics

Conditional compilation is supported by the compiler.
What is conditional compilation?
Conditional compilation will only compile parts of your code that meet the criteria of
the condition.

By default all your code is compiled.

Conditional compilation needs a constant to test.
So before a condition can be tested you need to define a constant.

CONST test = 1
#IF TEST
 Print "This will be compiled"
#ELSE
 Print "And this not"
#ENDIF

 Note that there is no THEN and that #ENDIF is not #END IF (no space)

You can nest the conditions and the use of #ELSE is optional.

There are a few internal constants that you can use. These are generated by the
compiler:
_CHIP = 0
_RAMSIZE = 128
_ERAMSIZE = 128
_SIM = 0
_XTAL = 4000000
_BUILD = 11162

_CHIP is an integer that specifies the chip, in this case the 2313
_RAMSIZE is the size of the SRAM
_ERAMSIZE is the size of the EEPROM
_SIM is set to 1 when the $SIM directive is used
_XTAL contains the value of the specified crystal
_BUILD is the build number of the compiler.

The build number can be used to write support for statements that are not available
in a certain version :
#IF _BUILD >= 11162
 s = Log(1.1)
#ELSE
 Print "Sorry, implemented in 1.11.6.2"
#ENDIF

Conditional compilation allows you to create different versions of your program but
that you keep one source file.
For example you could make a multi lingual program like this :

CONST LANGUAGE=1

'program goes here

#IF LANGUAGE=1
 DATA "Hello"
#ENDIF
#IF LANGUAGE=2
 DATA "Guten tag"

483

822 BASCOM-AVR

© 2008 MCS Electronics

#ENDIF

By changing the just one constant you then have for example English or German data
lines.

Conditional compilation does not work with the $REGFILE directive. If you put
the $REGFILE inside a condition or not, the compiler will use the first $REGFILE it
encounters. This will be changed in a future version.

A special check was added to 1.11.8.1 to test for existence of constants or variables.
#IF varexist("S")
 'the variable S was dimensioned so we can use it here
#ELSE
 'when it was not dimmed and we do need it, we can do it here
 DIM S as BYTE
#ENDIF

See Also
CONST 483

Part

VII

824 BASCOM-AVR

© 2008 MCS Electronics

7 International Resellers

7.1 International Resellers

Since the resellers list changes so now and then, it is not printed in this help. You can
best look at the list at the MCS website.
See MCS Electronics web.

There is always a reseller near you. A reseller can help you in your own language and
you are in the same time zone.
Sometimes there are multiple resellers in your country. All resellers have their own
unique expertise. For example : industrial, robotics, educational, etc.

http://www.mcselec.com/index.php?option=com_contact&catid=82&Itemid=59

Part

VIII

826 BASCOM-AVR

© 2008 MCS Electronics

8 ASM Libraries and Add-Ons

ASM Libs are libraries that are used by the compiler.
They contain machine language statements for various statements and functions.

A library can also be used to modify an existing function.
For example when you use a conversion routine num<>string with a byte variable
only, the routine from the MCS.LIB has some overhead as it can also convert integers,
word and longs.

You can specify the MCSBYTE.LIB or MCSBYTE.LBX library then to override the
function from MCS.LIB.

8.1 I2C_TWI

By default BASCOM will use software routines when you use I2C statements. This
because when the first AVR chips were introduced, there was no TWI yet. Atmel
named it TWI because Philips is the inventor of I2C. But TWI is the same as I2C.

So BASCOM allows you to use I2C on every AVR chip. Most newer AVR chips have
build in hardware support for I2C. With the I2C_TWI lib you can use the TWI which
has advantages as it require less code.

Read more about I2C in the hardware section.

To force BASCOM to use the TWI, you need to insert the following statement into your
code:

$LIB "I2C_TWI.LBX"

You also need to choose the correct SCL and SDA pins with the CONFIG SCL and
CONFIG SDA statements.
The TWI will save code but the disadvantage is that you can only use the fixed SCL
and SDA pins.

8.2 EXTENDED I2C

Action
Instruct the compiler to use parts of the extended i2c library

Syntax
$LIB = "i2c_extended.lib"

Remarks
The I2C library was written when the AVR architecture did not have extended
registers. The designers of the AVR chips did not preserve enough space for registers.
So when they made bigger chips with more ports they ran out of registers.
They solved it to use space from the RAM memory and move the RAM memory from
&H60 to &H100.
In the free space from &60 to &H100 the new extended register were located.

While this is a practical solution, some ASM instructions could not be used anymore.

150

827ASM Libraries and Add-Ons

© 2008 MCS Electronics

This made it a problem to use the I2C statements on PORTF and PORTG of the
Mega128.
The extended i2c library is intended to use I2C on portF and portG on the M64 and
M128.
It uses a bit more space then the normal I2C lib.

Best would be that you use the TWI interface and the i2c_twi library as this uses less
code. The disadvantage is that you need fixed pins as TWI used a fix pin for SCL and
SDA.

See also
I2C

ASM
NONE

Example
'---

' (c) 2005 MCS Electronics
' This demo shows an example of I2C on the M128 portF
' PORTF is an extened port and requires a special I2C driver
'---

$regfile = "m128def.dat" ' the used
chip
$crystal = 8000000
$baud = 19200 ' baud rate

$lib "i2c_extended.lib"

Config Scl = Portf.0 ' we need to
provide the SCL pin name
Config Sda = Portf.1 ' we need to
provide the SDA pin name

Dim B1 As Byte , B2 As Byte
Dim W As Word At B1 Overlay

I2cinit ' we need to
set the pins in the proper state

Dim B As Byte , X As Byte
Print "Mega128 master demo"

Print "Scan start"
For B = 1 To 254 Step 2
 I2cstart
 I2cwbyte B
 If Err = 0 Then
 Print "Slave at : " ; B

610

828 BASCOM-AVR

© 2008 MCS Electronics

 End If
 I2cstop
Next
Print "End Scan"

Do
 I2cstart
 I2cwbyte &H70 ' slave
address write
 I2cwbyte &B10101010 ' write
command
 I2cwbyte 2
 I2cstop
 Print Err

 I2cstart
 I2cwbyte &H71
 I2crbyte B1 , Ack
 I2crbyte B2 , Nack
 I2cstop
 Print "Error : " ; Err ' show error
 Waitms 500 'wait a bit
Loop
End

8.3 MCSBYTE

The numeric<>string conversion routines are optimized when used for byte, integer,
word and longs.

When do you use a conversion routine ?
- When you use STR() , VAL() or HEX().
- When you print a numeric variable
- When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyte.lib library is an optimized version that only support bytes.
Use it by including : $LIB "mcsbyte.lbx" in your code.

Note that LBX is a compiled LIB file. In order to change the routines you need the
commercial edition with the source code(lib files). After a change you should compile
the library with the library manager .

See also
mcsbyteint.lib

8.4 MCSBYTEINT

The numeric<>string conversion routines are optimized when used for byte, integer,
word and longs.

When do you use a conversion routine ?

-When you use STR() , VAL() or HEX().

78

828

829ASM Libraries and Add-Ons

© 2008 MCS Electronics

-When you print a numeric variable
-When you use INPUT on numeric variables.

To support all data types the built in routines are efficient in terms of code size.
But when you use only conversion routines on bytes there is a overhead.

The mcsbyteint.lib library is an optimized version that only support bytes, integers
and words.
Use it by including : $LIB "mcsbyteint.lbx" in your code.

Note that LBX is a compiled LIB file. In order to change the routines you need the
commercial edition with the source code(lib files). After a change you should compile
the library with the library manager.

See also
mcsbyte.lib

8.5 TCPIP

The TCPIP library allows you to use the W3100A internet chip from www.iinchip.com

MCS has developed a special development board that can get you started quickly with
TCP/IP communication. Look at http://www.mcselec.com for more info.

The tcpip.lbx is shipped with BASCOM-AVR

The following functions are provided:

CONFIG
TCPIP

Configures the W3100 chip.

GETSOCKET Creates a socket for TCP/IP communication.

SOCKETCONN
ECT

Establishes a connection to a TCP/IP server.

SOCKETSTAT Returns information of a socket.

TCPWRITE Write data to a socket.

TCPWRITEST
R

Sends a string to an open socket connection.

TCPREAD Reads data from an open socket connection.

CLOSESOCKE
T

Closes a socket connection.

SOCKETLISTE
N

Opens a socket in server(listen) mode.

GETDSTIP Returns the IP address of the peer.

GETDSTPORT Returns the port number of the peer.

BASE64DEC Converts Base-64 data into the original data.

BASE64ENC Convert a string into a BASE64 encoded string.

MAKETCP Encodes a constant or 4 byte constant/variables into an IP number

UDPWRITE Write UDP data to a socket.

828

456

600

752

756

787

788

786

372

755

591

592

341

342

658

801

http://www.iinchip.com
http://mcselec.com/index.php?option=com_content&task=view&id=18&Itemid=41

830 BASCOM-AVR

© 2008 MCS Electronics

UDPWRITEST
R

Sends a string via UDP.

UDPREAD Reads data via UDP protocol.

8.6 LCD

8.6.1 LCD4BUSY

BASCOM supports LCD displays in a way that you can choose all pins random. This is
great for making a simple PCB but has the disadvantage of more code usage.
BASCOM also does not use the WR-pin so that you can use this pin for other
purposes.

The LCD4BUSY.LIB can be used when timing is critical.

The default LCD library uses delays to wait until the LCD is ready. The lcd4busy.lib is
using an additional pin (WR) to read the status flag of the LCD.

The db4-db7 pins of the LCD must be connected to the higher nibble of the port.

The other pins can be defined.

'---
' (c) 2004 MCS Electronics
' lcd4busy.bas shows how to use LCD with busy check
'---
'code tested on a 8515
$regfile="8515def.dat"

'stk200 has 4 MHz
$crystal= 4000000

'define the custom library
'uses 184 hex bytes total

$lib"lcd4busy.lib"

'define the used constants
'I used portA for testing
Const _lcdport =Porta
Const _lcdddr =Ddra
Const _lcdin =Pina
Const _lcd_e = 1
Const _lcd_rw = 2
Const _lcd_rs = 3

'this is like always, define the kind of LCD
ConfigLcd= 16 * 2

'and here some simple lcd code
Cls
Lcd"test"
Lowerline
Lcd"this"
End

802

798

831ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.6.2 LCD4.LIB

The built in LCD driver for the PIN mode is written to support a worst case scenario
where you use random pins of the microprocessor to drive the LCD pins.

This makes it easy to design your PCB but it needs more code.
When you want to have less code you need fixed pins for the LCD display.

With the statement $LIB "LCD4.LBX" you specify that the LCD4.LIB will be used.

The following connections are used in the asm code:

Rs = PortB.0
RW = PortB.1 we dont use the R/W option of the LCD in this version so connect to
ground
E = PortB.2
E2 = PortB.3 optional for lcd with 2 chips
Db4 = PortB.4 the data bits must be in a nibble to save code
Db5 = PortB.5
Db6 = PortB.6
Db7 = PortB.7

You can change the lines from the lcd4.lib file to use another port.
Just change the address used :
.EQU LCDDDR=$17 ; change to another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demo lcdcustom4bit.bas in the SAMPLES dir.

Note that you still must select the display that you use with the CONFIG LCD
statement.

See also the lcd42.lib for driving displays with 2 E lines.

Note that LBX is a compiled LIB file. In order to change the routines you need the
commercial edition with the source code(lib files). After a change you should compile
the library with the library manager.

8.6.3 LCD4E2

The built in LCD driver for the PIN mode is written to support a worst case scenario
where you use random pins of the microprocessor to drive the LCD pins.

This makes it easy to design your PCB but it needs more code.

When you want to have less code you need fixed pins for the LCD display.
With the statement $LIB "LCD4E2.LBX" you specify that the LCD4.LIB will be used.

The following connections are used in the asm code:
Rs = PortB.0
RW = PortB.1 we don’t use the R/W option of the LCD in this version so connect to
ground
E = PortB.2
E2 = PortB.3 the second E pin of the LCD
Db4 = PortB.4 the data bits must be in a nibble to save code
Db5 = PortB.5
Db6 = PortB.6

426

831

832 BASCOM-AVR

© 2008 MCS Electronics

Db7 = PortB.7

You can change the lines from the lcd4e2.lib file to use another port.
Just change the address used :
.EQU LCDDDR=$17 ; change to another address for DDRD ($11)
.EQU LCDPORT=$18 ; change to another address for PORTD ($12)

See the demo lcdcustom4bit2e.bas in the SAMPLES dir.

Note that you still must select the display that you use with the CONFIG LCD
statement.

See also the lcd4.lib for driving a display with 1 E line.

A display with 2 E lines actually is a display with 2 control chips. They must both be
controlled. This library allows you to select the active E line from your code.

In your basic code you must first select the E line before you use a LCD statement.

The initialization of the display will handle both chips.

Note that LBX is a compiled LIB file. In order to change the routines you need the
commercial edition with the source code(lib files). After a change you should compile
the library with the library manager.

8.6.4 GLCD

GLCD.LIB (LBX) is a library for Graphic LCD’s based on the T6963C chip.

The library contains code for LOCATE , CLS , PSET , LINE , CIRCLE ,
SHOWPIC and SHOWPICE .

8.6.5 GLCDSED

GLCDSED.LIB (LBX) is a library for Graphic LCD’s based on the SEDXXXX chip.

The library contains modified code for this type of display.
New special statements for this display are :

LCDAT
SETFONT
GLCDCMD
GLCDDATA

See the SED.BAS sample from the sample directory

8.6.6 PCF8533

COLOR LCD
Color displays were always relatively expensive. The mobile phone market changed
that. And Display3000.com , sorted out how to connect these small nice colorfully
displays.
You can buy brand new Color displays from Display3000. MCS Electronics offers the

426

831

647 366 682 635 362

749 750

632

723

601

601

http://www.display3000.com

833ASM Libraries and Add-Ons

© 2008 MCS Electronics

same displays.
There are two different chip sets used. One chip set is from EPSON and the other from
Philips. For this reason there are two different libraries. When you select the wrong
one it will not work, but you will not damage anything.
LCD-EPSON.LBX need to be used with the EPSON chip set.
LCD-PCF8833.LBX need to be used with the Philips chip set.

Config Graphlcd = Color , Controlport = Portc , Cs = 1 , Rs = 0 , Scl = 3 , Sda = 2

Controlport The port that is used to control the pins. PORTA, PORTB, etc.

CS The chip select pin of the display screen. Specify the pin number. 1 will
mean PORTC.1

RS The RESET pin of the display

SCL The clock pin of the display

SDA The data pin of the display

As the color display does not have a built in font, you need to generate the fonts
yourself.
You can use the Fonteditor for this task.

A number of statements accept a color parameter. See the samples below in bold.

LINE Line(0 , 0) -(130 , 130) , Blue

LCDAT Lcdat 100 , 0 , "12345678" , Blue , Yellow

CIRCLE Circle(30 , 30) , 10 , Blue

PSET 32 , 110 , Black

BOX Box(10 , 30) -(60 , 100) , Red

See Also
LCD Graphic converter

Example
'
- -
- - - - - -
' The support for this display has been made possible by Peter Küsters
from (c) Display3000
' You can buy the displays from Display3000 or MCS Electronics
'
- -
- - - - - - '
'
$ l i b " l c d - p c f 8 8 3 3 . l b x " ' s p e c i a l
color display support

$ r e g f i l e = "m88de f . da t " 'ATMega 8,
change if using different processors
$ c r y s t a l = 8000000 '8 MHz

'First we define that we use a graphic LCD
Config Graphlcd = Color , Controlport = P o r t c , Cs = 1 , Rs = 0 , Scl =
3 , Sda = 2

'here we define the colors

Const Blue = &B00000011 'predefined contants are making programming
e a s i e r
Const Yellow = &B11111100
Const Red = &B11100000

125

879

834 BASCOM-AVR

© 2008 MCS Electronics

Const Green = &B00011100
Const Black = &B00000000
Const White = &B11111111
Const Brightgreen = &B00111110
Const Darkgreen = &B00010100
Const Darkred = &B10100000
Const Darkblue = &B00000010
Const Brightblue = &B00011111
Const Orange = &B11111000

'clear the display
Cls

'create a cross
Line(0 , 0) - (130 , 130) , Blue
Line(130 , 0) - (0 , 130) , Red

Waitms 1000

'show an RLE encoded picture
Showpic 0 , 0 , Plaatje
Showpic 40 , 40 , Plaatje

Waitms 1000

'select a font
Set font Color16x16
'and show some text
Lcdat 100 , 0 , "12345678" , Blue , Yellow

Waitms 1000
C i r c l e(30 , 30) , 10 , Blue

Waitms 1000
'make a box
Box(10 , 30) - (60 , 100) , Red

'set some pixels
Pset 32 , 110 , Black
Pset 38 , 110 , Black
Pset 35 , 112 , Black
End

P l a a t j e:
$bgf " a . b g c "

$include " c o l o r . f o n t "
$include " c o l o r 1 6 x 1 6 . f o n t "

8.6.7 LCD-EPSON

This chip is compatible with PCF8533 .832

835ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.7 AVR-DOS

8.7.1 AVR-DOS File System

The AVR-DOS file system is written by Josef Franz Vögel. He can be contacted via the
BASCOM forum. Note that it is not permitted to use the AVR-DOS file system for
commercial applications without the purchase of a license. A license comes with the
ASM source.
You can buy a user license that is suited for most private users.
When you develop a commercial product with AVR-DOS you need the company
license.
The ASM source is shipped with both licenses.

Josef has put a lot of effort in writing and especially testing the routines.
Josef nor MCS Electronics can be held responsible for any damage or data loss of your
CF-cards.

The File-System works with Compact – Flash Cards (see AN 123 Accessing a Compact
Flash Card from BASCOM and Compact Flash) and is written for the needs for
embedded systems for logging data. There are further functions for binary read and
write.

 You do not need AN123. AN123 was used to develop AVR-DOS. So you should
use AVR-DOS.

The intention in developing the DOS – file system was to keep close to the equivalent
VB functions.

The Filesystem works with:
· FAT16, this means you need to use >= 32MB CF cards
· FAT32
· Short file name (8.3)
· (Files with a long file name can be accessed by their short file name alias)
· Files in Root Directory. The root dir can store 512 files. Take in mind that

when you use long file names, less filenames can be stored.
· Files in SUBDIRS

Requirements:
· Hardware: see AN 123 on http://www.mcselec.com/an_123.htm
· Software: appr. 2K-Word Code-Space (4000 Bytes)
· SRAM: 561 Bytes for File system Info and DIR-Handle buffer
· 517 Bytes if FAT is handled in own buffer (for higher speed), otherwise it is

handled with the DIR Buffer
· 534 Bytes for each File handle
· This means that a Mega103 or Mega128 is the perfect chip. Other chips have

too little internal memory. You could use XRAM memory too with a Mega8515
for example.

File System Configuration in CONFIG_AVR-DOS.BAS

cFileHandles: Count of File handles: for each file opened at same time, a file
handle buffer of 534 Bytes is needed

cSepFATHandle: For higher speed in handling file operations the FAT info can be
stored in a own buffer, which needs additional 517 Bytes.

839

836 BASCOM-AVR

© 2008 MCS Electronics

Assign Constant cSepFATHandle with 1, if wanted, otherwise with
0.

Memory Usage of DOS – File System:

1. General File System information

Variable Name Type Usage

gbDOSError Byte holds DOS Error of last file handling routine

gbFileSystem Byte File System Code from Master Boot Record

glFATFirstSector Long Number of first Sector of FAT Area on the Card

gbNumberOfFATs Byte Count of FAT copies

gwSectorsPerFat Word Count of Sectors per FAT

glRootFirstSector Long Number of first Sector of Root Area on the Card

gwRootEntries Word Count of Root Entries

glDataFirstSector Long Number of first Sector of Data Area on the Card

gbSectorsPerCluster Byte Count of Sectors per Cluster

gwMaxClusterNumber Word Highest usable Cluster number

gwLastSearchedClust
er

Word Last cluster number found as free

gwFreeDirEntry Word Last directory entry number found as free

glFS_Temp1 Long temporary Long variable for file system

gsTempFileName String *
11

temporary String for converting file names

2. Directory

Variable Name Type Usage

gwDirRootEntry Word number of last handled root entry

glDirSectorNumber Long Number of current loaded Sector

gbDirBufferStatus Byte Buffer Status

gbDirBuffer Byte (512) Buffer for directory Sector

3. FAT

Variable Name Type Usage

glFATSectorNumber Long Number of current loaded FAT sector

gbFATBufferStatus Byte Buffer status

gbFATBuffer Byte(512) buffer for FAT sector

4. File handling

Each file handle has a block of 534 Bytes in the variable abFileHandle which is a byte-
array of size (534 * cFileHandles)

837ASM Libraries and Add-Ons

© 2008 MCS Electronics

Variable Name Type Usage

FileNumber Byte File number for identification of the file in I/O
operations to the opened file

FileMode Byte File open mode

FileRootEntry Word Number of root entry

FileFirstCluster Word First cluster

FATCluster Word cluster of current loaded sector

FileSize Long file size in bytes

FilePosition Long file pointer (next read/write) 0-based

FileSectorNumber Long number of current loaded sector

FileBufferStatus Byte buffer Status

FileBuffer Byte(512) buffer for the file sector

SectorTerminator Byte additional 00 Byte (string terminator) for direct
reading ASCII files from the buffer

Error Codes:

Code Compiler – Alias Remark

0 cpNoError No Error

1 cpEndOfFile Attempt behind End of File

17 cpNoMBR Sector 0 on Card is not a Master Boot
Record

18 cpNoPBR No Partition Sector

19 cpFileSystemNotSupported Only FAT16 File system is supported

20 cpSectorSizeNotSupported Only sector size of 512 Bytes is
supported

21 cpSectorsPerClusterNotSupported Only 1, 2, 4, 8, 16, 32, 64 Sectors per
Cluster is supported. This are values
of normal formatted partitions. Exotic
sizes, which are not power of 2 are
not supported

33 cpNoNextCluster Error in file cluster chain

34 cpNoFreeCluster No free cluster to allocate (Disk full)

35 cpClusterError Error in file cluster chain

49 cpNoFreeDirEntry Directory full

50 cpFileExist

65 cpNoFreeFileNumber No free file number available, only
theoretical error, if 255 file handles in
use

66 cpFileNotFound File not found

67 cpFileNumberNotFound No file handle with such file number

68 cpFileOpenNoHandle All file handles occupied

69 cpFileOpenHandleInUse File handle number in use, can't
create a new file handle with same file
number

70 cpFileOpenShareConflict Tried to open a file in read and write
modus in two file handles

71 cpFileInUse Can't delete file, which is in use

72 cpFileReadOnly Can't open a read only file for writing

73 cpFileNoWildCardAllowed No wildcard allowed in this function

838 BASCOM-AVR

© 2008 MCS Electronics

97 cpFilePositionError

98 cpFileAccessError function not allowed in this file open
mode

99 cpInvalidFilePosition new file position pointer is invalid
(minus or 0)

100 cpFileSizeToGreat File size to great for function BLoad

Buffer Status: Bit definitions of Buffer Status Byte (Directory, FAT and File)

Bit DIR FAT File Compiler
Alias

Remark

0 (LSB) dBOF Bottom of File (not yet supported)

1 dEOF End of File

2 dEOFinSector End of File in this sector (last sector)

3 dWritePendin
g

Something was written to sector, it must
be saved to Card, before loading next
sector

4 dFATSector This is an FAT Sector, at writing to Card,
Number of FAT copies must be checked
and copy updated if necessary

5 dFileEmpty File is empty, no sector (Cluster) is
allocated in FAT to this file

Validity of the file I/O operations regarding the opening modes

Open mode

Action Input Output Append Binary

Attr

Close

Put

Get

LOF

LOC

EOF 1) 1)

SEEK

SEEK-Set

Line Input

Print

Input

Write

1) Position pointer is always at End of File

Supported statements and functions:

INITFILESYSTEM , OPEN , CLOSE , FLUSH , PRINT , LINE INPUT , LOC
, LOF , EOF , FREEFILE , FILEATTR , SEEK , BSAVE , BLOAD ,

KILL , DISKFREE , DISKSIZE , GET , PUT ,FILEDATE , FILETIME ,
FILEDATETIME , DIR , WRITE , INPUT , FILELEN

615 669 370 574 679 638

642 643 566 580 569 718 356 352

627 545 546 582 688 570 572

571 542 814 622 571

839ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.8 CF Card

8.8.1 Compact FlashCard Driver

The compact flash card driver library is written by Josef Franz Vögel. He can be
contacted via the BASCOM user list.

Josef has put a lot of effort in writing and especially testing the routines.
Josef nor MCS Electronics can be held responsible for any damage or data loss of your
CF-cards.

Compact flash cards are very small cards that are compatible with IDE drives. They
work at 3.3V or 5V and have a huge storage capacity.

The Flash Card Driver provides the functions to access a Compact Flash Card.

At the moment there are six functions:
DriveCheck , DriveReset , DriveInit , DriveGetIdentity , DriveWriteSector

 , DriveReadSector

The Driver can be used to access the Card directly and to read and write each sector
of the card or the driver can be used in combination with a file-system with basic
drive access functions.

Because the file system is separated from the driver you can write your own driver.

This way you could use the file system with a serial EEPROM for example.

For a file system at least the functions for reading (DriveReadSector /
_DriveReadSector) and writing (DriveWriteSector / _DriveWriteSector) must be
provided. The preceding under slash _ is the label of the according asm-routine. The
other functions can, if possible implemented as a NOP – Function, which only returns
a No-Error (0) or a Not Supported (224) Code, depending, what makes more sense.

For writing your own Driver to the AVR-DOS File system, check the ASM-part of the
functions-description.

Error Codes:

Code Compiler – Alias Remark

0 CpErrDriveNoError No Error

224 cpErrDriveFunctionNo
tSupported

This driver does not supports this function

225 cpErrDriveNotPresent No Drive is attached

226 cpErrDriveTimeOut During Reading or writing a time out occurred

227 cpErrDriveWriteError Error during writing

228 cpErrDriveReadError Error during reading

At the MCS Web AN section you can find the application note 123.

More info about Compact Flash you can find at :

http://www.sandisk.com/download/Product%20Manuals/cf_r7.pdf

551 553 553 552

555 554

http://www.mcselec.com/index.php?option=com_content&task=view&id=87&Itemid=57
http://www.sandisk.com/download/Product%20Manuals/cf_r7.pdf

840 BASCOM-AVR

© 2008 MCS Electronics

A typical connection to the micro is shown below.

8.8.2 Elektor CF-Interface

The popular Electronics magazine Elektor, published an article about a CF-card
interface. This interface was connected to an 89S8252. This interface can be used and
will use little pins of the micro.

Note that because of the FAT buffer requirement, it is not possible to use a 8051
micro.,

At this moment, only the Mega128 and the Mega103 AVR micro’s are good chips to
use with AVR-DOS.

You can use external memory with other chips like the Mega162.

841ASM Libraries and Add-Ons

© 2008 MCS Electronics

Changes of the hardware pins is possible in the file Config_FlashCardDrive_EL_PIN.
bas.
The default library is FlashCardDrive.lib but this interface uses the library
FlashCardDrive_EL_PIN.lib.

8.8.3 XRAM CF-Interface for simulation

The XRAM CF-Card interface is created for the purpose of testing the File System
routines without hardware.

You can use an external RAM chip (XRAM) for the CF-interface but of course it is not
practical in a real world application unless you backup the power with a battery.

For tests with the simulator it is ideal.

Just specify the Config_XRAMDrive.bas file and select a micro that can address
external memory such as the M128. Then specify that the system is equipped with
64KB of external RAM.

You can now simulate the flashdisk.bas sample program !

In order to simulate Flashdisk.bas, set the constant XRAMDRIVE to 1. Then select
64KB of external RAM and compile.

842 BASCOM-AVR

© 2008 MCS Electronics

8.8.4 New CF-Card Drivers

New CF-Card drivers can be made relatively simple.

Have a look at the supplied drivers.

There are always a few files needed :
· A config file in the format : CONFIG_XXX.bas
· FlashCardDrive_XXX.LIB
· FlashCardDrive_XXX.lbx is derived from the LIB file

XXX stands for the name of your driver.

At the AVR-DOS web you can find more drivers.

8.9 Floating Point

8.9.1 FP_TRIG

The FP_TRIG library is written by Josef Franz Vögel.

All trig functions are stored in fp_trig.lib library.
The fp_trig.lbx contains the compiled object code and is used by BASCOM.

This sample demonstrates all the functions from the library:

' -
'name : test_fptrig2.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : demonstates FP trig library from Josef Franz Vögel
'micro : Mega8515
'suited for demo : no
'commercial addon needed : no
' -

$ r e g f i l e = "m8515.dat " ' specify the used micro
$ c r y s t a l = 4000000 ' used crystal frequency
$baud = 19200 ' use baud rate
$hwstack = 32 ' default use 32 for the
hardware stack
$swstack = 10 ' default use 10 for the SW
s t a c k
$framesize = 40 ' default use 40 for the frame
space

Dim S1 As Single , S2 As Single , S3 As Single , S4 As Single , S5 As Single , S6 As
Single
Dim Vcos As Single , Vsin As Single , Vtan As Single , Vatan As Single , S7 As Single
Dim Wi As Single , B1 As Byte
Dim Ms1 As Single

Const Pi = 3.14159265358979

'calculate PI
Ms1 = Atn(1) * 4

Test ing_power:
P r i n t "Testing Power X ^ Y"
P r i n t "X Y x^Y"
For S1 = 0.25 To 14 Step 0.25
 S2 = S1 \ 2
 S3 = Power(s1 , S2)
 P r i n t S1 ; " ^ " ; S2 ; " = " ; S3
Next
P r i n t : P r i n t : P r i n t

843ASM Libraries and Add-Ons

© 2008 MCS Electronics

Test ing_exp_log:

P r i n t "Testing EXP and LOG"
P r i n t "x exp(x) log([exp(x)]) Error-abs Error-rel"
P r i n t "Error is for calculating exp and back with log together"
For S1 = - 88 To 88
 S2 = Exp(s1)
 S3 = Log(s2)
 S4 = S3 - S1
 S5 = S4 \ S1
 P r i n t S1 ; " " ; S2 ; " " ; S3 ; " " ; S4 ; " " ; S5 ; " " ;
 P r i n t
Next
P r i n t : P r i n t : P r i n t

T e s t i n g _ t r i g:
P r i n t "Testing COS, SIN and TAN"
P r i n t "Angle Degree Angle Radiant Cos Sin Tan"
For Wi = - 48 To 48
 S1 = Wi * 15
 S2 = Deg2rad(s1)
 Vcos = Cos(s2)
 Vsin = Sin(s2)
 Vtan = Tan(s2)
 P r i n t S1 ; " " ; S2 ; " " ; Vcos ; " " ; Vsin ; " " ; Vtan
Next
P r i n t : P r i n t : P r i n t

Tes t ing_a tan:
P r i n t "Testing Arctan"
P r i n t "X atan in Radiant, Degree"
S1 = 1 / 1024
Do
 S2 = Atn(s1)
 S3 = Rad2deg(s2)
 P r i n t S1 ; " " ; S2 ; " " ; S3
 S1 = S1 * 2
 I f S1 > 1000000 Then
 E x i t Do
 End I f
Loop

P r i n t : P r i n t : P r i n t

T e s t i n g _ i n t _ f r a c t:
P r i n t "Testing Int und Fract of Single"
P r i n t "Value Int Frac"
S2 = Pi \ 10
For S1 = 1 To 8
 S3 = I n t(s2)
 S4 = Frac(s2)
 P r i n t S2 ; " " ; S3 ; " " ; S4
 S2 = S2 * 10
Next

P r i n t : P r i n t : P r i n t

P r i n t "Testing degree - radiant - degree converting"
P r i n t "Degree Radiant Degree Diff-abs rel"

For S1 = 0 To 90
 S2 = Deg2rad(s1)
 S3 = Rad2deg(s2)
 S4 = S3 - S1
 S5 = S4 \ S1
 P r i n t S1 ; " " ; S2 ; " " ; S3 ; " " ; S4 ; " " ; S5
Next

Tes t i ng_hyperbo l i cus:
P r i n t : P r i n t : P r i n t
P r i n t "Testing SINH, COSH and TANH"
P r i n t "X sinh(x) cosh(x) tanh(x)"
For S1 = - 20 To 20
 S3 = Sinh(s1)
 S2 = Cosh(s1)
 S4 = Tanh(s1)
 P r i n t S1 ; " " ; S3 ; " " ; S2 ; " " ; S4
Next
P r i n t : P r i n t : P r i n t

844 BASCOM-AVR

© 2008 MCS Electronics

Tes t ing_ log10:
P r i n t "Testing LOG10"
P r i n t "X log10(x)"
S1 = 0.01
S2 = Log10(s1)
P r i n t S1 ; " " ; S2
S1 = 0.1
S2 = Log10(s1)
P r i n t S1 ; " " ; S2
For S1 = 1 To 100
 S2 = Log10(s1)
 P r i n t S1 ; " " ; S2
Next

P r i n t : P r i n t : P r i n t

'test MOD on FP
S1 = 10000
S2 = 3
S3 = S1 Mod S2
P r i n t S3

P r i n t "Test ing_SQR-Sing le"
For S1 = - 1 To 4 Step 0.0625
 S2 = Sqr(s1)
 P r i n t S1 ; " " ; S2
Next
P r i n t
For S1 = 1000000 To 1000100
 S2 = Sqr(s1)
 P r i n t S1 ; " " ; S2
Next

Tes t ing_a tn2:
P r i n t "Testing Sin / Cos / ATN2 / Deg2Rad / Rad2Deg / Round"
P r i n t "X[deg] X[Rad] Sin(x) Cos(x) Atn2 Deg of Atn2 Rounded"
For S1 = - 180 To 180 Step 5
 S2 = Deg2rad(s1)
 S3 = Sin(s2)
 S4 = Cos(s2)
 S5 = Atn2(s3 , S4)
 S6 = Rad2deg(s5)
 S7 = Round(s6)
 P r i n t S1 ; " " ; S2 ; " " ; S3 ; " " ; S4 ; " " ; S5 ; " " ; S6 ; " " ; S7
Next
P r i n t "note: -180° is equivalent to +180°"
P r i n t
Test ing_as in_acos:
P r i n t "Testing ASIN, ACOS"
P r i n t "X asin(x) acos(x)"
 For S1 = - 1.125 To 1.125 Step 0.0625
 S2 = Asin(s1)
 S3 = Acos(s1)
 P r i n t S1 ; " " ; S2 ; " " ; S3
Next
P r i n t "Note: > 1.0 and < -1.0 are invalid and shown here for error handling"

T e s t i n g _ s h i f t:
S1 = 12
For B1 = 1 To 20
 S2 = S1 : S3 = S1
 S h i f t S2 , L e f t , B1
 S h i f t S3 , Right , B1
 P r i n t S1 ; " " ; S2 ; " " ; S3
Next

P r i n t "End of testing"

End

845ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.9.2 DOUBLE

The double.lbx (lib) is written by Josef Franz Vögel. The library supports the basic
operations :

· Addition (+)
· Subtraction (-)
· Multiplication (*)
· Division (/)
· Val() , INPUT
· Str() , PRINT
· Int()
· Frac()
· Fix()
· Round()
· Conversion from double to single and long
· Conversion from single and long to double

The double library uses special Mega instructions not available in all AVR chips. But as
the old chips are not manufactured anymore, this should not be a problem.

All Trig() functions are supported by the double too!

8.10 I2C SLAVE

8.10.1 I2CSLAVE

The I2C-Slave library is intended to create I2C slave chips. This is an add-on library
that is not included by default. It is a commercial add on library. It is available from
MCS Electronics

All BASCOM I2C routines are master I2C routines. The AVR is a fast chip and allows to
implement the I2C slave protocol.

You can control the chips with the BASCOM I2C statements like I2CINIT, I2CSEND,
I2CRECEIVE, I2CWBYTE, etc. Please consult the BASCOM Help file for using I2C in
master mode.

Before you begin
Copy the i2cslave.lib and i2cslave.lbx files into the BASCOM-AVR\LIB directory.
The i2cslave.lib file contains the ASM source. The i2cslave.lbx file contains the
compiled ASM source.

Slave address
Every I2C device must have an address so it can be addressed by the master I2C
routines.
When you write to an I2C-slave chip the least significant bit (bit0) is used to specify if
we want to read from the chip or that we want to write to the chip.
When you specify the slave address, do not use bit 0 in the address!

For example a PCF8574 has address &H40. To write to the chip use &H40, to read
from the chip, use &H41. When emulating a PCF8574 we would specify address &H40.

http://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=34&category_id=6&option=com_phpshop&Itemid=1

846 BASCOM-AVR

© 2008 MCS Electronics

Use the CONFIG statement to specify the slave address:

Config I2cslave = &B01000000 ' same as &H40
Optional use : CONFIG I2CSLAVE = address, INT= int , TIMER = tmr

Where INT is INT0, INT1 etc. and TIMER is TIMER0, TIMER1 etc.
When using other interrupts or timers, you need to change the library source. The
library was written for TIMER0 and INT0.

The I2C slave routines use the TIMER0 and INT0. You can not use these interrupts
yourself. It also means that the SCL and SDA pins are fixed.

The following table lists the pins for the various chips

Chip SCL SDA

AT90S1200 PORTD.4 PORTD.2

AT90S2313 PORTD.4 PORTD.2

AT90S2323 PORTB.2 PORTB.1

AT90S2333 PORTD.4 PORTD.2

AT90S2343 PORTB.2 PORTB.1

AT90S4433 PORTD.4 PORTD.2

ATTINY22 PORTB.2 PORTB.1

ATTINY13 PORTB.2 PORTB.1

ATTINY2313 PORTD.4 PORTD.2

ATMEGA1280 PORTD.7 PORTD.0

ATMEGA128CAN PORTD.7 PORTD.0

ATMEGA168 PORTD.4 PORTD.2

ATMEGA2560 PORTD.7 PORTD.0

ATMEGA2561 PORTD.7 PORTD.0

ATMEGA48 PORTD.4 PORTD.2

ATMEGA88 PORTD.4 PORTD.2

ATMEGA8 PORTD.4 PORTD.2

Note that new AVR chips have a TWI or hardware I2C implementation. It is better to
use hardware I2C, then the software I2C. The slave library is intended for AVR chips
that do not have hardware I2C.

CONFIG I2CSLAVE will enable the global interrupts.

After you have configured the slave address, you can insert your code.

A do-loop would be best:

Do
 ' your code here
Loop

This is a simple never-ending loop. You can use a GOTO with a label or a While Wend
loop too but ensure that the program will never end.
After your main program you need to insert two labels with a return:

When the master needs to read a byte, the following label is always called.
You must put the data you want to send to the master in variable _a1 which is
register R16

411

847ASM Libraries and Add-Ons

© 2008 MCS Electronics

I2c_master_needs_data:
'when your code is short, you need to put in a waitms statement
'Take in mind that during this routine, a wait state is active and the master will wait
'After the return, the waitstate is ended
Config Portb = Input ' make it an input

_a1 = Pinb ' Get input from portB and assign it
Return

When the master writes a byte, the following label is always called.
It is your task to retrieve variable _A1 and do something with it
_A1 is register R16 that could be destroyed/altered by BASIC statements
For that reason it is important that you first save this variable.

I2c_master_has_data:
 'when your code is short, you need to put in a waitms statement
 'Take in mind that during this routine, a wait state is active and the master will wait
 'After the return, the waitstate is ended

 Bfake = _a1 ' this is not needed but it shows how you can store _A1 in
a byte
 'after you have stored the received data into bFake, you can alter R16
 Config Portb = Output ' make it an output since it could be an input
 Portb = _a1 'assign _A1 (R16)
Return

8.10.2 I2C TWI Slave

The I2C Slave add on can turn some chips into a I2C slave device. You can start your
own chip plant this way.

Most new AVR chips have a so called TWI interface. As a customer of the I2C slave
lib, you can get both libs.
The TWI slave lib works in interrupt mode and is the best way as it adds less
overhead and also less system resources.

In the following example the code for older compilers

Example
'---

'name : twi-slave.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows an example of the TWI in SLAVE mode
'micro : Mega128
'suited for demo : yes
'commercial addon needed : yes
'---

$regfile = "m128def.dat" ' specify
the used micro
$crystal = 8000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default

848 BASCOM-AVR

© 2008 MCS Electronics

use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' Not all AVR chips have TWI (hardware I2C)
' IMPORTANT : this example ONLY works when you have the TWI slave
library
' which is a commercial add on library, not part of BASCOM

Print "MCS Electronics TWI-slave demo"

Config Twislave = &H70 , Btr = 1 , Bitrate = 100000

'as you might need other interrupts as well, you need to enable them
manual

Enable Interrupts

'this is just an empty loop but you could perform other tasks there
Do
 nop
Loop
End

'A master can send or receive bytes.
'A master protocol can also send some bytes, then receive some bytes
'The master and slave must match.

'the following labels are called from the library
Twi_stop_rstart_received:
 Print "Master sent stop or repeated start"
Return

Twi_addressed_goread:
 Print "We were addressed and master will send data"
Return

Twi_addressed_gowrite:
 Print "We were addressed and master will read data"
Return

'this label is called when the master sends data and the slave has
received the byte
'the variable TWI holds the received value
Twi_gotdata:
 Print "received : " ; Twi
Return

'this label is called when the master receives data and needs a byte
'the variable twi_btr is a byte variable that holds the index of the
needed byte
'so when sending multiple bytes from an array, twi_btr can be used for
the index
Twi_master_needs_byte:
 Print "Master needs byte : " ; Twi_btr
 Twi = 65 ' twi must
be filled with a value

849ASM Libraries and Add-Ons

© 2008 MCS Electronics

Return

'when the mast has all bytes received this label will be called
Twi_master_need_nomore_byte:
 Print "Master does not need anymore bytes"
Return

8.11 SPI

8.11.1 SPISLAVE

SPISLAVE.LIB (LBX) is a library that can be used to create a SPI slave chip when the
chip does not have a hardware SPI interface.
Although most AVR chips have an ISP interface to program the chip, the 2313 for
example does not have a SPI interface.

When you want to control various micro’s with the SPI protocol you can use the
SPISLAVE library.

The SPI-softslave.bas sample from the samples directory shows how you can use the
SPISLAVE library.
Also look at the spi-slave.bas sample that is intended to be used with hardware SPI.

The sendspi.bas sample from the samples directory shows how you can use the SPI
hardware interface for the master controller chip.

'---

'name : spi-softslave.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to implement a SPI SLAVE with
software
'micro : AT90S2313
'suited for demo : yes
'commercial addon needed : no
'---

$regfile = "2313def.dat" ' specify
the used micro
$crystal = 4000000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

'Some atmel chips like the 2313 do not have a SPI port.
'The BASCOM SPI routines are all master mode routines
'This example show how to create a slave using the 2313
'ISP slave code

'define the constants used by the SPI slave
Const _softslavespi_port = Portd ' we used
portD
Const _softslavespi_pin = Pind 'we use the

850 BASCOM-AVR

© 2008 MCS Electronics

PIND register for reading
Const _softslavespi_ddr = Ddrd ' data
direction of port D

Const _softslavespi_clock = 5 'pD.5 is
used for the CLOCK
Const _softslavespi_miso = 3 'pD.3 is
MISO
Const _softslavespi_mosi = 4 'pd.4 is
MOSI
Const _softslavespi_ss = 2 ' pd.2 is SS
'while you may choose all pins you must use the INT0 pin for the SS
'for the 2313 this is pin 2

'PD.3(7), MISO must be output
'PD.4(8), MOSI
'Pd.5(9) , Clock
'PD.2(6), SS /INT0

'define the spi slave lib
$lib "spislave.lbx"
'sepcify wich routine to use
$external _spisoftslave

'we use the int0 interrupt to detect that our slave is addressed
On Int0 Isr_sspi Nosave
'we enable the int0 interrupt
Enable Int0
'we configure the INT0 interrupt to trigger when a falling edge is
detected
Config Int0 = Falling
'finally we enabled interrupts
Enable Interrupts

'
Dim _ssspdr As Byte ' this is
out SPI SLAVE SPDR register
Dim _ssspif As Bit ' SPI
interrupt revceive bit
Dim Bsend As Byte , I As Byte , B As Byte ' some other
demo variables

_ssspdr = 0 ' we send a
0 the first time the master sends data
Do
 If _ssspif = 1 Then
 Print "received: " ; _ssspdr
 Reset _ssspif
 _ssspdr = _ssspdr + 1 ' we send
this the next time
 End If
Loop

When the chip has a SPI interface, you can also use the following
example:

'---

'name : spi-slave.bas
'copyright : (c) 1995-2005, MCS Electronics
'purpose : shows how to create a SPI SLAVE
'micro : AT90S8515
'suited for demo : yes

851ASM Libraries and Add-Ons

© 2008 MCS Electronics

'commercial addon needed : no
'---

$regfile = "8515def.dat" ' specify
the used micro
$crystal = 3680000 ' used
crystal frequency
$baud = 19200 ' use baud
rate
$hwstack = 32 ' default
use 32 for the hardware stack
$swstack = 10 ' default
use 10 for the SW stack
$framesize = 40 ' default
use 40 for the frame space

' use together with sendspi.bas
'--
' Tested on the STK500. The STK200 will NOT work.
' Use the STK500 or another circuit

Dim B As Byte , Rbit As Bit , Bsend As Byte

'First configure the MISO pin
Config Pinb.6 = Output ' MISO

'Then configure the SPI hardware SPCR register
Config Spi = Hard , Interrupt = On , Data Order = Msb , Master = No ,
Polarity = Low , Phase = 0 , Clockrate = 128

'Then init the SPI pins directly after the CONFIG SPI statement.
Spiinit

'specify the SPI interrupt
On Spi Spi_isr Nosave

'enable global interrupts
Enable Interrupts

'show that we started
Print "start"
Spdr = 0 ' start with
sending 0 the first time
Do
 If Rbit = 1 Then
 Print "received : " ; B
 Reset Rbit
 Bsend = Bsend + 1 : Spdr = Bsend 'increase
SPDR
 End If
 ' your code goes here
Loop

'Interrupt routine
'since we used NOSAVE, we must save and restore the registers ourself
'when this ISR is called it will send the content from SPDR to the
master
'the first time this is 0

852 BASCOM-AVR

© 2008 MCS Electronics

Spi_isr:
 push r24 ; save used register
 in r24,sreg ; save sreg
 push r24
 B = Spdr
 Set Rbit ' we
received something
 pop r24
 !out sreg,r24 ; restore sreg
 pop r24 ; and the used register
Return ' this will
generate a reti

8.12 DATE TIME

8.12.1 EUROTIMEDATE

The CONFIG CLOCK statement for using the asynchrony timer of the 8535, M163,
M103 or M128 (and others) allows you to use a software based clock. See TIME$
and DATE$.

By default the date format is in MM/DD/YY.

By specifying:
$LIB "EURODATETIME.LBX"

The DATE$ will work in European format : DD-MM-YY

Note that the eurotimedate library should not be used anymore. It is replaced by the
DATETIME library which offers many more features.

8.12.2 DATETIME

The DateTime library is written by Josef Franz Vögel. It extends the clock routines
with date and time calculation.

The following functions are available:

DayOfWee
k

Returns the day of the week

DayOfYear Returns the day of the year

SecOfDay Returns the second of the day

SecElapse
d

Returns the elapsed Seconds to a former assigned time-stamp

SysDay Returns a number, which represents the System Day

SysSec Returns a Number, which represents the System Second

SysSecEla
psed

Returns the elapsed Seconds to a earlier assigned system-time-stamp

Time Returns a time-value (String or 3 Byte for Second, Minute and Hour)
depending of the Type of the Target

Date Returns a date-value (String or 3 Bytes for Day, Month and Year)
depending of the Type of the Target

793

514

283

852

504

513

717

716

780

777

779

794

516

853ASM Libraries and Add-Ons

© 2008 MCS Electronics

 Date and time not to be confused with Date$ and Time$!

8.13 PS2-AT Mouse and Keyboard Emulation

8.13.1 AT_EMULATOR

The PS2 AT Keyboard emulator library is an optional add on library you can purchase.

The library allows you to emulate an AT PS/2 keyboard or mouse.
The following statements become available:

CONFIG ATEMU
SENDSCANKBD

8.13.2 PS2MOUSE_EMULATOR

The PS2 Mouse emulator library is an optional addon library you can purchase.
The library allows you to emulate an AT PS/2 mouse.
The following statements become available:

CONFIG PS2EMU
PS2MOUSEXY
SENDSCAN

8.14 BCCARD

8.14.1 BCCARD

BCCARD.LIB is a commercial addon library that is available separately from MCS
Electronics.
With the BCCARD library you can interface with the BasicCards from www.basiccard.
com
BasicCards are also available from MCS Electronics

A BasicCard is a smart card that can be programmed in BASIC.

The chip on the card looks like this :

382

730

440

685

728

http://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=35&category_id=6&option=com_phpshop&Itemid=1
http://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=33&category_id=6&option=com_phpshop&Itemid=1
http://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=33&category_id=6&option=com_phpshop&Itemid=1
http://Www.basiccard.com
http://Www.basiccard.com

854 BASCOM-AVR

© 2008 MCS Electronics

To interface it you need a smart card connector.

In the provided example the connections are made as following:

Smart Card PIN Connect to

C1 +5 Volt

C2 PORTD.4 , RESET

C3 PIN 4 of 2313 , CLOCK

C5 GND

C7 PORTD.5 , I/O

The microprocessor must be clocked with a 3579545 crystal since that is the
frequency the Smart Card is working on. The output clock of the microprocessor is
connected to the clock pin of the Smart card.

Some global variables are needed by the library. They are dimensioned automatic by
the compiler when you use the CONFIG BCCARD statement.

These variables are:

_Bc_pcb : a byte needed by the communication protocol.
Sw1 and SW2 : both bytes that correspondent to the BasicCard variables SW1 and
SW2

The following statements are especially for the BasicCard:

CONFIG BCCARD to init the library
BCRESET to reset the card
BCDEF to define your function in the card
BCCALL to call the function in the card

Encryption is not supported by the library yet.

384

861

855

855

855ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.14.2 BCDEF

Action
Defines a subroutine name and it’s parameters in BASCOM so it can be called in the
BasicCard.

Syntax
BCDEF name([param1 , paramn])

Remarks
name The name of the procedure. It may be different than the name of

the procedure in the BasicCard but it is advised to use the same
names.

Param1 Optional you might want to pass parameters. For each parameter
you pass, you must specify the data type. Supported data types
are byte, Integer, Word, Long, Single and String

This statements uses BCCARD.LIB, a library that is available separately from
MCS Electronics.

BCDEF Calc(string)

Would define a name ‘Calc’ with one string parameter.
When you use strings, it must be the last parameter passed.

BCDEF name(byte,string)

BCDEF does not generate any code. It only informs the compiler about the data types
of the passed parameters.

See Also
CONFIG BCCARD , BCCALL , BCRESET

Partial Example
Bcdef Calc(string)

8.14.3 BCCALL

Action
Calls a subroutine or procedure in the BasicCard.

Syntax
BCCALL name(nad , cla, ins, p1, p2 [param1 , paramn])

Remarks
name The name of the procedure to all in the BasicCard. It must be defined

first with BCDEF. The name used with BCDEF and BCCALL do not

384 855 861

856 BASCOM-AVR

© 2008 MCS Electronics

need to be the same as the procedure in the BasicCard but it is
advised to use the same names.

NAD Node address byte. The BasicCard responds to all node address
values. Use 0 for default.

CLA Class byte. First byte of two byte CLA-INS command. Must match the
value in the BasicCard procedure.

INS Instruction byte. Second byte of two byte CLA-INS command. Must
match the value in the BasicCard procedure.

P1 Parameter 1 of CLA–INS header.

P2 Parameter 2 of CLA-INS header

This statements uses BCCARD.LIB, a library that is available separately from
MCS Electronics.

When in your BasicCard basic program you use:
'test of passing parameters
Command &hf6 &h01 ParamTest(b as byte, w as integer,l as long)
b=b+1
w=w+1
l=l+1
end command

You need to use &HF6 for CLA and 1 for INS when you call the program:

Bccall Paramtest(0 , &HF6 , 1 , 0 , 0 , B , W , L)
 ^ NAD

 ^CLA

 ^INS

 ^P1

 ^P2

When you use BCCALL, the NAD, CLA, INS, P1 and P2 are sent to the BasicCard. The
parameter values are also sent to the BasicCard. The BasicCard will execute the
command defined with CLA and INS and will return the result in SW1 and SW2.

The parameter values altered by the BasicCard are also sent by the BasicCard.

You can not sent constant values. Only variables may be sent. This because a
constant can not be changed.

See Also
CONFIG BCCARD , BCDEF , BCRESET

Example
' -
' BCCARD.BAS
' This AN shows how to use the BasicCard from Zeitcontrol

384 855 861

857ASM Libraries and Add-Ons

© 2008 MCS Electronics

' www.basiccard.com
' -
' c o n n e c t i o n s :
' C1 = +5V
' C2 = PORTD.4 - RESET
' C3 = PIN 4 - CLOCK
' C5 = GND
' C7 = PORTD.5 - I/O

' /--------------------------------\
' | |
' | C1 C5 |
' | C2 C6 |
' | C3 C7 |
' | C4 C8 |
' | |
' \--------------------------------/
'
'

'----------- configure the pins we use ------------
Config Bccard = D , Io = 5 , Reset = 4
' ^ PORTD.4
' ^------------ PORTD.5
' ^--------------------- PORT D

'Load the sample calc.bas into the basiccard

' Now define the procedure in BASCOM
' We pass a string and also receive a string
Bcdef Calc(s t r i n g)

'We need to dim the following variables
'SW1 and SW2 are returned by the BasicCard
'BC_PCB must be set to 0 before you start a session

'Our program uses a string to pass the data so DIM it
Dim S As St r ing * 15

'Baudrate might be changed
$baud = 9600
' Crystal used must be 3579545 since it is connected to the Card too
$ c r y s t a l = 3579545

'Perform an ATR
Bcreset

'Now we call the procedure in the BasicCard
'bccall funcname(nad,cla,ins,p1,p2,PRM as TYPE,PRM as TYPE)
S = "1+1+3" ' we want to calculate the
result of this expression

Bcca l l Calc(0 , &H20 , 1 , 0 , 0 , S)
' ^--- variable to pass that holds the expression
' ^------- P2
' ^----------- P1
' ^--------------- INS
' ^-------------------- CLA
' ^-------------------------- NAD
'For info about NAD, CLA, INS, P1 and P2 see your BasicCard manual
'if an error occurs ERR is set
' The BCCALL returns also the variables SW1 and SW2
P r i n t "Result of calc : " ; S
P r i n t "SW1 = " ; Hex(sw1)
P r i n t "SW2 = " ; Hex(sw2)
'Print Hex(_bc_pcb) ' for test you can see that it toggles between 0 and 40
P r i n t "Error : " ; E r r

'You can call this or another function again in this session

S = " 2 + 2 "
Bcca l l Calc(0 , &H20 , 1 , 0 , 0 , S)
P r i n t "Result of calc : " ; S
P r i n t "SW1 = " ; Hex(sw1)
P r i n t "SW2 = " ; Hex(sw2)
'Print Hex(_bc_pcb) ' for test you can see that it toggles between 0 and 40

858 BASCOM-AVR

© 2008 MCS Electronics

P r i n t "Error : " ; E r r

'perform another ATR
Bcreset
Input "expression " , S
Bcca l l Calc(0 , &H20 , 1 , 0 , 0 , S)
P r i n t "Answer : " ; S

'----and now perform an ATR as a function
Dim Buf(25) As Byte , I As Byte
B u f(1) = Bcreset()
For I = 1 To 25
 P r i n t I ; " " ; Hex(b u f(i))
Next
'typical returns :
'TS = 3B
'T0 = EF
'TB1 = 00
'TC1 = FF
'TD1 = 81 T=1 indication
'TD2 = 31 TA3,TB3 follow T=1 indicator
'TA3 = 50 or 20 IFSC ,50 =Compact Card, 20 = Enhanced Card
'TB3 = 45 BWT blocl waiting time
'T1 -Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00
' B a s i c C a r d Z C 1 2 3

'and another test
'define the procedure in the BasicCard program
Bcdef Paramtest(byte , Word , Long)

'dim some variables
Dim B As Byte , W As Word , L As Long

'assign the variables
B = 1 : W = &H1234 : L = &H12345678

Bcca l l Paramtest(0 , &HF6 , 1 , 0 , 0 , B , W , L)
P r i n t Hex(sw1) ; Spc(3) ; Hex(sw2)
'and see that the variables are changed by the BasicCard !
P r i n t B ; Spc(3) ; Hex(w) ; " " ; Hex(l)

'try the echotest command
Bcdef Echotest(byte)
Bcca l l Echotest(0 , &HC0 , &H14 , 1 , 0 , B)
P r i n t B
End 'end program

Rem BasicCard Sample Source Code
Rem --
Rem Copyright (C) 1997-2001 ZeitControl GmbH
Rem You have a royalty-free right to use, modify, reproduce and
Rem distribute the Sample Application Files (and/or any modified
Rem version) in any way you find useful, provided that you agree
Rem that ZeitControl GmbH has no warranty, obligations or liability
Rem for any Sample Application Files.
Rem --

#Include CALCKEYS.BAS

Declare ApplicationID = "BasicCard Mini-Calculator"

Rem This BasicCard program contains recursive procedure calls, so the
Rem compiler will allocate all available RAM to the P-Code stack unless
Rem otherwise advised. This slows execution, because all strings have to
Rem be allocated from EEPROM. So we specify a stack size here:

859ASM Libraries and Add-Ons

© 2008 MCS Electronics

#Stack 120

' Calculator Command (CLA = &H20, INS = &H01)
'
' Input: an ASCII expression involving integers, and these operators:
'
' * / % + - & ^ |
'
' (Parentheses are also allowed.)
'
' Output: the value of the expression, in ASCII.
'
' P1 = 0: all numbers are decimal
' P1 <> 0: all numbers are hex

' Constants
Const SyntaxError = &H81
Const ParenthesisMismatch = &H82
Const InvalidNumber = &H83
Const BadOperator = &H84

' Forward references
Declare Function EvaluateExpression (S$, Precedence) As Long
Declare Function EvaluateTerm (S$) As Long
Declare Sub Error (Code@)

'test for passing a string
Command &H20 &H01 Calculator (S$)

 Private X As Long
 S$ = Trim$ (S$)
 X = EvaluateExpression (S$, 0)
 If Len (Trim$ (S$)) <> 0 Then Call Error (SyntaxError)
 If P1 = 0 Then S$ = Str$ (X) : Else S$ = Hex$ (X)

End Command

'test of passing parameters
Command &hf6 &h01 ParamTest(b as byte, w as integer,l as long)
 b=b+1
 w=w+1
 l=l+1
end command

Function EvaluateExpression (S$, Precedence) As Long

 EvaluateExpression = EvaluateTerm (S$)

 Do
 S$ = LTrim$ (S$)
 If Len (S$) = 0 Then Exit Function

 Select Case S$(1)

860 BASCOM-AVR

© 2008 MCS Electronics

 Case "*"
 If Precedence > 5 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression * _
 EvaluateExpression (S$, 6)
 Case "/"
 If Precedence > 5 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression / _
 EvaluateExpression (S$, 6)
 Case "%"
 If Precedence > 5 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression Mod _
 EvaluateExpression (S$, 6)
 Case "+"
 If Precedence > 4 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression + _
 EvaluateExpression (S$, 5)
 Case "-"
 If Precedence > 4 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression - _
 EvaluateExpression (S$, 5)
 Case "&"
 If Precedence > 3 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression And _
 EvaluateExpression (S$, 4)
 Case "^"
 If Precedence > 2 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression Xor _
 EvaluateExpression (S$, 3)
 Case "|"
 If Precedence > 1 Then Exit Function
 S$ = Mid$ (S$, 2)
 EvaluateExpression = EvaluateExpression Or _
 EvaluateExpression (S$, 2)
 Case Else
 Exit Function
 End Select

 Loop

End Function

Function EvaluateTerm (S$) As Long

 Do ' Ignore unary plus
 S$ = LTrim$ (S$)
 If Len (S$) = 0 Then Call Error (SyntaxError)
 If S$(1) <> "+" Then Exit Do
 S$ = Mid$ (S$, 2)
 Loop

 If S$(1) = "(" Then ' Expression in parentheses

861ASM Libraries and Add-Ons

© 2008 MCS Electronics

 S$ = Mid$ (S$, 2)
 EvaluateTerm = EvaluateExpression (S$, 0)
 S$ = LTrim$ (S$)
 If S$(1) <> ")" Then Call Error (ParenthesisMismatch)
 S$ = Mid$ (S$, 2)
 Exit Function

 ElseIf S$(1) = "-" Then ' Unary minus
 S$ = Mid$ (S$, 2)
 EvaluateTerm = -EvaluateTerm (S$)
 Exit Function

 Else ' Must be a number
 If P1 = 0 Then ' If decimal
 EvaluateTerm = Val& (S$, L@)
 Else
 EvaluateTerm = ValH (S$, L@)
 End If
 If L@ = 0 Then Call Error (InvalidNumber)
 S$ = Mid$ (S$, L@ + 1)
 End If

End Function

Sub Error (Code@)
 SW1 = &H64
 SW2 = Code@
 Exit
End Sub

8.14.4 BCRESET

Action
Resets the BasicCard by performing an ATR.

Syntax
BCRESET
Array(1) = BCRESET()

Remarks
Array(1) When BCRESET is used as a function it returns the result of the

ATR to the array named array(1). The array must be big enough
to hold the result. Dim it as a byte array of 25.

This statements uses BCCARD.LIB, a library that is available separately from MCS
Electronics.

An example of the returned output when used as a function:

'TS = 3B
'T0 = EF
'TB1 = 00
'TC1 = FF

862 BASCOM-AVR

© 2008 MCS Electronics

'TD1 = 81 T=1 indication
'TD2 = 31 TA3,TB3 follow T=1 indicator
'TA3 = 50 or 20 IFSC ,50 =Compact Card, 20 = Enhanced Card
'TB3 = 45 BWT block waiting time
'T1 -Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00

' B a s i c C a r d Z C 1 2 3

See the BasicCard manual for more information
When you do not need the result you can also use the BCRESET statement.

See Also
CONFIG BCCARD , BCDEF , BCCALL

Partial Example (no init code shown)

'----and now perform an ATR as a function
Dim Buf(25)AsByte, I AsByte
Buf(1)=Bcreset()
For I = 1 To 25
Print I ;" ";Hex(buf(i))
Next
'typical returns :
'TS = 3B
'T0 = EF
'TB1 = 00
'TC1 = FF
'TD1 = 81 T=1 indication
'TD2 = 31 TA3,TB3 follow T=1 indicator
'TA3 = 50 or 20 IFSC ,50 =Compact Card, 20 = Enhanced Card
'TB3 = 45 BWT blocl waiting time
'T1 -Tk = 42 61 73 69 63 43 61 72 64 20 5A 43 31 32 33 00 00
' B a s i c C a r d Z C 1 2 3

8.15 USB

8.15.1 USB Add On

The USB Add On is a commercial add on which is available from the MCS Electronics
Web Shop.
The CONFIG USB statement needs this add on. The add on is written in BASCOM
BASIC mixed with assembler. Since the examples from Atmel were not really
consistent, it took some effort to create reusable code. At a later stage, a number of
routines will be moved to an assembler library.
The advantage of the BASCOM code is that it is similar to the C-code examples.

Please read this entire topic first before you start with experiments.

The Add On only supports the device mode. There is no support for host mode yet. In
fact the add on is just the first step into USB support.

To use the USB Add on, unzip all the files to the SAMPLES\USB directory.
You will find three samples :
· hid_generic-162.bas

384 855 855

863ASM Libraries and Add-Ons

© 2008 MCS Electronics

· virtcom-162.bas
· hid_keyboard-162.bas

The same samples are also provided for the USB1287.

And you will find the include file : usbinc.bas. It is not allowed to distribute any of
the files.

Further, you will find a subdirectory named VB which contains a simple VB generic
HID sample that uses the HIDX.OCX from the OCX subdirectory.

The PDF directory contains a PDF with a translation between PS2 scan codes and USB
key codes.

The TOOLS directory contains the USBDEVIEW.EXE which can be used to display all
USB devices,

The CDC-Driver directory contains the INF file you need for the CDC/Virtual COM port
example.

The USB162 has a boot loader which can be programmed by USB using FLIP.
BASCOM will also support this USB boot loader in version 1.11.9.2.
It is great for development but of course the boot loader uses some space which you
probably need. The chip is also programmable via the normal way with the ISP
protocol. when you do not use FLIP, and you erase the chip, the boot loader from
Atmel is erased too! You can always reprogram the Atmel boot loader. But not using
FLIP which depends on the boot loader.

For USB to work properly the chip needs a good oscillator. The internal oscillator is
not good enough. For that reason, the USB162 module from MCS has a 8 MHz crystal.
Your hardware should use a crystal or crystal oscillator too.

It is not the intention of MCS or the documentation to learn you everything about
USB. There is a lot of information available from various sources. It is the goal of MCS
to make it easy to use USB with your AVR micro. When there is enough demand for
it, a special Wizard will be created to be able to generate HID applications.

HID Keyboard
Let's begin with a simple program. Load the hid_keyboard-162.bas sample and
compile it. Use either FLIP or a different programmer to program the chip. Each
program has some important settings.

Const Mdbg = 1 ' add print to see what is happening
Const Chiddevice = 1 ' this is a HID device

MDBG is a constant that can be set to 0 since all the print statements will use flash
code. When you are new to USB and want to look at the events, it is good to have it
turned on. You can view all events from the program.
cHIDdevice need to be set to 1 when the application is a HID device. Most of your
own devices will be HID devices. But the virtual COM example uses a different USB
class and in that program, the constant is set to 0.

These constants are used in the add on to keep all code generic for all applications.
Since not all USB chips have the same options, the code also checks which
microprocessor is used.
The USB1287 is a kind of M128 with USB support. It supports host and device mode.

864 BASCOM-AVR

© 2008 MCS Electronics

The USB162 is a cheap host chip. It does not support the HOST mode and it does not
have all registers found in the USB1287. It also can not detect when a device is
plugged/unplugged.
Atmel solved this in the STK526 in a simple way that we recommend too : A voltage
divider is connected to PORTC.4 which serves as a simple way to detect plug/unplug.
In the USB_TASK() routine you will find this code :

If Usb_connected = 0 And Pinc.4 = 1 Then ' portc.4 is used as vbus
detection on stk526

This is used with the STK526. If you want to use a different pin, you have to change
PINC.4.
When you use the USB1287 this is not needed since the 1287 has a Usbsta register
which can determine if a device is plugged or removed.

The USB program structure is always the same :
1.constants are defined that describe the end points, interfaces, vendor ID, product

ID
2.you call a subroutine that initializes your variables
3.In a loop you call :
4. the generic USB_TASK routine so that the USB communication with the PC is

executed
5. the specific task is called
6.your other code is called

This is clear in the keyboard sample :

Print "init usb task"
Usb_task_init
Do
 Usb_task
 Kbd_task
 'call your other code here
Loop

While the word Task might give you the idea that multi task switching is used, this is
not the case! The USB_Task must be called by your code in order to process pending
USB events. It will also find out if a device is plugged or unplugged. Events are
handled in the background by the Usb_gen_int interrupt.
In the example the KBD_TASK is a user routine which is called in regular intervals.
There is always the normal USB_TASK and there is an additional task specific to the
program. In the generic-hid example this is the hid_task routine.

HID classes are simple to use since they do not require additional drivers. FTDI chips
need additional drivers. But the Atmel USB chips do not need additional drivers since
they use standard implemented HID classes.

When you compile the program and program it into a chip you are ready to test it.
When you use FLIP you need to switch to application mode so your device can be
recognized by windows. Windows will show some info that your device is found. And
after installing the driver, it will report that your device is ready to be used.
On the terminal emulator, press a space, and set the focus to notepad or the bascom
editor. The text data from the keys: label is send as if it was typed on a keyboard!
You in fact created a HID-keyboard, or USB keyboard. The document translatePS2-
HID.pdf contains HID key codes which are different then PS2 key scan codes.

When you do not have a terminal emulator connected you can also modify the
program and connect a push button. Which makes more sense for a keyboard :-)

865ASM Libraries and Add-Ons

© 2008 MCS Electronics

So modify the code into : If Inkey() = 32 Or Pinb.0 = 0 Then 'if you press SPACE
BAR or make PINB.0 low
Now you can test the code without the terminal emulator.

All USB programs are similar. You specify the number of end points , the interfaces
and the class. There is a lot of information available at
http://www.usb.org/home
Atmel has a number of samples and you will find tools and info at various places.
MCS will publish some convenient tools too.

FLIP
The USB chips are programmed with a boot loader. This is very convenient since you
do not need any hardware to program the chip. FLIP can be downloaded from the
Atmel site.
URL : http://www.atmel.com/dyn/resources/prod_documents/Flip%20Installer%20-%203.3.1.exe
The FLIP website you can find at :

http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+
Architecture&tool_id=3886

FLIP is a Java application. The BASCOM-IDE can use the FLIP software to program the chip too.
But in order to use the FLIP programmer, you need to install FLIP first.
When FLIP is working, you can select FLIP from Options, Programmer, in order to program quickly
without the FLIP executable.
On Vista there is a problem with loading some of the FLIP DLL's. In case you get an error, copy
the FLIP DLL's to the BASCOM application directory.
You need to copy the following files :
· atjniisp.dll
· AtLibUsbDfu.dll
· msvcp60.dll
· msvcrt.dll

You can run the flipDLLcopy.cmd file from the BASCOM application directory to copy these files.
The content of the command file :
copy "c:\program files\atmel\flip 3.3.1\bin\atjniisp.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\AtLibUsbDfu.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\msvcp60.dll" .
copy "c:\program files\atmel\flip 3.3.1\bin\msvcrt.dll" .
pause

The last line pauses so you can view the result. Notice the . (dot) that will copy the file to the
current directory, which is the reason that you need to run this file from the BASCOM application
directory.

As with other programmers, you press F4 to program the HEX file into the chip. A small window
will become visible.
A number of dialogs are possible:

In this case, you try to program a chip which is not supported by FLIP. The Mega88 is not an USB
chip so the error makes sense.

http://www.usb.org/home
http://www.atmel.com/dyn/resources/prod_documents/Flip%20Installer%20-%203.3.1.exe
http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+Architecture&tool_id=3886
http://www.atmel.com/dyn/products/tools_card.asp?family_id=604&family_name=8051+Architecture&tool_id=3886

866 BASCOM-AVR

© 2008 MCS Electronics

The next dialog informs you about a missing DFU device.

In this case, the boot loader is not found. You can run the boot loader by following the sequence
from the dialog box.
In order to make this work, the HWB and RST input both need a small switch to ground.
When HWB is pressed(low) during a reset, the boot loader will be executed.

In the device manager you will find the USB device :

When you have a different chip, a different device will be shown !

When the programming succeeds, and there is no verify error, the application mode will be
selected. This will disconnect the DFU and will connect your USB device !

The FLIP programmer window will be closed automatic when the programming succeeds.

867ASM Libraries and Add-Ons

© 2008 MCS Electronics

The USB device will be shown :

Since you created a keyboard device, the device will be shown under the KEYBOARDS node.

When you load a generic HID device it will be shown under HUMAN INTERFACE DEVICES

HID Generic
The generic HID class is the class that is well suited for transferring bytes between the PC and the
micro processor.
As with any USB application, you specify the number of end points, The example just transfers 8
bytes in and 8 bytes out.
You need to change the Ep_in_length_1 , Ep_out_length, Length_of_report_in and
Length_of_report_out constants when you want to transfer a different amount of bytes.
You also need to take into account the maximum data size which will depend on the used chip.

The Usb_user_endpoint_init sub routine also need to be adjusted. The size_8 constant
specifies how many bytes are used by the endpoint.

868 BASCOM-AVR

© 2008 MCS Electronics

'init the user endpoints
Sub Usb_user_endpoint_init(byval Nm As Byte)
 Call Usb_configure_endpoint(ep_hid_in , Type_interrupt , Direction_in , Size_8 , One_bank ,
Nyet_enabled)
 Call Usb_configure_endpoint(ep_hid_out , Type_interrupt , Direction_out , Size_8 , One_bank ,
Nyet_enabled)
End Sub

As with all USB program, we first initialize the USB task and the HID task. Then we call the tasks
in a loop ;

Usb_task_init ' init the usb task
Hid_task_init ' init the USB task
Do
 Usb_task 'call this subroutine once in a while
 Hid_task 'call this subroutine once in a while
 'you can call your sub program here
Loop

The Hid_task itself is very simple :

Sub Hid_task()
 If Usb_connected = 1 Then ' Check USB HID is enumerated
 Usb_select_endpoint Ep_hid_out ' Get Data Repport From Host
 If Ueintx.rxouti = 1 Then ' Is_usb_receive_out())
 Dummy1 = Uedatx : Print "Got : " ; Dummy1 ' it is important that you read the same
amount of bytes here as were sent by the host !
 Dummy2 = Uedatx : Print "Got : " ; Dummy2
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Dummy = Uedatx : Print "Got : " ; Dummy
 Usb_ack_receive_out
 End If

 If Dummy1 = &H55 And Dummy2 = &HAA Then ' Check if we received DFU mode
command from host
 Usb_detach ' Detach Actual Generic Hid Application
 Waitms 500
 Goto &H1800 'goto bootloader
 'here you could call the bootloader then
 End If

 Usb_select_endpoint Ep_hid_in ' Ready to send these information to the host
application
 If Ueintx.txini = 1 Then ' Is_usb_in_ready())
 Uedatx = 1
 Uedatx = 2
 Uedatx = 3
 Uedatx = 4
 Uedatx = 5
 Uedatx = 6
 Uedatx = 7
 Uedatx = 8
 Usb_ack_fifocon ' Send data over the USB
 End If
 End If
End Sub

We first check if the device is connected to the USB bus. Then we use Usb_select_endpoint with

869ASM Libraries and Add-Ons

© 2008 MCS Electronics

the number of the end point, to select the end point.
When we want to communicate with an end point, we always have to select this end point using
the Usb_select_endpoint procedure.
In the sample, we first select the EP_HID_OUT end point. We check the UEINTX.RXOUTI flag to
determine if we received an interrupt with data. If that is the case, we read the UEDATX register to
read the data byte.
The UEDATX register is the USB data register. When you read it, you read data from the USB
bus. When you write it, you write data to the USB bus.
After reading the bytes you MUST acknowledge with the Usb_ack_receive_out macro.

The sample also shows how to run the boot loader from your code. In order to run the boot loader
you must detach the current device from the USB bus. Then there is some delay to have windows
process it. Finally the GOTO jumps to the boot loader address of the USB162.

If you want to write some data back, you need to select the end point, and check if you may send
data. If that is the case, you assign the data to the UEDATX register and finally, you MUST
acknowledge with the USB_ACK_FIFOCON macro.

Finally, you will find in the report data the length of the end points specified : Data &H75 , &H08
You need to adjust these values when you want to send/receive more data.

HIDX.OCX
There are plenty of examples on the internet that show how to communicate with HID devices
using the windows API.
The HIDX.OCX is an OCX control that can be used for simple communication.
Like all OCX controls, you must register it first with REGSVR32 : regsvr32 hidx.ocx
After it has been registered you can run the VB test application named HIDdemo.exe.

The application will list all HID devices :

Our device is the device with VID 16D0 and PID 201D.
There can only be one application/process at the time that communicates with an USB device.
You must click the checkout-button the device to start communication. This will call the

870 BASCOM-AVR

© 2008 MCS Electronics

SelectDevice method of the OCX.
As soon as you do this, you will notice that the OnDataRead event will receive data.

The event has the following parameters :
(ByVal Device As Long, ByVal ReportID As Long, ByVal Data As String, ByVal Size As Long)

The device is a number with the index of all HID devices. The first device will have number 0. The
report number is passed in ReportID. The data is passed as a string.
You can use MID to access this data : firstByte= Asc(Mid(data,1,1))

To write to the device, you can use the WriteDevice method. The same parameters are used as
with the OnDataRead event.
Example : WriteDevice curdev, 0, s, 8
Curdev is the index of the device. 0 is the report ID and s contains the data. You must specify the
length of the data to send.

To stop communication you can click the Checkin-button.This will call the ReleaseDevice method.

When the device changes, or will be removed or inserted, you will receive a notification.
In the sample program, all these events will result in a release of the device. This is done since the
curdev variable can change when a new device is added. The index will not correspond to the
existing index then anymore. The sample is very simple. In an application you could add a function
or procedure that will examine the new list of devices and return the index of our device. When our
device is found we could open it automatic again.

Notice that you can not add too much lines to a listbox in VB. Since data arrives at a very high rate,
it will not take long before VB/Windows will give some error.

Property Description

NumCheckedInDevic
es

Number of available devices

NumCheckedOutDevi
ces

Number of devices that are checked out and communicating.

871ASM Libraries and Add-Ons

© 2008 MCS Electronics

NumUnpluggedDevic
es

DevThreadSleepTime The time in mS that the HID thread will sleep. You can see this
as a timer interval. The lower the interval the more process
time it will take. 100 mS is a good value for most applications.

Version The version of the control

DeviceCount The number of devices.

Methods

SelectDevice Parameters
· Device : LONG that specifies the index of the device to select.

The index starts at 0.

ReleaseDevice Parameters
· Device : LONG that specifies the index of the device to

release. The index starts at 0.

WriteDevice Parameters
· Device : LONG that specifies the index of the device to write

to. The index starts at 0.
· Report : LONG that specifies the report number. This would

be 0 in most cases.
· Data : string that contains the data to send.
· Size : the length of the data to send.

Events

OnDeviceChange Parameters
· none.

This event fires when a device changes. This can be because a
new device is added, or a device is removed.

OnDeviceArrival Parameters
· Device : LONG that specifies the index of the device that

arrived. The index starts at 0.

This event fires when a device is inserted. When a device is
added or removed, the index that was used previously, does not
need to match the new index anymore. For this reason you
have to checkout the device again.

OnDeviceRemoval Parameters
· Device : LONG that specifies the index of the device that has

been removed. The index starts at 0.

This event fires when a device is removed. When a device is
added or removed, the index that was used previously, does not
need to match the new index anymore. For this reason you
have to checkout the device again.

OnDataRead Parameters
· Device : LONG that specifies the index of the device that sent

data. The index starts at 0.
· ReportID : LONG with the report ID of the device that sent the

data.
· Data : string that contains the data. This string might contain

0-bytes.
· Size : LONG that contains the length of the received data.

When data is received you can read it in this event. For

872 BASCOM-AVR

© 2008 MCS Electronics

example :
dim ar(8) as Byte
For J=1 to Size
 ar(j) = ASC(Mid(data,J,1)) ' fill the array
Next

The OCX can be used with all programming languages that can host OCX controls. The OCX was
tested with Delphi and VB.
Your windows must support USB in order to use the OCX. So it will not work on Windows 95.

Virtual COM sample
The virtual COM demo shows how to implement an USB device with a virtual COM port. The
Demo will echo data sent to the UART to the USB and vise versa.
When you compile and program the sample, you will notice that you find a new COM port in the
device manager.

When you press CTRL+D, BASCOM will launch the device manager.

As you can see, the CDC class is used for the virtual COM port. As with most virtual COM devices,
you can change the settings :

873ASM Libraries and Add-Ons

© 2008 MCS Electronics

In the BASCOM application the procedure Cdc_get_line_coding is called when the PC need to
know the settings.
The Cdc_set_line_coding is called when the settings are changed by the user. You need to
change the settings according to the received parameters.
Notice that these settings are virtual too : for the USB it does not matter how the baud rate is set !
Only for a real UART this is important. For an USB-RS232 converter for example it is very
convenient to be able to change the baud rate and other settings. But when you just use the USB
port for communication, and choose to use the COM port in your program as a way for
communication, then you do not really need the settings.

When you want to send date to the USB/COM you can use the Uart_usb_putchar procedure.
Like any USB routine, it will select the proper end point. After the end point for sending data is
selected it will wait if it may send data, and finally it will send this data.
The Uart_usb_getchar() function can be used to receive data from the USB/COM.

When you create your own device, the virtual COM port has the advantage that the PC application
is simple. In most cases you already have the experience to read/write data to the PC COM port.
The disadvantage is that it requires mode code. It also need an INF file. This INF file you can
change to suite your own needs.
When you create your own device, the HID device is the simplest way to go.

CDC INF file
The CDC INF file looks like this. The bold parts need to be changed if you want to customize with
your own text and VID/PID.

; Windows 2000, XP & Vista setup File for AT90USBxx2 demo

874 BASCOM-AVR

© 2008 MCS Electronics

[Version]
Signature="$Windows NT$"
Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%ATMEL%
LayoutFile=layout.inf
DriverVer=10/15/1999,5.0.2153.1

[Manufacturer]
%ATMEL%=ATMEL

[ATMEL]
%ATMEL_CDC%=Reader, USB\VID_03EB&PID_2018

[Reader_Install.NTx86]
;Windows2000

[DestinationDirs]
DefaultDestDir=12
Reader.NT.Copy=12

[Reader.NT]
include=mdmcpq.inf
CopyFiles=Reader.NT.Copy
AddReg=Reader.NT.AddReg

[Reader.NT.Copy]
usbser.sys

[Reader.NT.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,usbser.sys
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

[Reader.NT.Services]
AddService = usbser, 0x00000002, Service_Inst

[Service_Inst]
DisplayName = %Serial.SvcDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %12%\usbser.sys
LoadOrderGroup = Base

[Strings]
ATMEL = "ATMEL, Inc."
ATMEL_CDC = "AT90USBxxx CDC USB to UART MGM"
Serial.SvcDesc = "USB Serial emulation driver"

;---- END OF INF FILE

You can also change the key names.

875ASM Libraries and Add-Ons

© 2008 MCS Electronics

8.16 MODBUS Slave/Server

The MODBUS protocol is used a lot in the industry. With the MODBUS add-on, you
can create a slave or server.
This add-on is a MODBUS server-RTU that implements function 03,06 and 16.
(decimal)

We use the term master and slave to indicate that there is at least one master, and
that there is at least one slave device that will respond.
A slave could be a master too. Another term is client/server. The server is the
MODBUS device that will respond to the client. It is the same as master/slave and
thus slave=server and master=client.
Like a web server, the server does not initiate the communication. It simply waits for
data and when it is addressed, it will respond.
When it is not addressed, it should not respond. When it is addressed, it should
process the data and send a response.

A client sends the following data : server address, function, data, checksum
The server address is a byte , the function code is a byte too. The data depends on
the function and the checksum is a 16 bit CRC checksum.
MODBUS uses the term registers for the data. A register is 16 bit width. You can pass
words or integers with a single register.
In order to send a long, single, double or string, you need to send multiple registers.

There are a lot of functions defined in the MODBUS protocol. The add-on implements
the functions that are most suited for an own MODBUS server device.
These functions are :
· 03 : read (multiple) register(s)
· 06 : write a single register
· 16 : write multiple registers

If needed you can add other functions yourself. The implemented functions should be
sufficient however.

Constants
There are a few constants that you might need to change.
Registersize : this constant defines how many registers can be processed. For
example if a client asks to return 10 registers with function 03, you should set this
constant to 10.
The reason for the constant is that RAM space is limited. And each register need
storage space (2 bytes for each register) thus we do not want to take more bytes
then needed.

Mdbg : this can be used for debugging. The add-on uses a Mega162 since it has 2
UARTS. One UART can be used for debugging. You need to set mdbg to a non-zero
value to enable debugging to the serial port.

RS232-RS485
The protocol can be used with RS-232 and RS-485 and TCP/IP, etc. The add-on can
be used with RS-232 and RS-485.
RS-485 half duplex needs a data direction pin. It is defined in the source like this :

Rs485dir Alias Portb.1
Config Rs485dir = Output

876 BASCOM-AVR

© 2008 MCS Electronics

Rs485dir = 0
'Config Print1 = Portb.1 , Mode = Set

You can remark or remove the mark depending on the mode you need.
For testing, RS-232 is most simple.

TIMER
A timer is used to detect the start of a frame. With RTU (binary data) a silence of 3.5
characters is needed between frames. A frame is a complete MODBUS message.
A timer is used to detect such a silence. The statement : GENRELOAD , is used to
generate the proper timer divisor and timer reload values. GENRELOAD will only work
on TIMER0 and TIMER1. You pass the names of the constants which are free to chose,
and in the sample are named _RL and _TS, and these constant values will be
calculated and assigned to constants by the compiler.
The TM_FRAME constant is the time of 4 characters. When the timer reaches this
value it will overflow and execute the ISR_TMR0 interrupt. The interrupt routine will
set the start state since now the server can expect an address.
In the TM_FRAME calculation the baud rate value is used. In the add on this is 9600.
When you use a different value, you need to change the constant here as well.

Server Address
The server address need to be set. The MBSLAVE variable need to be set by you.
Optional, you could change the variable into a constant.
But when you use a DIP switch for example to set the address, it is better to use a
variable.

Event mode
The MODBUS handeling is coded into a state machine and executed as a task. You
can call the Modbustask() in your code yourself in the main program loop, or you can
have it called in the interrupt of the buffered serial input routine.
The sample uses the last option :
Config Serialin1 = Buffered , Size = 50 , Bytematch = All

Notice that BYTEMATCH = ALL is used so the Serial1bytereceived routine is called for
every received byte. If the state is right, the modbustask code is executed and
otherwise, the data is read to remove it from the buffer. Since there can be multiple
slaves, the data will keep coming and we may only handle the data when we are
addressed.

Functions
Each function that is requested will call a sub routine.
Function 03 (read registers) : Sub Modbus03(addr3 As Word , Idx3 As Byte , Wval3
As Word)
addr3 contains the address that was passed by the client.
Idx3 contains an index in case multiple registers are read. It is 1 for the first register,
2 for the second, etc.
With these 2 values you can fill the wval3 value.
In the sample, a select case is used to send different values.

You should NOT change the addr3 and idx3 values ! There variables are passed by
reference and changes will corrupt the data.

877ASM Libraries and Add-Ons

© 2008 MCS Electronics

Notice that the function is called for each register. When the client want to read 2
word registers, the sub routine is called twice.

Function 06(write register) Sub Modbus06(addr3 As Word , Wval3 As Word)
Addr3 contains the address that was passed by the client.
wval3 contains a word value passed by the client.
You can use the address to change some variable in your code.

Function 16 (write multiple registers) Sub Modbus16w(addr3 As Word , Idx As Byte ,
Bw As Word)
Addr3 contains the address send by the client.
Idx contain the index to a word register.
Bw contains the value that was send.

Notice that the sub routine is called for each register. You can use the address and
index to alter the proper variable in your code.

For functions that are not implemented, an error response will be sent.

Part

IX

879Tools

© 2008 MCS Electronics

9 Tools

9.1 LCD RGB-8 Converter

Action
This tool is intended to convert normal bitmaps into BGC files.
The BGC format is the Bascom Graphic Color Format.
This is a special RLE compressed format to save space.

The SHOWPIC statement can display graphic bitmaps.
The color display uses a special RGB8 format.
The LCD converter has the task to convert a normal windows bitmap into a 256-color
RGB8 coded format.

When you run the tool you will see the following window :

You can use File , Open, to load an image from disk.
Or you can use Edit, Paste, to paste an image from the clipboard.

Option Description

File, Open Open a graphical file from disk.

File, Save, Image Save the file as a windows graphical file

File, Save, Binary Save the BGC file, the file you need with SHOWPIC

File, Save , Data
Lines

Save the file as data lines into a text file

File, Convert Converts the bitmap into a RGB8 bitmap

Edit, Bitmap height height of the image. Change it to make the image smaller or
larger

Edit, Bitmap width width of the image. Change it to make the image wider.

Edit, Select All Select entire image

Edit, Copy Copy selection to the clipboard

Edit, Paste Paste clipboard to the selection. You must have an area

880 BASCOM-AVR

© 2008 MCS Electronics

selected !

Edit, Delete Delete the selected area

The Output TAB, has an option : Save as RLE. This must be checked. By default it is
checked.
When you do not want the image to be RLE encoded, you can uncheck this option.

The bottom area is used to store the DATA lines.

The Color TAB shows the effect on the table inside the color display.
When a picture uses a lot of different red colors, you can put the most used into the
table.
It is well explained in the manuals from display3000.

By clicking on the color , you can view which colors are used by the picture.
You can match them with the color table.

You can download the LCD Converter tool from :
http://www.mcselec.com/index.php?
option=com_docman&task=doc_download&gid=168&Itemid=54

http://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=168&Itemid=54
http://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=168&Itemid=54

Index 881

© 2008 MCS Electronics

Index

- # -
#IF ELSE ENDIF 820

- $ -
$ASM 257

$BAUD 257

$BAUD1 258

$BGF 259

$BOOT 261

$CRYSTAL 262

$DATA 262

$DBG 264

$DEFAULT 266

$EEPLEAVE 267

$EEPROM 267

$EEPROMHEX 268

$END ASM 257

$EXTERNAL 269

$FRAMESIZE 270

$HWSTACK 271

$INC 272

$INCLUDE 273

$INITMICRO 274

$LCD 275

$LCDPUTCTRL 277

$LCDPUTDATA 279

$LCDRS 280

$LCDVFO 282

$LIB 283

$LOADER 285

$LOADERSIZE 291

$MAP 292

$NOCOMPILE 292

$NOINIT 293

$NORAMCLEAR 294

$PROG 294

$PROGRAMMER 295

$REGFILE 296

$RESOURCE 297

$ROMSTART 300

$SERIALINPUT 300

$SERIALINPUT1 302

$SERIALINPUT2LCD 303

$SERIALOUTPUT 304

$SERIALOUTPUT1 304

$SIM 305

$SWSTACK 306

$TIMEOUT 307

$TINY 308

$WAITSTATE 309

$XA 310

$XRAMSIZE 310

$XRAMSTART 311

- 1 -
1WIRECOUNT 312

1WIRESEARCHNEXT 321

1WREAD 317

1WRESET 314

1WSEARCHFIRST 319

1WVERIFY 324

1WWRITE 326

- A -
ABS 328

ACOS 329

Adding XRAM 138

Additional Hardware 129

ADR 330

ADR2 330

ALIAS 334

ARRAY 224

ASC 335

ASCII chart 253

ASIN 338

Assembler mnemonics 241

AT_EMULATOR 853

AT86RF401 169

AT90CAN128 178

AT90PWM2-3 177

AT90S1200 169

AT90S2313 169

AT90S2323 170

AT90S2333 171

AT90S2343 171

AT90S4414 173

AT90S4433 173

AT90S4434 175

AT90S8515 176

BASCOM-AVR882

© 2008 MCS Electronics

AT90S8535 176

AT90USB162 180

ATMEGA103 190

ATMEGA128 192

ATMEGA16 187

ATMEGA161 193

ATMEGA162 193

ATMEGA163 194

ATMEGA164P 195

ATMEGA165 196

ATMEGA168 197

ATMEGA169 197

ATMEGA2560 209

ATMEGA2561 210

ATMEGA32 188

ATMEGA323 198

ATMEGA324P 199

ATMEGA325 200

ATMEGA329 202

ATMEGA406 202

ATMEGA48 189

ATMEGA603 203

ATMEGA64 190

ATMEGA640 205

ATMEGA644P 206

ATMEGA645 207

ATMEGA649 208

ATMEGA8 187

ATMEGA8515 211

ATMEGA8535 211

ATMEGA88 189

ATN 339

ATN2 340

Attaching an LCD Display 139

ATtiny12 180

ATtiny13 181

ATtiny15 181

ATtiny22 181

ATtiny2313 186

ATtiny24 182

ATtiny25 182

ATtiny26 182

ATtiny261 185

ATtiny44 183

ATtiny45 183

ATtiny461 185

ATtiny84 184

ATtiny85 184

ATtiny861 186

AVR Internal Hardware 129

AVR Internal Hardware Port B 135

AVR Internal Hardware Port D 137

AVR Internal Hardware Watchdog timer 135

AVR Internal Registers 130

AVR ISP Programmer 109

AVR-DOS File System 835

- B -
BASCOM Editor Keys 124

BASE64DEC 341

BASE64ENC 342

BAUD 343

BAUD1 344

BCCALL 855

BCD 345

BCDEF 855

BCINIT 384

BCRESET 861

BIN 347

BIN2GRAY 349

BINVAL 348

BIT 224

BITS 351

BITWAIT 350

BLOAD 352

BOX 353

BOXFILL 355

BSAVE 356

BUFSPACE 357

BYTE 224

BYVAL 357

- C -
CALL 358

CASE 719

Changes compared to BASCOM-8051 223

CHECKSUM 360

CHR 361

CIRCLE 362

CLEAR 365

CLOCKDIVISION 369

CLOSE 370

CLOSESOCKET 372

CLS 366

Compact FlashCard Driver 839

CONFIG 375

Index 883

© 2008 MCS Electronics

CONFIG 1WIRE 377

CONFIG ACI 379

CONFIG ADC 380

CONFIG ATEMU 382

CONFIG CLOCK 387

CONFIG CLOCKDIV 390

CONFIG COM1 390

CONFIG COM2 392

CONFIG COMx 394

CONFIG DATE 395

CONFIG DCF77 398

CONFIG DEBOUNCE 403

CONFIG GRAPHLCD 416

CONFIG HITAG 405

CONFIG I2CDELAY 408

CONFIG I2CSLAVE 411

CONFIG INPUT 413

CONFIG INTx 414

CONFIG KBD 421

CONFIG KEYBOARD 423

CONFIG LCD 426

CONFIG LCDBUS 430

CONFIG LCDMODE 433

CONFIG LCDPIN 433

CONFIG PORT 436

CONFIG PRINT 438

CONFIG PRINTBIN 439

CONFIG PS2EMU 440

CONFIG RC5 443

CONFIG SCL 444

CONFIG SDA 443

CONFIG SERIALIN 444

CONFIG SERIALOUT 449

CONFIG SERVOS 454

CONFIG SHIFTIN 452

CONFIG SINGLE 451

CONFIG SPI 453

CONFIG TCPIP 456

CONFIG TIMER0 459

CONFIG TIMER1 461

CONFIG TIMER2 464

CONFIG TWI 466

CONFIG TWISLAVE 467

CONFIG USB 471

CONFIG WAITSUART 478

CONFIG WATCHDOG 478

CONFIG X10 480

CONFIG XRAM 482

CONST 483

Constants 140

COS 485

COSH 486

COUNTER0 and COUNTER1 486

CPEEK 487

CPEEKH 488

CRC16 491

CRC16UNI 494

CRC32 496

CRC8 490

CRYSTAL 497

CURSOR 498

custom design 25

- D -
DATA 501

DATE 516

DATE$ 514

DATETIME 852

DAYOFWEEK 504

DAYOFYEAR 513

DBG 525

DCF77TIMEZONE 526

DEBOUNCE 527

DEBUG 526

DECLARE FUNCTION 530

DECLARE SUB 532

DECR 529

DEFBIT 535

DEFINT 535

DEFLCDCHAR 536

DEFLNG 535

DEFSNG 535

DEFWORD 535

DEFxxx 535

DEG2RAD 537

DELAY 538

DIM 539

DIR 542

DISABLE 543

DISKFREE 545

DISKSIZE 546

DISPLAY 547

DO 550

DOUBLE 845

DOWNTO 576

DriveCheck 551

DriveGetIdentity 552

BASCOM-AVR884

© 2008 MCS Electronics

DriveInit 553

DriveReadSector 554

DriveReset 553

DriveWriteSector 555

DTMFOUT 556

- E -
ECHO 558

Edit Copy 49

Edit Cut 49

Edit Find 50

Edit Find Next 50

Edit Goto 50

Edit Goto Bookmark 50

Edit Indent Block 50

Edit Paste 50

Edit Redo 49

Edit Remark Block 51

Edit Replace 50

Edit Toggle Bookmark 50

Edit Undo 49

Edit Unindent Block 51

Elektor CF-Interface 840

ELSE 560, 613

ENABLE 562

ENCODER 563

END 565

END IF 613

END SELECT 719

EOF 566

ERAM 140

Error Codes 247

EUROTIMEDATE 852

EXIT 567

EXP 568

EXTENDED I2C 826

- F -
File Close 48

File Exit 49

File New 47

File Open 48

File Print 49

File Print Preview 49

File Save 48

File Save As 48

FILEATTR 569

FILEDATE 570

FILEDATETIME 571

FILELEN 571

FILETIME 572

FIX 573

FLIP 115

FLUSH 574

Font Editor 125

FOR 576

FORMAT 575

FOR-NEXT 576

FOURTHLINE 578

FP_TRIG 842

FRAC 579

FREEFILE 580

FUNCTION 530

FUSING 581

- G -
GET 582

GETADC 585

GETATKBD 587

GETATKBDRAW 591

GETDSTIP 591

GETDSTPORT 592

GETKBD 593

GETRC 595

GETRC5 596

GETSOCKET 600

GETTCPREGS 599

GLCD 832

GLCDCMD 601

GLCDDATA 601

GLCDSED 832

GOSUB 602

GOTO 603

GRAY2BIN 603

- H -
Help About 119

Help Credits 123

Help Index 120

Help Knowledge Base 123

Help MCS Forum 121

Help MCS Shop 122

Help Support 122

HEX 604

Index 885

© 2008 MCS Electronics

HEXVAL 605

HIGH 606

HIGHW 607

HOME 607

- I -
I2C TWI Slave 847

I2C_TWI 826

I2CINIT 608

I2CRBYTE 610

I2CRECEIVE 608

I2CSEND 609

I2CSLAVE 845

I2CSTART 610

I2CSTOP 610

I2CSTOP: I2CRBYTE: I2CWBYTE 610

I2CWBYTE 610

I2START 610

IDLE 613

IF 613

IF-THEN-ELSE-END IF 613

INCR 615

Index 20

INITFILESYSTEM 615

INITLCD 616

INKEY 617

INP 618

INPUT 622

INPUTBIN 620

INPUTHEX 620

Installation of BASCOM 28

INSTR 624

INT 625

INTEGER 224

IP2STR 626

ISCHARWAITING 626

ISP programmer 100

- K -
Keyword Reference 21

KILL 627

KITSRUS Programmer 102

- L -
Language Fundamentals 224

Lawicel BootLoader 108

LCASE 628

LCD 629

LCD RGB-8 Converter 879

LCD4.LIB 831

LCD4BUSY 830

LCD4E2 831

LCDAT 632

LCDCONTRAST 634

LCD-EPSON 834

LEFT 634

LEN 635

LINE 635

LINE INPUT 638

LOAD 640

LOADADR 640

LOADLABEL 641

LOADWORDADR 641

LOC 642

LOCAL 644

LOCATE 647

LOF 643

LOG 647

LOG10 648

LONG 224

LOOKDOWN 648

LOOKUP 650

LOOKUPSTR 651

LOOP 550

LOW 651

LOWERLINE 652

LTRIM 639

- M -
MACRO 653

MAKEBCD 654

MAKEDEC 655

MAKEINT 654

MAKEMODBUS 655

MAKETCP 658

MAX 658

MCS Bootloader 113

MCS Universal Interface Programmer 103

MCSBYTE 828

MCSBYTEINT 828

MEMCOPY 660

Memory usage 140

MID 662

MIN 661

BASCOM-AVR886

© 2008 MCS Electronics

Mixing ASM and BASIC 236

- N -
NBITS 663

New CF-Card Drivers 842

Newbie problems 251

NEXT 576

- O -
ON INTERRUPT 664

ON VALUE 667

OPEN 669

Options Communication 92

Options Compiler 90

Options Compiler 1WIRE 90

Options Compiler Chip 87

Options Compiler Communication 89

Options Compiler I2C 90

Options Compiler LCD 91

Options Compiler Output 88

Options Compiler SPI 90

Options Environment 93

Options Monitor 117

Options Printer 118

Options Programmer 98

Options Simulator 97

OUT 673

- P -
PCF8533 832

PEEK 674

PG302 programmer 101

POKE 675

POPALL 675

POWER 676

Power Up 168

POWERDOWN 678

POWERSAVE 679

PRINT 679

PRINTBIN 681

PROGGY 115

Program Compile 58

Program Development Order 125

Program Send to Chip 72

Program Show Result 60

Program Simulate 61

Program Syntax Check 58

PS2MOUSE_EMULATOR 853

PS2MOUSEXY 685

PSET 682

PULSEIN 685

PULSEOUT 686

PUSHALL 687

PUT 688

- Q -
QUOTE 690

- R -
RAD2DEG 690

RC5SEND 691

RC5SENDEXT 693

RC6SEND 695

READ 697

READEEPROM 699

READHITAG 701

READMAGCARD 704

REM 706

Resellers 824

Reserved Words 246

RESET 707

RESTORE 709

RETURN 710

RIGHT 711

RND 712

ROTATE 713

ROUND 714

RTRIM 715

Running BASCOM-AVR 45

- S -
Sample Electronics cable programmer 101

SECELAPSED 716

SECOFDAY 717

SEEK 718

SELECT 719

SELECT-CASE-END SELECT 719

SENDSCAN 728

SENDSCANKBD 730

SERIN 734

SEROUT 736

SET 721

Index 887

© 2008 MCS Electronics

SETFONT 723

SETIPPROTOCOL 738

SETTCP 725

SETTCPREGS 726

SGN 740

SHIFT 741

SHIFTCURSOR 743

SHIFTIN 743

SHIFTLCD 748

SHIFTOUT 747

SHOWPIC 749

SHOWPICE 750

SIN 751

SINGLE 224

SINH 752

SOCKETCONNECT 752

SOCKETLISTEN 755

SOCKETSTAT 756

SONYSEND 757

SOUND 760

SPACE 762

SPC 763

SPIIN 764

SPIINIT 765

SPIMOVE 765

SPIOUT 766

SPISLAVE 849

SPLIT 766

SQR 768

START 769

STCHECK 770

STEP 576

STK500 Programmer 105

STOP 775

STR 775

STRING 776

SUB 777

Supported Programmers 99

SWAP 781

SYSDAY 780

SYSSEC 777

SYSSECELAPSED 779

- T -
TAN 782

TANH 792

TCPCHECKSUM 783

TCPIP 829

TCPREAD 786

TCPWRITE 787

TCPWRITESTR 788

THEN 613

THIRDLINE 793

TIME 794

TIME$ 793

TIMER0 132

TIMER1 133

Tips and tricks 252

TOGGLE 796

Tools Batch Compile 81

Tools Graphic Converter 79

Tools LCD Designer 76

Tools LIB Manager 78

Tools PDF Update 84

Tools Plugin Manager 80

Tools Resource Editor 85

Tools Stack Analyzer 80

Tools Terminal Emulator 75

TRIM 796

- U -
UCASE 797

UDPREAD 798

UDPWRITE 801

UDPWRITESTR 802

UPPERLINE 806

USB-ISP Programmer 109

Using the 1 WIRE protocol 157

Using the I2C protocol 150

Using the SPI protocol 160

USING the UART 142

- V -
VAL 806

VARPTR 807

VER 808

VERSION 809

View Error Panel 57

View PDF viewer 55

View PinOut 51

View Tip 57

- W -
WAIT 809

BASCOM-AVR888

© 2008 MCS Electronics

WAITKEY 810

WAITMS 811

WAITUS 812

WEND 813

WHILE 813

WHILE-WEND 813

Window Arrange Icons 119

Window Maximize All 119

Window Minimize All 119

Window Tile 119

Windows Cascade 118

WORD 224

WRITE 814

WRITEEEPROM 815

- X -
X10DETECT 817

X10SEND 819

XRAM 140

XRAM CF-Interface for simulation 841

© MCS Electronics 1995-2008

Making Micro's Easy

www.mcselec.com

	Index
	Keyword Reference
	About MCS Electronics
	Custom Designs
	Application Notes

	Installation
	Installation of BASCOM
	Updates
	Move to new PC

	BASCOM IDE
	Running BASCOM-AVR
	File New
	File Open
	File Close
	File Save
	File Save As
	File Print Preview
	File Print
	File Exit
	Edit Undo
	Edit Redo
	Edit Cut
	Edit Copy
	Edit Paste
	Edit Find
	Edit Find Next
	Edit Replace
	Edit Goto
	Edit Toggle Bookmark
	Edit Goto Bookmark
	Edit Indent Block
	Edit Unindent Block
	Edit Remark Block
	View PinOut
	View PDF viewer
	View Error Panel
	View Tip
	Program Compile
	Program Syntax Check
	Program Show Result
	Program Simulate
	Program Send to Chip
	Tools Terminal Emulator
	Tools LCD Designer
	Tools LIB Manager
	Tools Graphic Converter
	Tools Stack Analyzer
	Tools Plugin Manager
	Tools Batch Compile
	Tools PDF Update
	Tools Resource Editor
	Options Compiler
	Options Compiler Chip
	Options Compiler Output
	Options Compiler Communication
	Options Compiler I2C, SPI, 1WIRE
	Options Compiler LCD

	Options Communication
	Options Environment
	Options Simulator
	Options Programmer
	Supported Programmers
	ISP programmer
	PG302 programmer
	Sample Electronics cable programmer
	KITSRUS Programmer
	MCS Universal Interface Programmer
	STK500 Programmer
	Lawicel BootLoader
	AVR ISP Programmer
	USB-ISP Programmer
	MCS Bootloader
	PROGGY
	FLIP
	Elektor / AVR ISP mkII

	Options Monitor
	Options Printer
	Window Cascade
	Window Tile
	Window Arrange Icons
	Windows Maximize All
	Window Minimize All
	Help About
	Help Index
	Help MCS Forum
	Help MCS Shop
	Help Support
	Help Knowledge Base
	Help Credits
	BASCOM Editor Keys
	Program Development Order
	PlugIns
	Font Editor

	BASCOM HARDWARE
	Additional Hardware
	AVR Internal Hardware
	AVR Internal Registers
	AVR Internal Hardware TIMER0
	AVR Internal Hardware TIMER1
	AVR Internal Hardware Watchdog timer
	AVR Internal Hardware Port B
	AVR Internal Hardware Port D
	Adding XRAM
	Attaching an LCD Display
	Memory usage
	Using the UART
	USING RS485
	Using the I2C protocol
	Using the 1 WIRE protocol
	Using the SPI protocol
	Power Up
	Chips
	AT86RF401
	AT90S1200
	AT90S2313
	AT90S2323
	AT90S2333
	AT90S2343
	AT90S4414
	AT90S4433
	AT90S4434
	AT90S8515
	AT90S8535
	AT90PWM2-3
	AT90CAN128
	AT90USB162
	ATtiny12
	ATtiny13
	ATtiny15
	ATtiny22
	ATtiny24
	ATtiny25
	ATtiny26
	ATtiny44
	ATtiny45
	ATtiny84
	ATtiny85
	ATtiny261
	ATtiny461
	ATtiny861
	ATtiny2313
	ATMEGA8
	ATMEGA16
	ATMEGA32
	ATMEGA48
	ATMEGA88
	ATMEGA64
	ATMEGA103
	ATMEGA128
	ATMEGA161
	ATMEGA162
	ATMEGA163
	ATMEGA164P
	ATMEGA165
	ATMEGA168
	ATMEGA169
	ATMEGA323
	ATMEGA324P
	ATMEGA325
	ATMEGA328P
	ATMEGA329
	ATMEGA406
	ATMEGA603
	ATMEGA640
	ATMEGA644P
	ATMEGA645
	ATMEGA649
	ATMEGA2560
	ATMEGA2561
	ATMEGA8515
	ATMEGA8535

	Reference Designs
	EM4095 RFID Reader
	USB162 module

	BASCOM Language Fundamentals
	Changes compared to BASCOM-8051
	Language Fundamentals
	Mixing ASM and BASIC
	Assembler mnemonics
	Reserved Words
	Error Codes
	Newbie problems
	Tips and tricks
	ASCII chart

	BASCOM Language Reference
	$ASM
	$BAUD
	$BAUD1
	$BGF
	$BOOT
	$CRYSTAL
	$DATA
	$DBG
	$DEFAULT
	$EEPLEAVE
	$EEPROM
	$EEPROMHEX
	$EXTERNAL
	$FRAMESIZE
	$HWSTACK
	$INC
	$INCLUDE
	$INITMICRO
	$LCD
	$LCDPUTCTRL
	$LCDPUTDATA
	$LCDRS
	$LCDVFO
	$LIB
	$LOADER
	$LOADERSIZE
	$MAP
	$NOCOMPILE
	$NOINIT
	$NORAMCLEAR
	$PROG
	$PROGRAMMER
	$REGFILE
	$RESOURCE
	$ROMSTART
	$SERIALINPUT
	$SERIALINPUT1
	$SERIALINPUT2LCD
	$SERIALOUTPUT
	$SERIALOUTPUT1
	$SIM
	$SWSTACK
	$TIMEOUT
	$TINY
	$WAITSTATE
	$XA
	$XRAMSIZE
	$XRAMSTART
	1WIRECOUNT
	1WRESET
	1WREAD
	1WSEARCHFIRST
	1WSEARCHNEXT
	1WVERIFY
	1WWRITE
	ABS
	ACOS
	ADR , ADR2
	ALIAS
	ASC
	ASIN
	ATN
	ATN2
	BASE64DEC
	BASE64ENC
	BAUD
	BAUD1
	BCD
	BIN
	BINVAL
	BIN2GRAY
	BITWAIT
	BITS
	BLOAD
	BOX
	BOXFILL
	BSAVE
	BUFSPACE
	BYVAL
	CALL
	CHECKSUM
	CHR
	CIRCLE
	CLEAR
	CLS
	CLOCKDIVISION
	CLOSE
	CLOSESOCKET
	CONFIG
	CONFIG 1WIRE
	CONFIG ACI
	CONFIG ADC
	CONFIG ATEMU
	CONFIG BCCARD
	CONFIG CLOCK
	CONFIG CLOCKDIV
	CONFIG COM1
	CONFIG COM2
	CONFIG COMx
	CONFIG DATE
	CONFIG DCF77
	CONFIG DEBOUNCE
	CONFIG HITAG
	CONFIG I2CDELAY
	CONFIG I2CSLAVE
	CONFIG INPUT
	CONFIG INTx
	CONFIG GRAPHLCD
	CONFIG KBD
	CONFIG KEYBOARD
	CONFIG LCD
	CONFIG LCDBUS
	CONFIG LCDMODE
	CONFIG LCDPIN
	CONFIG PORT
	CONFIG PRINT
	CONFIG PRINTBIN
	CONFIG PS2EMU
	CONFIG RC5
	CONFIG SDA
	CONFIG SCL
	CONFIG SERIALIN
	CONFIG SERIALOUT
	CONFIG SINGLE
	CONFIG SHIFTIN
	CONFIG SPI
	CONFIG SERVOS
	CONFIG TCPIP
	CONFIG TIMER0
	CONFIG TIMER1
	CONFIG TIMER2
	CONFIG TWI
	CONFIG TWISLAVE
	CONFIG USB
	CONFIG WAITSUART
	CONFIG WATCHDOG
	CONFIG X10
	CONFIG XRAM
	CONST
	COS
	COSH
	COUNTER0 and COUNTER1
	CPEEK
	CPEEKH
	CRC8
	CRC16
	CRC16UNI
	CRC32
	CRYSTAL
	CURSOR
	DATA
	DAYOFWEEK
	DAYOFYEAR
	DATE$
	DATE
	DBG
	DCF77TIMEZONE
	DEBUG
	DEBOUNCE
	DECR
	DECLARE FUNCTION
	DECLARE SUB
	DEFxxx
	DEFLCDCHAR
	DEG2RAD
	DELAY
	DIM
	DIR
	DISABLE
	DISKFREE
	DISKSIZE
	DISPLAY
	DO-LOOP
	DriveCheck
	DriveGetIdentity
	DriveInit
	DriveReset
	DriveReadSector
	DriveWriteSector
	DTMFOUT
	ECHO
	ELSE
	ENABLE
	ENCODER
	END
	EOF
	EXIT
	EXP
	FILEATTR
	FILEDATE
	FILEDATETIME
	FILELEN
	FILETIME
	FIX
	FLUSH
	FORMAT
	FOR-NEXT
	FOURTHLINE
	FRAC
	FREEFILE
	FUSING
	GET
	GETADC
	GETATKBD
	GETATKBDRAW
	GETDSTIP
	GETDSTPORT
	GETKBD
	GETRC
	GETRC5
	GETTCPREGS
	GETSOCKET
	GLCDCMD
	GLCDDATA
	GOSUB
	GOTO
	GRAY2BIN
	HEX
	HEXVAL
	HIGH
	HIGHW
	HOME
	I2CINIT
	I2CRECEIVE
	I2CSEND
	I2START,I2CSTOP, I2CRBYTE, I2CWBYTE
	IDLE
	IF-THEN-ELSE-END IF
	INCR
	INITFILESYSTEM
	INITLCD
	INKEY
	INP
	INPUTBIN
	INPUTHEX
	INPUT
	INSTR
	INT
	IP2STR
	ISCHARWAITING
	KILL
	LCASE
	LCD
	LCDAT
	LCDCONTRAST
	LEFT
	LEN
	LINE
	LINE INPUT
	LTRIM
	LOAD
	LOADADR
	LOADLABEL
	LOADWORDADR
	LOC
	LOF
	LOCAL
	LOCATE
	LOG
	LOG10
	LOOKDOWN
	LOOKUP
	LOOKUPSTR
	LOW
	LOWERLINE
	MACRO
	MAKEBCD
	MAKEINT
	MAKEDEC
	MAKEMODBUS
	MAKETCP
	MAX
	MEMCOPY
	MIN
	MID
	NBITS
	ON INTERRUPT
	ON VALUE
	OPEN
	OUT
	PEEK
	POKE
	POPALL
	POWER
	POWERDOWN
	POWERSAVE
	PRINT
	PRINTBIN
	PSET
	PS2MOUSEXY
	PULSEIN
	PULSEOUT
	PUSHALL
	PUT
	QUOTE
	RAD2DEG
	RC5SEND
	RC5SENDEXT
	RC6SEND
	READ
	READEEPROM
	READHITAG
	READMAGCARD
	REM
	RESET
	RESTORE
	RETURN
	RIGHT
	RND
	ROTATE
	ROUND
	RTRIM
	SECELAPSED
	SECOFDAY
	SEEK
	SELECT-CASE-END SELECT
	SET
	SETFONT
	SETTCP
	SETTCPREGS
	SENDSCAN
	SENDSCANKBD
	SERIN
	SEROUT
	SETIPPROTOCOL
	SGN
	SHIFT
	SHIFTCURSOR
	SHIFTIN
	SHIFTOUT
	SHIFTLCD
	SHOWPIC
	SHOWPICE
	SIN
	SINH
	SOCKETCONNECT
	SOCKETLISTEN
	SOCKETSTAT
	SONYSEND
	SOUND
	SPACE
	SPC
	SPIIN
	SPIINIT
	SPIMOVE
	SPIOUT
	SPLIT
	SQR
	START
	STCHECK
	STOP
	STR
	STRING
	SUB
	SYSSEC
	SYSSECELAPSED
	SYSDAY
	SWAP
	TAN
	TCPCHECKSUM
	TCPREAD
	TCPWRITE
	TCPWRITESTR
	TANH
	THIRDLINE
	TIME$
	TIME
	TOGGLE
	TRIM
	UCASE
	UDPREAD
	UDPWRITE
	UDPWRITESTR
	UPPERLINE
	VAL
	VARPTR
	VER
	VERSION
	WAIT
	WAITKEY
	WAITMS
	WAITUS
	WHILE-WEND
	WRITE
	WRITEEEPROM
	X10DETECT
	X10SEND
	#IF ELSE ENDIF

	International Resellers
	International Resellers

	ASM Libraries and Add-Ons
	I2C_TWI
	EXTENDED I2C
	MCSBYTE
	MCSBYTEINT
	TCPIP
	LCD
	LCD4BUSY
	LCD4.LIB
	LCD4E2
	GLCD
	GLCDSED
	PCF8533
	LCD-EPSON

	AVR-DOS
	AVR-DOS File System

	CF Card
	Compact FlashCard Driver
	Elektor CF-Interface
	XRAM CF-Interface for simulation
	New CF-Card Drivers

	Floating Point
	FP_TRIG
	DOUBLE

	I2C SLAVE
	I2CSLAVE
	I2C TWI Slave

	SPI
	SPISLAVE

	DATE TIME
	EUROTIMEDATE
	DATETIME

	PS2-AT Mouse and Keyboard Emulation
	AT_EMULATOR
	PS2MOUSE_EMULATOR

	BCCARD
	BCCARD
	BCDEF
	BCCALL
	BCRESET

	USB
	USB Add On

	MODBUS Slave/Server

	Tools
	LCD RGB-8 Converter

